• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A new variable step-size LMS method and its applicationin DOA estimation of OFDMA signals

    2020-07-20 08:42:34ZhaoYanLinLiDongWenWangHaoWuZhentaoWangXiaojunChenXiaoshu

    Zhao Yan Lin Li Dong Wen Wang Hao Wu Zhentao Wang Xiaojun Chen Xiaoshu

    (1The PLA’s 61212 Army, Beijing 100000, China)(2School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China)(3National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)

    Abstract:To meet the requirements of quick positioning of mobile terminals from base stations (BSs) or third-party devices, as well as to improve the convergence speed and reduce the steady state maladjustment of the least mean square (LMS) method, a new logarithmic-sigmoid variable step-size LMS (LG-SVSLMS) was proposed and applied to estimate the direction of arrival (DOA) of orthogonal frequency division multiple access (OFDMA) signals. Based on the proposed LG-SVSLMS, a non-blind DOA estimation system for OFDMA signals was constructed. The proposed LG-SVSLMS adopts a new multi-parameter step-size update function which combines the sigmoid function and the logarithmic function. It controls the adjustment magnitude of step-size during the initial and steady state phases of the LMS method to achieve both a high convergence speed and low steady state maladjustment. Finally, simulation was conducted to verify the performance of the LG-SVSLMS. The simulation results show that the non-blind DOA estimation system based on the LG-SVSLMS can accurately estimate the DOA of the target signal in the scenario where interference signals from multi-source and multi-path fading signals arrive at the third-party devices asynchronously with the target signal, and the estimation deviation is within ±3°. The non-blind DOA estimation for OFDMA signals with the proposed LG-SVSLMS is of great significance for the instant positioning technology of mobile terminals based on the adaptive antenna array.

    Key words:direction of arrival; variable step-size least mean square; orthogonal frequency division multiple access; third-party devices

    With the rapid development of communication technology, the output of global mobile terminals has increased exponentially. The mobile terminal positioning technique is widely utilized in the signal propagation of hotspot areas, location tracking, emergency rescue, emergency communication and other fields. Currently, the location information of terminals is provided mainly by satellite and cellular network positioning. Satellite positioning mainly includes the global positioning system (GPS)[1]and the Chinese Beidou navigation satellite system (BDS)[2]. Satellite positioning can accurately locate within a visible distance in the open environment, but it is greatly interfered by multi-path fading signals in large and medium-sized cities. Cellular network positioning enables accurate location over a wider range due to its wide and deep coverage.

    In recent years, adaptive antenna arrays have been gradually applied to various mobile communication systems. Thus,wireless positioning based on adaptive antenna arrays has received extensive attention. Compared with satellite positioning, wireless positioning only needs relevant equipment to be provided to the base stations (BSs), instead of optimizing and improving numerous terminal devices. At present, the direction of arrival (DOA) estimation methods based on adaptive antenna array can be divided into blind DOA estimation and non-blind DOA estimation. Blind DOA estimation methods mainly include Capon minimum variance[3], multiple signal classification (MUSIC)[4], ROOT-MUSIC[5], and estimation of signal parameters via rotational invariance techniques (ESPRIT)[6]. Capon minimum variance is based on the maximum likelihood criterion and it needs to invert the correlation matrix of the received signal. MUSIC performs matrix eigenvalue decomposition according to the orthogonality of signal subspace and noise subspace to avoid matrix inversion. For the extremely high computational complexity of MUSIC,ROOT-MUSIC replaces spectral peak search with polynomial roots. ESPRIT estimates DOA via the rotational invariance of subspace, which further reduces the computational complexity.

    Compared with blind DOA estimation methods, the computational complexity of non-blind DOA estimation methods is lower, which can meet the requirements for the rapid positioning of mobile terminals. Non-blind DOA estimation methods mainly include least mean square (LMS)[7]and recursive least square (RLS)[8]. LMS is a simplified one of the steepest descent method, which is based on the minimum mean square error (MMSE) criterion. LMS has the characteristics of simple implementation, low computational complexity and strong anti-interference in multi-path. RLS is proposed based on the least squares (LS) criterion. Compared with LMS, RLS converges faster, but the computation is more complex. In this paper, a new variable step-size LMS method is proposed and applied to estimate the DOA of orthogonal frequency division multiple access (OFDMA)[9]signals. Based on the LMS, a non-blind DOA estimation system for OFDMA signals is constructed. The comprehensive simulation of its performance is carried out in the scenario where interference signals from multi-source and multi-path fading signals arrive at the third-party devices asynchronously with the target signal.

    1 A New Variable Step-Size LMS Method

    1.1 LMS

    The adaptive antenna system is shown in Fig.1. In Fig.1,x(n)={x1(n),x2(n),…xP(n)}Tis the input signal of the adaptive antenna system, whiley(n) is the output signal.

    y(n)=wTx(n)

    (1)

    wherewis the weight vector of adaptive antenna array.

