• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Human-machine compatibility and dynamic analysis of a novelunpowered and self-adaptive shoulder rehabilitation exoskeleton

    2020-07-20 09:19:52ZhangJingwenJiaMinping

    Zhang Jingwen Jia Minping

    (School of Mechanical Engineering, Southeast University, Nanjing 211189, China)

    Abstract:To reduce the complexity of the configuration and control strategy for shoulder rehabilitation exoskeleton, a 2R1R1P2R serial of shoulder exoskeleton based on gravity balance is proposed. Based on three basic rotatory shoulder joints, an exact kinematic constraint system can be formed between the exoskeleton and the upper arm by introducing a passive sliding pair and a center of glenohumeral (CGH) unpowered compensation mechanism, which realizes the human-machine kinematic compatibility. Gravity balance is used in the CGH compensation mechanism to provide shoulder joint support. Meanwhile, the motion of the compensation mechanism is pulled by doing reverse leading through the arm to realize the kinematic self-adaptive, which decreases control complexity. Besides, a simple and intuitive spring adjustment strategy is proposed to ensure the gravity balance of any prescribed quality. Furthermore, according to the influencing factors analysis of the scapulohumeral rhythm, the kinematic analysis of CGH mechanism is performed, which shows that the mechanism can fit the trajectory of CGH under various conditions. Finally, the dynamic simulation of the mechanism is carried out. Results indicate that the compensation torques are reduced to below 0.22 N·m, and the feasibility of the mechanism is also verified.

    Key words:rehabilitation; exoskeleton; human-machine compatibility; kinematic analysis; gravity balance

    The shoulder, one of the most frequently used joints, allows upper limbs to perform various daily activities, such as eating, personal hygiene management, and clothing. Rehabilitation of post-stroke shoulder disability patients requires repeated and progressive training. However, conventional treatment has limited effectiveness[1]. Thus, it is of practical significance to develop rehabilitation exoskeletons for shoulder dyskinesia, which can promote rehabilitation training at various intensity levels[2].

    At the current stage, the key issue in the design of exoskeleton structures is to achieve ergonomic kinematic compatibility, thereby improving wearable comfort and efficiency of robot-assisted training[3-4]. Previous research mainly focuses on the active compensation joint and passive compensation joint. The active compensation exoskeleton guides its rotation center by referring to the experimental measurement track of a center of glenohumeral (CGH), so as to reduce the error between the exoskeleton and the human body. For example, HARMONY, designed by Kim et al.[5], compensated for the exoskeleton dynamics by setting a robot reference trajectory through active control strategies to promote the scapulohumeral rhythm. Thalagala et al.[6-7]achieved compensation by setting rails to guide the displacement of the exoskeleton rotation center. In addition, the common strategy of passive compensation joint research adds dynamic joints to the exoskeleton actuation chain and realizes the shoulder girdle fitting by passive control. For example, Yalcin et al.[8]added a passive prism joint and three parallel sliders to AssistOn-SE, to simulate the shoulder girdle. Zhang et al.[9]improved the compatibility of Co-Exos by using passive prismatic joints of four linear guides and sliders, and thus, Co-Exos can decrease the binding force due to misalignment. Li et al.[10]proposed a 3R-PU serial shoulder rehabilitation exoskeleton to realize compatibility when the unilateral humerus is lifting. They also provided a analysis basis for the PU joint motion planning and control.

    Although the active compensation joint is relatively light and easy to control, its compensation effect is limited by human heterogeneity and trajectory rationality.Passive dynamic joints are controlled by tracking, which achieves a great fit with the CGH trajectory. However, they render the device complicated and cumbersome and reduce the efficiency of the driving force. In the aspect of the compensation utility, the current analysis is mainly based on static motion, such as the mobile arm support designed by Lin et al.[11]and the tendon-sheath-driven rehabilitation exoskeleton designed by Wu et al[12]. Few works have focused on the utility analysis of compensation joints considering dynamic motion.

    To reduce the complexity of the mechanism and improve the universal applicability of the mechanism’s kinematics, this paper presents an unpowered and self-adaptive shoulder rehabilitation exoskeleton, which is believed to be a novel design concept, simple in structure, and widely suitable for different human physiques.

    1 A Self-Adaptive Shoulder Rehabilitation Exoskeleton based on Gravity Balance

    1.1 Influence factors of scapulohumeral rhythm

    Fig.1 Reference points on the shoulder complex

    (1)

    For different human bodies, the above variables will change randomly and only slightly.

    1.2 Configuration synthesis of the 2R1R1P2R rehabilitation exoskeleton

    Targetting the complex and cumbersome problem of passive compensation exoskeleton, this paper proposes a 2R1R1P2R serial self-adaptive shoulder rehabilitation exoskeleton. The setting of unilateral joints is shown in Fig.2, and the bilateral joints are set in symmetrical mode. Only three dynamic joints (R3, R4and R5), whose rotating axes intersect at one point, are in the exoskeleton, which achieves the essential motor functions of the shoulder, including abduction/adduction, internal rotation/external, and flexion/extension. The height and position of the seat should be adjusted in advance to make the dynamic joint rotation centerOmand the shoulder joint rotation center coincide when the upper arm naturally droops. In the independent closed-loop chain formed by the exoskeleton and the human body, there are three active joints within the exoskeleton and three biological degrees of freedom (DOFs) in the shoulder. Based on the mechanism theory, the exoskeleton still needs at least three DOFs to demonstrate human-machine compatibility. Therefore, the CGH compensation mechanism and the passive slider P1are added to reduce the human-machine binding force caused by the floating of the glenohumeral joint in the vertical axis, coronal axis and sagittal axis.

    Fig.2 The joints setting of exoskeleton

    The CGH compensation mechanism is a plane 3-link mechanism consisting of two rotary joints R1and R2. Meanwhile, in order to provide proper support while adapting the shoulder joint floating, the mechanism is designed based on gravity balance. The configuration model is shown in Fig.3. As shown in Fig.3(a), two four-bar parallelogram linkages are added to the base and vertical coupler rod L2.O3successively connects the passive prismatic joint P1, three active joints (R3, R4and R5) and the upper arm of the exoskeleton.k1andk2are the spring constants of the two ideal zero-free-length extension springs.AiandBiare the connection positions of both the ends of the springs.

    To generally describe the plane configuration, letqibe the 2×1 unit vector on linkiin the mechanism, whereq1is the ground. As shown in Fig.3(b), for the convenience of expression, a fixed coordinate systemO0x0y0z0is established at the midpoint of rod L1, where axisx0is parallel to the coronal axis and directed outward by the sternum, axisy0is parallel to the vertical axis and directed upward, and axisz0is determined by right-hand rule. The coordinate systemsO1x1y1z1andO2x2y2z2are established at the middle points of rod L1and rod L2, where axiszilies in the same direction as axisz0, and axisxilies in the same direction as vectorqi+1. The measurement and motion parameters of the CGH self-adaptive compensation mechanism are listed in Tab.1.

    (a)

    Tab.1 Measurement and motion parameters of the compensation mechanism

    These parameters are designed to ensure that the exoskeleton adapts to CGH floating caused by scapulohumeral rhythm. The relevant kinematic analysis is given in the next section. To ensure that the compensation joints provide stable support at any design angle without actuators, the principle of gravity balance is adopted in this design to determine the stiffness and connection position of the springsk1andk2. Due to the slow operation of the rehabilitation joints, we only consider the gravity for the design. As shown in Fig.3(a), the stiffness matrix of the gravity of the mechanism and the arm from the reference pointO1toO3can be obtained as

    (m1+m2+m3)q

    (2)

    wherem1is the mass on one parallelogram and springk1;m2is the mass on the other parallelogram and springk2;m3is the mass on the arm and the exoskeleton transferred toO3.

    The simplified total gravitation potential energy of the system can be written as

    (3)

    The potential energy formula can be represented by the stiffness block matrix and configuration block matrix, which is written as

    UG=QTKGQ

    (4)

    Therefore, the 6×6 stiffness symmetric matrix block of the system gravity can be obtained as

    (5)

    As shown in Fig.3(b), the elastic potential energy of springk1can be expressed as

    (6)

    wherel5q2andl7q1are the vectors pointing from the rotation center to the attachment points (A1andB1) of springk1.