    Fig.1 Adaptive antenna system

    d(n) is the reference signal ande(n) is the maladjustment betweend(n) andy(n).

    e(n)=d(n)-y(n)

    (2)

    The mean square error is defined as

    J=E[|e(n)|2]=E[{d(n)-y(n)}{d(n)-y(n)}*]

    (3)

    According to the minimum mean square error criterion, the optimal weight vectorwoptis obtained when

    (4)

    Substituting Eq.(3) into Eq.(4), we can obtain

    E[d(n)x*(n)]-E[x(n)x*(n)]wopt=

    rxd-Rxxwopt=0

    (5)

    whereRxxis the auto-correlation matrix ofx(n), whilerxdis the cross-correlation matrix ofx(n) andd(n). WhenRxxis full rank,

    (6)

    The steepest descent method applies iterations to obtainwopt. In the (k+1)-th iteration, a correction Δwkis added towk, makingwk+1closer towopt.

    wk+1=wk+Δwk

    (7)

    The negative gradient is the direction, in which the objective function declines fast. Therefore,

    (8)

    whereμis the step-size of adjustment.

    In LMS, the current sample is utilized to estimate the negative gradient.

    (9)

    The steps of LMS are summarized. First, initializew0to0. Then, start the algorithm withn=1. Each iteration of LMS can be divided into three steps:1)e(n) is calculated according to Eq.(1) and Eq.(2); 2) Updatewaccording to Eq.(7) and Eq.(9); 3) Ifnis greater than the total number of iterations, the algorithm is terminated andwnis the optimal weight vector. Otherwise, proceed to the next iteration withn=n+1.

    1.2 Logarithmic-sigmod variable step-size LMS

    The traditional fixed-step LMS converges when the step-sizeμsatisfies

    (10)

    whereλmaxis the maximum eigen value of the auto-correlation matrix of the received signal. The steady state maladjustment of LMS results in the obtained weight vector being only an approximation of the optimal weight vector. The convergence speed of LMS is proportional toμ, while the steady state maladjustment is inversely proportional toμ. To meet the above requirement, the step-size needs to be controlled.

    A recommended solution is to adopt a variable step-size LMS to achieve both a high convergence speed and low steady state maladjustment.

    Sigmod variable step-size LMS (SVS-LMS)[10]definesμas the sigmoid function ofe(n).

    μ(n)=β(1/(1+exp(-α|e(n)|))-0.5)

    (11)

    SVS-LMS converges faster than fixed-step LMS. However,μof SVS-LMS varies greatly whene(n) is close to zero.

    Logarithmic variable step-size LMS (log-LMS)[11]definesμas the logarithmic function ofe(n).

    μ(n)=blg(a|e(n)|m)

    (12)

    By combining the two methods above, a new variable step-size LMS is proposed, which is called logarithmic-sigmoid variable step-size LMS (LG-SVSLMS). The step factor updating formula can be set up as

    μ(n)=βlg(2-exp(-α|e(n)|m))

    (13)

    whereαinfluences the overall shape of the curve;minfluences the trend at the bottom of the curve andβinfluences the magnitude of the curve.

    LG-SVSLMS overcomes the shortcomings of SVSLMS and Log-LMS. In the initial stage of LMS,e(n) andμare both large. Ase(n) decreases,μdecreases rapidly. In the steady state phase of LMS,e(n) is close to 0 andμis slowly changed. Whene(n) is equal to 0,μalso equals 0, as shown in Fig.2.

    Fig.2 Curve of μ(e) in SVSLMS, Log-LMS and LG-SVSLMS

    The steps of LG-SVSLMS are summarized. First, initializew0to0. Then, start the algorithm withn=1. Each iteration of LG-SVSLMS can be divided into four steps: 1)e(n) is calculated according to Eq.(1) and Eq.(2); 2) Calculateμ(n) according to Eq.(13); 3) Updatew; 4) Ifnis greater than the total number of iterations, the algorithm is terminated andwnis the optimal weight vector. Otherwise, proceed to the next iteration withn=n+1.

    2 Non-Blind DOA Estimation System for OFDMA Signals Based on LG-SVSLMS

    2.1 System flow

    OFDMA is the dominant multiple access technology adopted in the 4th and 5th generation communication systems. With mutually orthogonal sub-carriers, orthogonal frequency division multiplexing (OFDM)[12]allows sub-carriers to overlap each other, and avoids the large guard interval between adjacent sub-carriers, which greatly improves spectrum utilization. Different sub-carriers are allocated to different users in OFDMA.

    In this paper, a non-blind DOA estimation system for OFDMA signals based on LG-SVSLMS is constructed, which is shown in Fig.3. The system adopts the domain signal of the demodulation reference signal (DMRS) as the reference signald(n).

    Fig.3 Non-blind DOA estimation system for OFDMA signals based on LG-SVSLMS

    x(n) is the received signal of the uniform linear array (ULA), consisting of direct path signals and multi-path fading signals from multiple UEs. According to the auto-correlation and cross-correlation properties of DMRS, the correlation spectrum ofd(n) andx(n) can be calculated in turn and the effective signal can be extracted from the index of the peak.