    Hence, the stiffness block matrix induced by springk1can be obtained as

    (7)

    Similarly, the stiffness matrix induced by springk2can be obtained as

    (8)

    wherel6andl8are the distances between the rotation center and two attachment points (A2andB2) of springk2.

    According to the principle of virtual work, the necessary and sufficient condition for mechanical balance is zero virtual work performed by all external forces acting on the machine during any virtual configuration change. Hence, any component matrix related to the relative angular positionθij(i≠j) in the total stiffness matrix should be a zero matrix. At this time, the potential energy is constant and is independent of the configuration change of the mechanism. The total stiffness block matrix obtained by summing Eqs.(5), (7) and (8) must be a diagonal matrix. Furthermore, the attachment points and stiffness of springs can be calculated as

    (9)

    (10)

    At this time, it only needs to overcome the friction of the joints without considering gravity in dynamics. In the joint kinematics control, the end of the exoskeleton is fixed to the arm. Therefore, adaptive rotation can be achieved by doing the reverse leading through the arm.

    The calculation advantage of the ideal spring is that the elastic potential energy can be obtained by the vectors between the spring connection points and the rotation center visually. According to Fig.4, a three-dimensional model is established, in which the ideal springs are realized by the combination of cables, pulleys and springs. The pulley is fixed at the connection pointAiof the ideal spring on the vertical rod. One end of the cable is fixed at the connection pointBiof the ideal spring on the rotating rod Li, and the other end is connected to the spring by bypassing the pulley. The other end of each spring is fixed to the vertical rod Liby the spring fixings. According to the initial distance of the ideal spring connection pointsAi 0andBi 0, the pretensions of the two springs arek1||l5q20-l7q10||2andk2||l8q10-l6q30||2, respectively. Since the length of the cable is a constant, the distance change ofAiBiis equal to the length change of the spring. The spring elastic potential energy can still be calculated by the vector between connection points.

    Fig.4 The 3D Model of unpowered CGH compensation

    Compared with the traditional passive control exoskeleton, this exoskeleton reduces the sensor and actuator used for floating rotation fitting, and reduces the complexity and control requirements.

    1.3 The adjustment strategy of springs

    The rehabilitation exoskeleton should suit for different patients and training levels, which needs to deal with different quality parameters and link lengths. Accordingly, spring attachment positions and spring stiffness should be modified by Eqs.(9) and (10). Due to the difficulty in adjusting the stiffness of the metal spring, the spring stiffness is set to be a fixed value. Furthermore, fix one of the spring attachment positionsAiso thatl7=l3andl8=l4; then the design parameter formula of the other attachment point becomes a linear equation. The positions ofB1andB2can be defined as

    (11)

    (12)

    At this time, distancesl5andl6are the remaining parameters related to the prescribed mass, and these two parameters can be independently adjusted without mutual interference. By adjusting attachment positions, the gravity balance of different weights can be realized conveniently, intuitively and quantitatively.

    2 Analysis of the Human-Machine Compatibility and Dynamic Feasibility

    2.1 Human-machine compatibility for the exoskeleton

    The compatibility analysis of the mechanism mainly compares the movement space of the CGH compensation mechanism with the floating space of the shoulder joint. In view of the uncertainty of the CGH floating trajectory, the design uses the coordinated motion of two rotating joints (R1and R2). Unlike the traditional active compensation exoskeleton, this design has no specific trajectory and avoids the adjustment of the rod lengths, which results in strong universality. In rehabilitation practice, activities of daily living (ADL) are generally defined to describe the functional capacity of patients. The maximum abduction angle of the shoulder in ADL is 148.3° is based on statistical data[14], so that the maximum humerus elevationφis set to be 150° for analysis. According to the body dimension standard of Chinese adults in GB/T 10000—1988, the 1st percentile female shoulder strap length and the 99th percentile male shoulder strap length are taken as boundary values. It can be concluded that 99% of the shoulder strap length is between 0.152 and 0.209 m, which can be divided into 7 segments (0.15, 0.16, 0.17, 0.18, 0.19, 0.2 and 0.21 m) with a 0.1 m step length. Therefore, combined with the coupling relationship of glenohumeral in Section 1.1, the vertical axis and coronal axis position of CGH of different shoulder strap lengths can be obtained, respectively, when the unilateral humerus or the bilateral humerus is elevated between 5° and 150°. Furthermore, the trajectories of CGH are compared with the movement space of mechanism. As shown in Fig.5(a), the active compensation exoskeleton proposed in Refs.[5-6] can only fit the shoulder joint floating under the single physique and single elevation method, while the CGH movement trajectories are quite different for patients. Therefore, it has a strong restriction for users. However, it can be seen from Fig.5 that the mechanism designed in this paper can completely cover the floating of the CGH, which shows strong general adaptability.

    Unlike the common compensation joints, this movement space is not a simple globe, sphere, or a specific trajectory. It is roughly the same as the motion trend of CGH, which is supposed to be more reasonable. Meanwhile, due to the diversity of human joints, the motion coupling of the shoulder joint is slightly biased. The mechanism provides a redundant range of motion to accommodate this deviation.

    2.2 Dynamic feasibility analysis of exoskeleton

    The simulation of the exoskeleton is based on the two parallelogram models given in Fig.3. The mass and inertia parameters of the human body are obtained on the basis of anthropometric measurements and statistical data[15]. In this simulation, the masses of the upper arm, forearm, and mechanism are 2.18, 1.85 and 2.00 kg, respectively;d0=200 mm. The stiffness and attachment positions of the additional spring can be obtained by Eqs.

    (a)

    The simulation is implemented in ADAMS software. Considering the dynamic effect during low speed, the arm elevating process is divided into three stages: acceleration, uniform, and deceleration. At the same time, since this design is adaptively compensated, there is no specific trajectory. The analytical solutions of the inverse kinematics of R1and R2are used as the input driver when the unilateral humerus is elevated from 5° to 150°. It can be seen from Fig.6 that if only two rotary joints are used, it is necessary to apply the compensation drive moments from 3 to 8 N·m through the actuators. Accordingly, position control and torque control of compensation joints are crucial, which inevitably increases the difficulty and costs of control. However, the dynamic torque of the two rotary joints with gravity balance can be reduced to be less than 0.22 N·m while ensuring the human-machine compatibility. Fluctuations of the dynamic torque also significantly decrease. Note that, the patients with shoulder disabilities do not entirely lack the ability to organize limbs. With such small support provided by the patient, the shoulder joint can move freely.

    Fig.6 The change of compensation joint torque after adding gravity balance mechanism

    3 Conclusions

    1) This paper proposes a 2R1R1P2R serial self-adaptive shoulder rehabilitation exoskeleton, which introduces a passive slider and designs a CGH self-adaptive compensation mechanism to form the exact kinematic constraints system between the exoskeleton and upper arm. The CGH compensation mechanism based on the gravity balance performs complete weight compensation when the shoulder is floating, reducing the weight of the exoskeleton by unpowered joints. Meanwhile, it realizes shoulder joint adaptation by doing the reverse leading through the arm, without considering the passive control strategy. Furthermore, a convenient and intuitive strategy is proposed for spring adjustment.

    2) Considering the influencing factors of the scapulohumeral rhythm, the exoskeleton can successfully fit the CGH movement track of 99% of the human physique, humerus elevation between 5 ° and 150 °, and different humeral elevation methods. It achieves the human-machine compatibility in various cases while meeting the requirements of shoulder rehabilitation space.

    3) Through the dynamic simulation of unilateral humerus elevation, the torque of the two compensation joints is reduced from 3 to 8 N·m to less than 0.22 N·m. It verifies that the proposed CGH adaptive compensation mechanism can provide stable support when adapting to shoulder floating.