    Assuming that the array hasPantennas,MUEs propagate signals simultaneously, and there areKmmulti-path signals for each UE. As a result,x(n)={x1(n),x2(n),…,xP(n)}Tcan be defined as follows:

    i=1,2,…,P

    (14)

    wherexi(n) is the received signal of thei-th antenna;vi(n) is the additive white Gaussian noise;ai(θ) is the direction factor of thei-th antenna;dm(n) is the DMRS of UEm; UE 1 is the target user;θmis the azimuth ofdm(n), whileθm,kis the azimuth of thek-th multi-path ofdm(n);nmis the delay of UEmrelative to UE 1, whilenm,kis the delay of thek-th multi-path of UEmrelative to UE 1;lmis the path loss coefficient ofdm(n), andlm,kis the multi-path fading coefficient ofdm(n-nm,k).

    Eq.(14) can be represented as

    x(n)=Ad(n)+v(n)

    (15)

    where

    x(n)={x1(n),x2(n),…,xP(n)}T

    (16)

    v(n)={v1(n),v2(n),…,vP(n)}T

    (17)

    d(n)={d1(n),d1(n-n1,1),…,d1(n-n1,K1),…,dM(n-nM),dM(n-nM,1),…,dM(n-nM,KM)}T

    (18)

    A(n)={a(θ1),a(θ1,1),…,a(θ1,K1),…,a(θM),a(θM,1),…,a(θM,KM)}

    (19)

    and

    a(θ)={a1(θ),a2(θ),…,aP(θ)}T

    (20)

    In the same cell, different UEs occupy different sub-carriers. Therefore, the effective part ofx(n) can be extracted from the frequency domain according to the sub-carriers occupied byd1(n).

    Then, the extracted signal is converted to the time domain for LG-SVSLMS. The optimal weight vectorwoptmakes

    (21)

    The direction spectrumP(θ) is defined as follows:

    P(θ)=|wHa(θ)|2θ∈(-90°,90°]

    (22)

    θr=argmaxP(θ) is the estimated DOA of target signal andθe=θr-θ1is the estimation deviation.

    2.2 Problems of DOA estimation from third-party devices

    Due to the mechanism of time advance established between BS and UEs, the BS can synchronously receive the uplink signals from multiple UEs. However, this synchronization mechanism cannot be established in third-party devices. Therefore, uplink signals from multiple UEs arrive at third-party devices asynchronously, which will make the multiple signals overlap in the time domain, thereby affecting the estimation of DOA of the target signal.

    In order to improve the utilization efficiency of spectrum resources and increase the number of users in the system, the frequency reuse technology is adopted in the mobile communication system. Therefore, within a certain distance, there are cells that use the same set of frequencies, which are called co-frequency cells. Co-channel interference will occur between co-frequency cells. The BS is deployed at the center of the cell, hence the co-channel interference from the neighboring cells can be ignored. However, the third-party devices are located at the non-center or even edge of the cell. Therefore, the co-channel interference should be considered in the DOA estimation from third-party devices.

    (23)

    3 Simulation Results

    3.1 Performance of LG-SVSLMS

    In this section, the performance of LG-SVSLMS is investigated and compared with SVSLMS and Log-LMS.

    The simulation system adopts an adaptive filter with an order of 2. The input signalx(n) is Gaussian white noise with zero mean and unit variance. The noisev(n) is Gaussian white noise with the variance of 0.04, and it is uncorrelated withx(n). The coefficient vector of the finite-length unit impulse response of an unknown system isw={0.8,0.5}T.

    Fig.4 shows the curve ofμin different variable step-size LMS. At a steady state, the step size of LG-SVSLMS is greater than that of SVSLMS and Log-LMS, indicating that LG-SVSLMS has the lowest steady state maladjustment in these three methods.

    Fig.4 Curve of μ in different variable step-size LMS

    Fig.5 shows the curve ofe(n) in different LMS methods. As shown in Fig.(5), the fixed-step LMS converges from the 330th sampling point, SVS-LMS converges from the 120th sampling point, Log-LMS converges from the 100th sampling point, and LG-SVSLMS converges from the 50th sampling point. It can be concluded that LG-SVSLMS has a low steady state maladjustment and a high convergence speed.

    Fig.5 Curve of e(n) in different LMS algorithms

    3.2 Performance comparison between LG-SVSLMS and MUSIC

    In this section, the performance of MUSIC and LG-SVSLMS is compared with each other.

    First, the scenario of only one target source with the azimuth of 30° is investigated. As shown in Fig.6 and Fig.7, both MUSIC and LG-SVSLMS can estimate the DOA of the single target UE without bias.

    Fig.6 MUSIC spectrum of a single source

    Fig.7 LG-SVSLMS direction power spectrum of a single source

    Secondly, the scenario of multiple coherent sources is investigated. The azimuth of the target source is still 30°, while the azimuths of the two coherent sources are -18° and -60°.

    According to Fig.8 and Fig.9, MUSIC is not comparable to LG-SVSLMS for estimating DOA of multiple coherent sources, because the spatial covariance matrix of multiple coherent signals is not full rank.