    国产又爽黄色视频| 欧美大码av| 99热网站在线观看| 美女 人体艺术 gogo| 别揉我奶头~嗯~啊~动态视频| 69精品国产乱码久久久| 如日韩欧美国产精品一区二区三区| 最新的欧美精品一区二区| 亚洲一码二码三码区别大吗| 一区福利在线观看| 91成人精品电影| 老熟女久久久| 亚洲精品美女久久av网站| 免费人成视频x8x8入口观看| 十分钟在线观看高清视频www| 制服人妻中文乱码| 免费久久久久久久精品成人欧美视频| 女警被强在线播放| 电影成人av| 十八禁人妻一区二区| 亚洲一区二区三区欧美精品| 亚洲中文av在线| 国产xxxxx性猛交| 亚洲视频免费观看视频| 老汉色av国产亚洲站长工具| 亚洲熟妇熟女久久| 99精国产麻豆久久婷婷| 亚洲av熟女| 99riav亚洲国产免费| 99香蕉大伊视频| 最新在线观看一区二区三区| 俄罗斯特黄特色一大片| 少妇被粗大的猛进出69影院| 一级黄色大片毛片| 高清在线国产一区| 18禁裸乳无遮挡动漫免费视频| 制服诱惑二区| 91大片在线观看| 久久久久国产精品人妻aⅴ院 | 久久天堂一区二区三区四区| 中亚洲国语对白在线视频| 日韩有码中文字幕| 51午夜福利影视在线观看| 国产av精品麻豆| 中亚洲国语对白在线视频| 亚洲熟女精品中文字幕| 国产精品秋霞免费鲁丝片| 亚洲综合色网址| av片东京热男人的天堂| 美女扒开内裤让男人捅视频| 精品久久久久久久久久免费视频 | 十八禁人妻一区二区| 中亚洲国语对白在线视频| 亚洲熟女精品中文字幕| 99热网站在线观看| 黄色丝袜av网址大全| 看黄色毛片网站| 757午夜福利合集在线观看| 妹子高潮喷水视频| 村上凉子中文字幕在线| 另类亚洲欧美激情| 人人妻人人爽人人添夜夜欢视频| 成人亚洲精品一区在线观看| 男女下面插进去视频免费观看| 青草久久国产| 国产国语露脸激情在线看| 国产精品美女特级片免费视频播放器 | av有码第一页| 亚洲av日韩精品久久久久久密| 亚洲av日韩在线播放| 制服诱惑二区| 中文字幕色久视频| 久久人妻av系列| 人人澡人人妻人| 又黄又粗又硬又大视频| 亚洲成人免费电影在线观看| 亚洲精品在线观看二区| av视频免费观看在线观看| 国产一区二区激情短视频| 亚洲av日韩在线播放| 欧美日韩视频精品一区| 免费女性裸体啪啪无遮挡网站| 久久天堂一区二区三区四区| 亚洲国产看品久久| 80岁老熟妇乱子伦牲交| 亚洲第一青青草原| 大香蕉久久网| 亚洲一码二码三码区别大吗| 国产av又大| 精品午夜福利视频在线观看一区| 亚洲在线自拍视频| 国产免费男女视频| 精品国产超薄肉色丝袜足j| 人人妻,人人澡人人爽秒播| 国产高清激情床上av| 国产一区二区三区综合在线观看| 久久人妻熟女aⅴ| 99在线人妻在线中文字幕 | 欧美精品av麻豆av| 一级毛片精品| 欧美日韩亚洲国产一区二区在线观看 | 免费一级毛片在线播放高清视频 | 欧美日韩精品网址| av视频免费观看在线观看| 亚洲一区二区三区欧美精品| 淫妇啪啪啪对白视频| 亚洲自偷自拍图片 自拍| 欧美 日韩 精品 国产| 精品国产美女av久久久久小说| 日本a在线网址| 国产精品秋霞免费鲁丝片| 黑人欧美特级aaaaaa片| 欧美 日韩 精品 国产| 精品乱码久久久久久99久播| 成人手机av| 欧美最黄视频在线播放免费 | 老司机深夜福利视频在线观看| 欧美日韩亚洲高清精品| 久久中文看片网| 波多野结衣一区麻豆| 国产成人av激情在线播放| 亚洲精品一卡2卡三卡4卡5卡| av视频免费观看在线观看| 在线看a的网站| 日韩欧美在线二视频 | bbb黄色大片| 美国免费a级毛片| 香蕉国产在线看| 亚洲一区高清亚洲精品| 丰满迷人的少妇在线观看| www.自偷自拍.com| 精品一品国产午夜福利视频| 国产精品自产拍在线观看55亚洲 | 欧美日韩精品网址| 极品少妇高潮喷水抽搐| 高清视频免费观看一区二区| 狠狠狠狠99中文字幕| bbb黄色大片| 亚洲情色 制服丝袜| www日本在线高清视频| 999久久久精品免费观看国产| 精品一区二区三卡| 国产精品一区二区在线观看99| 日韩大码丰满熟妇| 成年女人毛片免费观看观看9 | videos熟女内射| 亚洲精品美女久久久久99蜜臀| 亚洲七黄色美女视频| 午夜精品在线福利| 国产成人啪精品午夜网站| 黑人欧美特级aaaaaa片| 成人精品一区二区免费| 王馨瑶露胸无遮挡在线观看| 又黄又爽又免费观看的视频| 午夜两性在线视频| 十八禁高潮呻吟视频| av中文乱码字幕在线| 日韩欧美三级三区| 中文字幕人妻丝袜制服| 久久精品91无色码中文字幕| 操美女的视频在线观看| 看免费av毛片| 日韩中文字幕欧美一区二区| 他把我摸到了高潮在线观看| 国产精品偷伦视频观看了| 老司机午夜福利在线观看视频| √禁漫天堂资源中文www| 欧洲精品卡2卡3卡4卡5卡区| 国产成人免费无遮挡视频| 中文亚洲av片在线观看爽 | svipshipincom国产片| 香蕉久久夜色| 18禁观看日本| 老汉色av国产亚洲站长工具| 男人的好看免费观看在线视频 | 精品国产一区二区三区久久久樱花| 亚洲色图 男人天堂 中文字幕| 久久ye,这里只有精品| 久久久久国产精品人妻aⅴ院 | 国产区一区二久久| 看片在线看免费视频| 不卡一级毛片| 国产精品久久久av美女十八| 国产精品av久久久久免费| 一区在线观看完整版| 国产亚洲欧美精品永久| 视频区图区小说| 热99re8久久精品国产| 久久人人爽av亚洲精品天堂| 国产无遮挡羞羞视频在线观看| 久久久精品免费免费高清| 免费观看人在逋| av福利片在线| 精品国内亚洲2022精品成人 | 国产精品久久久人人做人人爽| 51午夜福利影视在线观看| 成人国语在线视频| 美国免费a级毛片| av线在线观看网站| 午夜福利,免费看| 国产成人精品无人区| 精品无人区乱码1区二区| 亚洲 欧美一区二区三区| 亚洲午夜精品一区,二区,三区| 欧美精品高潮呻吟av久久| 90打野战视频偷拍视频| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久久久免费视频了| 看免费av毛片| 老司机在亚洲福利影院| 国产真人三级小视频在线观看| 中文字幕人妻丝袜制服| 成人国语在线视频| 久久精品国产综合久久久| 亚洲av成人不卡在线观看播放网| 久久香蕉国产精品| 国产精品美女特级片免费视频播放器 | 黄片大片在线免费观看| 国产99久久九九免费精品| 精品一区二区三区四区五区乱码| 免费不卡黄色视频| 丝袜美腿诱惑在线| 国产一卡二卡三卡精品| 国产av一区二区精品久久| 日本精品一区二区三区蜜桃| 啪啪无遮挡十八禁网站| av片东京热男人的天堂| 国精品久久久久久国模美| 久久久久久免费高清国产稀缺| 少妇 在线观看| 国产xxxxx性猛交| 亚洲熟妇熟女久久| 日韩人妻精品一区2区三区| 操出白浆在线播放| 丰满迷人的少妇在线观看| 一本综合久久免费| 午夜两性在线视频| 