    Fig.9 LG-SVSLMS direction power spectrum of multiple coherent sources

    Finally, the computational complexity of MUSIC and LG-SVSLMS is compared with each other. Assume that the number of antennas isP. MUSIC requiresP2Ladditions andP2L+TPmultiplications, whereLis the number of snapshots andTis related to the estimation accuracy of MUSIC. LG-SVSLMS requiresQPadditions andQP+QJmultiplications, whereQis the length of DMRS andJis the number of iterations when extracting signals.

    When the antenna array can effectively receive signals,Jwill be greatly reduced, and the computational complexity of LG-SVSLMS will be much smaller than that of MUSIC.

    3.3 Performance of non-blind DOA estimation for OFDMA signals based on LG-SVSLMS

    In this section, the performance of the non-blind DOA estimation system for OFDMA signals based on LG-SVSLMS is investigated in the scenario where interference signals from multi-source and multi-path fading signals arrive at the third-party devices asynchronously with the target signal.

    This simulation adopts a total of 1 200 sub-carriers, and each UE occupies 48 consecutive sub-carriers. 8 antennas (P=8) are arranged to form a uniform linear array. There are 4 UEs (M=4) within the coverage of the third-party receiver. UE 1, UE 2 and UE 3 are from the same cell, while their DMRS occupies different sub-carriers in the frequency domain. There are two multi-path signals (K1=K2=K3=2) for each UE. UE 4 is from neighboring cell, and its DMRS occupies the same sub-carriers with UE 1. It is assumed that UE 4 has no multi-path interference (K4=0). The signal amplitude of each UE is the same (l1=l2=l3=l4=1), while the amplitude of the multi-path fading signal is 0.55 of the original signal (lm,k=0.55;k=1,2;m=1,2,3).

    The azimuth of UE 1 is 30°. The azimuths of UE 2 and UE 3 are -30° and 50°, and the azimuth of UE 4 is 0°. The azimuths of multi-path signals generated randomly.

    The performance is investigated by the Monte Carlo method with 200 trials.

    The estimation of the DOA of UE 1 with different LMS methods is shown in Fig.10. The direction spectrum of these three LMS methods reach a peak near the target direction. According to Tab.1, the maladjustment of DOA estimation is within ±3°. From the side lobes of spectrum, it can be seen that the side lobe amplitudes of these three LMS methods are close.

    Fig.10 Direction spectrum of non-blind DOA estimation with different LMS methods

    Tab.1 Estimation results of non-blind DOA estimation with different LMS methods

    Fig.11 shows the curves ofe(n) of non-blind DOA estimation with different LMS methods.Among these three methods, LG-SVSLMS converges first, and the steady state maladjustment is smaller than Log-LMS and fixed-step LMS.

    Fig.11 Curves of e(n) of non-blind DOA estimation with different LMS methods

    4 Conclusions

    1) A new variable step-size LMS method, called LG-SVSLMS, is proposed and applied to estimate the DOA of OFDMA signals. The simulation results show that the LG-SVSLMS can improve the convergence speed and reduce the steady state maladjustment significantly.

    2) The performance of the LG-SVSLMS and MUSIC are compared through analysis and simulation. The simulation results show that the LG-SVSLMS can estimate DOAs of multiple coherent sources and its computational complexity is lower than MUSIC.

    3) Based on the LG-SVSLMS, a non-blind DOA estimation system for OFDMA signals is constructed and the comprehensive performance simulation is carried out. The simulation results show that the non-blind DOA estimation system based on the LG-SVSLMS can accurately estimate the DOA of the target signal in the scenario where interference signals from multi-source and multi-path fading signals arrive at the third-party devices asynchronously with target signal.

    黄色毛片三级朝国网站| 欧美 日韩 精品 国产| 精品久久久精品久久久| 在线观看免费高清a一片| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品偷伦视频观看了| 国产精品偷伦视频观看了| 如日韩欧美国产精品一区二区三区| av视频免费观看在线观看| av线在线观看网站| 三上悠亚av全集在线观看| 国产精品久久久av美女十八| 在线观看一区二区三区激情| 午夜福利一区二区在线看| 欧美日韩综合久久久久久| 麻豆av在线久日| 在线观看免费高清a一片| 亚洲av电影在线观看一区二区三区| 大片免费播放器 马上看| 黑人欧美特级aaaaaa片| 9191精品国产免费久久| 五月天丁香电影| 建设人人有责人人尽责人人享有的| 国产亚洲av片在线观看秒播厂| 考比视频在线观看| 黑丝袜美女国产一区| 只有这里有精品99| 观看av在线不卡| 精品国产一区二区久久| 亚洲精品乱久久久久久| 美女扒开内裤让男人捅视频| 久久99热这里只频精品6学生| 亚洲av片天天在线观看| 丝袜美足系列| 在线 av 中文字幕| 狠狠精品人妻久久久久久综合| 精品视频人人做人人爽| 美女高潮到喷水免费观看| 大型av网站在线播放| 国产福利在线免费观看视频| 国产精品久久久久久人妻精品电影 | 亚洲欧美一区二区三区黑人| 成人手机av| 极品人妻少妇av视频| 亚洲欧洲精品一区二区精品久久久| 人人妻人人添人人爽欧美一区卜| 欧美日韩国产mv在线观看视频| 激情视频va一区二区三区| 午夜视频精品福利| av天堂在线播放| 亚洲精品中文字幕在线视频| 亚洲精品国产av蜜桃| 热99国产精品久久久久久7| 女人精品久久久久毛片| 亚洲 欧美一区二区三区| 高潮久久久久久久久久久不卡| 91精品伊人久久大香线蕉| 亚洲欧美成人综合另类久久久| 两性夫妻黄色片| 色婷婷av一区二区三区视频| 精品久久蜜臀av无| 男女高潮啪啪啪动态图| 爱豆传媒免费全集在线观看| 五月开心婷婷网| 欧美在线一区亚洲| 丝袜美足系列| 精品少妇一区二区三区视频日本电影| 成年av动漫网址| 一区二区三区激情视频| 国产精品一二三区在线看| videos熟女内射| 国产真人三级小视频在线观看| 美女福利国产在线| 男女边吃奶边做爰视频| 亚洲精品国产一区二区精华液| 中文精品一卡2卡3卡4更新| 99国产综合亚洲精品| 国产午夜精品一二区理论片| 亚洲国产精品999| 一本一本久久a久久精品综合妖精| 一区二区日韩欧美中文字幕| 黑人欧美特级aaaaaa片| 亚洲精品av麻豆狂野| 精品卡一卡二卡四卡免费| 精品福利观看| 啦啦啦啦在线视频资源| 在线观看免费视频网站a站| 一区二区日韩欧美中文字幕| 美女高潮到喷水免费观看| 亚洲黑人精品在线| 日韩一本色道免费dvd| 伊人亚洲综合成人网| 波多野结衣一区麻豆| 啦啦啦在线观看免费高清www| 亚洲免费av在线视频| 亚洲精品乱久久久久久| 国产高清videossex| 亚洲av男天堂| 国产精品二区激情视频| 欧美老熟妇乱子伦牲交| 丝袜美足系列| 国产成人免费无遮挡视频| 亚洲自偷自拍图片 自拍| 美女视频免费永久观看网站| 国产又爽黄色视频| 成人亚洲欧美一区二区av| 亚洲av成人精品一二三区| 色视频在线一区二区三区| 亚洲精品一卡2卡三卡4卡5卡 | a级毛片在线看网站| 最新的欧美精品一区二区| 久久久久久久精品精品| 丁香六月欧美| 2021少妇久久久久久久久久久| 麻豆乱淫一区二区| 久久久久久人人人人人| 午夜福利乱码中文字幕| 国产亚洲欧美在线一区二区| 男女下面插进去视频免费观看| 91国产中文字幕| 狂野欧美激情性xxxx| 99国产精品99久久久久| 热re99久久国产66热| 免费一级毛片在线播放高清视频 | 91国产中文字幕| 久久人妻熟女aⅴ| 视频区图区小说| 丝袜美腿诱惑在线| 久久亚洲精品不卡| 性色av一级| 色播在线永久视频| 少妇猛男粗大的猛烈进出视频| 国语对白做爰xxxⅹ性视频网站| 色婷婷久久久亚洲欧美| 久久精品国产综合久久久| 91精品伊人久久大香线蕉| 亚洲中文日韩欧美视频| 一级黄色大片毛片| 成人国产一区最新在线观看 | 国产一区二区在线观看av| 国产片内射在线| 多毛熟女@视频| 后天国语完整版免费观看| 性高湖久久久久久久久免费观看| 久久久久久久国产电影| 91精品伊人久久大香线蕉| 七月丁香在线播放| 黄频高清免费视频| 一区二区av电影网| 少妇人妻久久综合中文| 日本a在线网址| 99热国产这里只有精品6| 99久久精品国产亚洲精品| 免费看av在线观看网站| 久久久久久久精品精品| 国产成人91sexporn| 肉色欧美久久久久久久蜜桃| 欧美av亚洲av综合av国产av| 狂野欧美激情性bbbbbb| 人人澡人人妻人| 一级a爱视频在线免费观看| 一边摸一边做爽爽视频免费| 国产男人的电影天堂91| 久久久国产一区二区| 精品少妇内射三级| 老汉色∧v一级毛片| 热99久久久久精品小说推荐| 欧美精品一区二区大全| 亚洲国产av影院在线观看| 国产精品一区二区免费欧美 | 在现免费观看毛片| av天堂在线播放| 国产精品九九99| 免费人妻精品一区二区三区视频| 免费久久久久久久精品成人欧美视频| 一本久久精品| 国产在线一区二区三区精| 一二三四社区在线视频社区8| 亚洲精品日韩在线中文字幕| 成年女人毛片免费观看观看9 | 男男h啪啪无遮挡| 欧美亚洲日本最大视频资源| 亚洲成人国产一区在线观看 | 秋霞在线观看毛片| 另类亚洲欧美激情| 久久免费观看电影| 欧美少妇被猛烈插入视频| 亚洲精品日本国产第一区| 国产精品久久久av美女十八| 狠狠婷婷综合久久久久久88av| 国产精品秋霞免费鲁丝片| 中文字幕av电影在线播放| 丝袜在线中文字幕| 一区二区日韩欧美中文字幕| 久久精品国产亚洲av高清一级| 国产成人免费观看mmmm| 亚洲欧美一区二区三区久久| 97在线人人人人妻| 国产精品九九99| 99热国产这里只有精品6| 啦啦啦在线免费观看视频4| 久久久久久久大尺度免费视频| 久久久久精品人妻al黑| 亚洲一区二区三区欧美精品| 国产片内射在线| 欧美成人午夜精品| 热99久久久久精品小说推荐| 亚洲av国产av综合av卡| svipshipincom国产片| 亚洲av电影在线观看一区二区三区| 亚洲精品一卡2卡三卡4卡5卡 | 日本a在线网址| 精品福利永久在线观看| 亚洲人成77777在线视频| 少妇人妻 视频| 91精品伊人久久大香线蕉| www.自偷自拍.com| 19禁男女啪啪无遮挡网站| 在线观看免费午夜福利视频| 一级毛片女人18水好多 | 永久免费av网站大全| 成人三级做爰电影| 下体分泌物呈黄色| av视频免费观看在线观看| 1024视频免费在线观看| 成人18禁高潮啪啪吃奶动态图| 性色av一级| 在线天堂中文资源库| 极品人妻少妇av视频| 久久影院123| 亚洲欧美日韩另类电影网站| 久久精品aⅴ一区二区三区四区| 久久人妻福利社区极品人妻图片 | www.自偷自拍.com| 最近中文字幕2019免费版| h视频一区二区三区| 久久人妻福利社区极品人妻图片 | 久久 成人 亚洲| 99久久人妻综合| 亚洲av日韩精品久久久久久密 | 国产成人精品久久二区二区免费| 亚洲av在线观看美女高潮| 精品国产乱码久久久久久男人| 中文精品一卡2卡3卡4更新| 少妇 在线观看| 国产不卡av网站在线观看| 十八禁人妻一区二区| 在线观看国产h片| 啦啦啦啦在线视频资源| 欧美日本中文国产一区发布| 最黄视频免费看| 王馨瑶露胸无遮挡在线观看| tube8黄色片| 男女边摸边吃奶| 女人爽到高潮嗷嗷叫在线视频| 熟女av电影| 可以免费在线观看a视频的电影网站| 日韩一区二区三区影片| 大话2 男鬼变身卡| 咕卡用的链子| 美女高潮到喷水免费观看| 国产高清videossex| 午夜免费成人在线视频| 亚洲欧洲国产日韩| 中文字幕亚洲精品专区| 国产精品成人在线| 亚洲一区中文字幕在线| 男女之事视频高清在线观看 | kizo精华| 菩萨蛮人人尽说江南好唐韦庄| 精品一区二区三区av网在线观看 | 一边亲一边摸免费视频| 91精品国产国语对白视频| 婷婷色av中文字幕| 欧美黄色片欧美黄色片| 精品少妇黑人巨大在线播放| 宅男免费午夜| 国产成人影院久久av| 亚洲欧洲精品一区二区精品久久久| 午夜两性在线视频| 欧美人与善性xxx| 日韩伦理黄色片| 91精品伊人久久大香线蕉| videos熟女内射| 最新的欧美精品一区二区| 9191精品国产免费久久| a级片在线免费高清观看视频| 老司机午夜十八禁免费视频| 成年人午夜在线观看视频| 国产精品香港三级国产av潘金莲 | 秋霞在线观看毛片| 久久精品国产亚洲av高清一级| 国产成人精品久久二区二区免费| 黄色一级大片看看| 久久人人爽av亚洲精品天堂| 黄片小视频在线播放| 国产精品免费大片| 日本欧美视频一区| 国产精品亚洲av一区麻豆| 狠狠精品人妻久久久久久综合| 亚洲av片天天在线观看| 国产精品国产av在线观看| 国产成人免费观看mmmm| 国产日韩欧美亚洲二区| 18禁黄网站禁片午夜丰满| 日韩中文字幕欧美一区二区 | 亚洲精品一卡2卡三卡4卡5卡 | 久久性视频一级片| 亚洲三区欧美一区| 大香蕉久久成人网| 韩国高清视频一区二区三区| 亚洲五月婷婷丁香| 久热爱精品视频在线9| 天堂中文最新版在线下载| 国产免费一区二区三区四区乱码| 国产欧美日韩精品亚洲av| 欧美少妇被猛烈插入视频| 黄网站色视频无遮挡免费观看| 日韩精品免费视频一区二区三区| 亚洲精品国产av蜜桃| videosex国产| 国产黄频视频在线观看| 一区二区三区四区激情视频| 性色av一级| 精品少妇一区二区三区视频日本电影| 国产精品二区激情视频| 大香蕉久久成人网| 精品少妇内射三级| 91成人精品电影| 国产真人三级小视频在线观看| 无遮挡黄片免费观看| 久久人妻熟女aⅴ| 久久久精品94久久精品| 国产无遮挡羞羞视频在线观看| 19禁男女啪啪无遮挡网站| 亚洲精品乱久久久久久| 亚洲精品国产av成人精品| 久久久久久免费高清国产稀缺| 日韩 欧美 亚洲 中文字幕| a级毛片在线看网站| 一区二区三区四区激情视频| 精品视频人人做人人爽| 别揉我奶头~嗯~啊~动态视频 | 免费在线观看日本一区| 丰满饥渴人妻一区二区三| 成人亚洲欧美一区二区av| 亚洲欧洲日产国产| 天天躁夜夜躁狠狠躁躁| 欧美精品一区二区大全| 国产激情久久老熟女| 免费在线观看影片大全网站 | 国产亚洲av高清不卡| 18禁国产床啪视频网站| 18在线观看网站| 色视频在线一区二区三区| 亚洲成人免费av在线播放| 久久99精品国语久久久| 国产免费一区二区三区四区乱码| 久久久欧美国产精品| 久久久久久亚洲精品国产蜜桃av| 丰满饥渴人妻一区二区三| 久久中文字幕一级| 久久综合国产亚洲精品| 日本91视频免费播放| 成人手机av| 免费日韩欧美在线观看| 一本一本久久a久久精品综合妖精| 老司机午夜十八禁免费视频| 99热全是精品| 成人亚洲欧美一区二区av| 久久影院123| 1024香蕉在线观看| 精品一区二区三区av网在线观看 | 亚洲精品在线美女| 别揉我奶头~嗯~啊~动态视频 | videosex国产| 咕卡用的链子| 亚洲七黄色美女视频| 我要看黄色一级片免费的| 国产精品av久久久久免费| 精品卡一卡二卡四卡免费| 精品久久久久久久毛片微露脸 | 国产精品熟女久久久久浪| 中文字幕另类日韩欧美亚洲嫩草| 男人爽女人下面视频在线观看| 精品高清国产在线一区| 国产91精品成人一区二区三区 | 91麻豆av在线| 日韩电影二区| 久久ye,这里只有精品| 日韩精品免费视频一区二区三区| 久久久久精品国产欧美久久久 | 久久国产精品大桥未久av| 亚洲欧美一区二区三区久久| 男女之事视频高清在线观看 | 大陆偷拍与自拍| 一本综合久久免费| 精品福利永久在线观看| 国产精品国产三级国产专区5o| 只有这里有精品99| 久久久久久久大尺度免费视频| 久久精品久久久久久噜噜老黄| 欧美+亚洲+日韩+国产| 人人妻人人澡人人看| 成年av动漫网址| 少妇人妻久久综合中文| 巨乳人妻的诱惑在线观看| 狂野欧美激情性xxxx| 老司机靠b影院| 一级毛片黄色毛片免费观看视频| 国产精品av久久久久免费| √禁漫天堂资源中文www| 久久久精品区二区三区| 性高湖久久久久久久久免费观看| 中文字幕最新亚洲高清| 天天影视国产精品| 大型av网站在线播放| 免费高清在线观看日韩| 操美女的视频在线观看| 亚洲精品第二区| 少妇裸体淫交视频免费看高清 | 蜜桃国产av成人99| 99国产精品一区二区蜜桃av | 成人国产一区最新在线观看 | 蜜桃国产av成人99| av网站免费在线观看视频| 99九九在线精品视频| 亚洲成av片中文字幕在线观看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲熟女毛片儿| 黄色视频不卡| av一本久久久久| 男女午夜视频在线观看| 国产成人一区二区在线| 麻豆乱淫一区二区| 国产精品久久久久久精品古装| 18禁国产床啪视频网站| 久久久久久亚洲精品国产蜜桃av| 精品久久久精品久久久| 九色亚洲精品在线播放| 亚洲精品美女久久久久99蜜臀 | 秋霞在线观看毛片| 亚洲国产精品一区二区三区在线| av国产久精品久网站免费入址| 欧美黑人欧美精品刺激| 久久这里只有精品19| 妹子高潮喷水视频| 亚洲欧美精品自产自拍| 国产成人免费无遮挡视频| 考比视频在线观看| 国产免费一区二区三区四区乱码| 在线观看免费视频网站a站| 亚洲av电影在线进入| 亚洲国产av影院在线观看| 国产成人欧美| 老鸭窝网址在线观看| 9191精品国产免费久久| 一区二区日韩欧美中文字幕| 日本一区二区免费在线视频| 国产亚洲av高清不卡| 国产成人精品久久二区二区91| 精品国产国语对白av| 国产一区二区三区综合在线观看| 亚洲欧洲日产国产| 丝袜喷水一区| 欧美日韩一级在线毛片| 婷婷色av中文字幕| 日韩av在线免费看完整版不卡| 亚洲自偷自拍图片 自拍| 欧美日本中文国产一区发布| 黄片播放在线免费| 在线观看免费视频网站a站| 亚洲欧美成人综合另类久久久| 天堂俺去俺来也www色官网| 一级,二级,三级黄色视频| 国产老妇伦熟女老妇高清| 最近中文字幕2019免费版| 亚洲欧美日韩高清在线视频 | 91老司机精品| 亚洲av电影在线进入| 亚洲午夜精品一区,二区,三区| 一区二区三区精品91| 国产欧美日韩一区二区三区在线| 成年女人毛片免费观看观看9 | 亚洲精品国产一区二区精华液| 欧美黄色片欧美黄色片| 亚洲成人手机| 99国产精品一区二区蜜桃av | 国产精品亚洲av一区麻豆| 国产av一区二区精品久久| 色视频在线一区二区三区| 99国产综合亚洲精品| 狂野欧美激情性bbbbbb| 国产国语露脸激情在线看| 午夜福利视频在线观看免费| 制服人妻中文乱码| 久久国产精品大桥未久av| 欧美精品亚洲一区二区| 在线观看免费午夜福利视频| 精品一区二区三卡| 久久99热这里只频精品6学生| 精品国产乱码久久久久久男人| 一级黄片播放器| 在线观看免费午夜福利视频| 久久狼人影院| 日日夜夜操网爽| 国产亚洲精品久久久久5区| 99热全是精品| 色婷婷av一区二区三区视频| 欧美变态另类bdsm刘玥| 男男h啪啪无遮挡| 精品福利永久在线观看| 国产一级毛片在线| 亚洲成国产人片在线观看| 国产欧美日韩一区二区三 | 精品福利观看| 18禁黄网站禁片午夜丰满| 男女无遮挡免费网站观看| 黄片播放在线免费| 男女之事视频高清在线观看 | a级毛片在线看网站| 久久久久久久国产电影| www.精华液| 欧美日本中文国产一区发布| 成年人午夜在线观看视频| 日本午夜av视频| 久久国产精品男人的天堂亚洲| 欧美日韩视频高清一区二区三区二| 老司机影院毛片| 欧美日韩av久久| 18禁黄网站禁片午夜丰满| 久久亚洲精品不卡| 精品少妇内射三级| 这个男人来自地球电影免费观看| 97在线人人人人妻| 久久热在线av| 狠狠婷婷综合久久久久久88av| 啦啦啦啦在线视频资源| 可以免费在线观看a视频的电影网站| 高清视频免费观看一区二区| av不卡在线播放| 日本色播在线视频| 日韩电影二区| 美女福利国产在线| 视频在线观看一区二区三区| 女人高潮潮喷娇喘18禁视频| 国产人伦9x9x在线观看| 久久人妻福利社区极品人妻图片 | 亚洲国产av新网站| 午夜福利视频在线观看免费| 精品欧美一区二区三区在线| h视频一区二区三区| 男女之事视频高清在线观看 | 久久青草综合色| 亚洲精品在线美女| 国产精品二区激情视频| 欧美久久黑人一区二区| 亚洲国产精品999| 9色porny在线观看| 亚洲,欧美精品.| 久久久久久久久免费视频了| 看免费成人av毛片| 好男人视频免费观看在线| 国产一级毛片在线| 99香蕉大伊视频| 精品亚洲乱码少妇综合久久| 国产成人免费观看mmmm| 美女午夜性视频免费| 亚洲精品国产色婷婷电影| 人妻一区二区av| 国产99久久九九免费精品| 国产高清不卡午夜福利| 老司机深夜福利视频在线观看 | 久久鲁丝午夜福利片| 男男h啪啪无遮挡| 免费观看av网站的网址| 九色亚洲精品在线播放| 欧美日韩视频精品一区| 久久人人97超碰香蕉20202| 日韩大片免费观看网站| 人妻一区二区av| 女性被躁到高潮视频| 最黄视频免费看| 日本91视频免费播放| 多毛熟女@视频| 国产主播在线观看一区二区 | 中国国产av一级| 亚洲国产看品久久| 99香蕉大伊视频| 男男h啪啪无遮挡| 一区二区三区激情视频| 色婷婷av一区二区三区视频| 成人午夜精彩视频在线观看| 亚洲色图综合在线观看| 国产伦人伦偷精品视频| 建设人人有责人人尽责人人享有的| 老司机午夜十八禁免费视频| 午夜福利一区二区在线看| 久久99热这里只频精品6学生| 国产三级黄色录像| 亚洲精品日本国产第一区| 婷婷色麻豆天堂久久| 女人被躁到高潮嗷嗷叫费观| 一级毛片 在线播放| 精品视频人人做人人爽| 国产人伦9x9x在线观看| 国产精品国产av在线观看| 黄色a级毛片大全视频| 波野结衣二区三区在线| 亚洲一区中文字幕在线| 一区二区三区精品91| 人人妻,人人澡人人爽秒播 | 色播在线永久视频| 国产精品久久久久久人妻精品电影 | 亚洲七黄色美女视频|