日韩欧美一区视频在线观看| 久热这里只有精品99| 电影成人av| 国产成人免费观看mmmm| 窝窝影院91人妻| 精品国产亚洲在线| 国产欧美日韩一区二区三| 亚洲av第一区精品v没综合| 操出白浆在线播放| 精品一区二区三区av网在线观看| 一级黄色大片毛片| av线在线观看网站| 五月开心婷婷网| 69精品国产乱码久久久| 我的亚洲天堂| 久久久精品区二区三区| 国产淫语在线视频| 国产野战对白在线观看| 国产不卡一卡二| 国产av一区二区精品久久| 天天添夜夜摸| 免费在线观看黄色视频的| 国产人伦9x9x在线观看| 女人爽到高潮嗷嗷叫在线视频| 纯流量卡能插随身wifi吗| 国产一卡二卡三卡精品| 久久性视频一级片| 免费一级毛片在线播放高清视频 | 午夜精品在线福利| svipshipincom国产片| 国产免费男女视频| 精品一区二区三卡| 黄色视频不卡| 性色av乱码一区二区三区2| 女人被狂操c到高潮| 欧美精品亚洲一区二区| 涩涩av久久男人的天堂| 欧美黄色片欧美黄色片| 一级片免费观看大全| 人人妻人人澡人人看| 亚洲精品乱久久久久久| 国产片内射在线| 91在线观看av| 国产男靠女视频免费网站| 亚洲精品中文字幕一二三四区| 亚洲免费av在线视频| 在线观看舔阴道视频| 精品久久久久久,| 天堂√8在线中文| 国产极品粉嫩免费观看在线| 真人做人爱边吃奶动态| 久久婷婷成人综合色麻豆| 午夜福利在线免费观看网站| 欧美丝袜亚洲另类 | 女人被躁到高潮嗷嗷叫费观| 日韩成人在线观看一区二区三区| 男女床上黄色一级片免费看| 国产欧美日韩精品亚洲av| 国产精品九九99| 久久天躁狠狠躁夜夜2o2o| 亚洲色图 男人天堂 中文字幕| 一区在线观看完整版| 成人国语在线视频| svipshipincom国产片| 国产精品电影一区二区三区 | 99久久人妻综合| 乱人伦中国视频| 女人被躁到高潮嗷嗷叫费观| 国产成人欧美| 99国产精品99久久久久| 国产1区2区3区精品| 免费一级毛片在线播放高清视频 | 建设人人有责人人尽责人人享有的| 777久久人妻少妇嫩草av网站| 动漫黄色视频在线观看| 欧美成人午夜精品| av天堂在线播放| 天天躁夜夜躁狠狠躁躁| 免费黄频网站在线观看国产| 日韩欧美一区二区三区在线观看 | 黑丝袜美女国产一区| 欧美日韩视频精品一区| 狂野欧美激情性xxxx| 啦啦啦视频在线资源免费观看| 嫩草影视91久久| 国产一卡二卡三卡精品| 国产一区二区激情短视频| 国产伦人伦偷精品视频| 久久久久久久久久久久大奶| 欧美日韩一级在线毛片| 777米奇影视久久| 啦啦啦视频在线资源免费观看| 国产精品乱码一区二三区的特点 | 人人妻人人爽人人添夜夜欢视频| 久久香蕉国产精品| a级毛片在线看网站| 国产麻豆69| 中文字幕最新亚洲高清| 国产免费男女视频| 午夜两性在线视频| 精品一区二区三卡| 人人妻人人澡人人爽人人夜夜| 香蕉国产在线看| 久久久国产成人精品二区 | 在线观看日韩欧美| 男女高潮啪啪啪动态图| 美女福利国产在线| 日本黄色视频三级网站网址 | 亚洲一区二区三区欧美精品| 一进一出抽搐动态| 丰满人妻熟妇乱又伦精品不卡| 丝袜美足系列| 亚洲精品在线美女| 国产真人三级小视频在线观看| 91成年电影在线观看| 中亚洲国语对白在线视频| 亚洲人成伊人成综合网2020| xxx96com| 手机成人av网站| 久久久国产欧美日韩av| 90打野战视频偷拍视频| 在线观看免费日韩欧美大片| 亚洲欧洲精品一区二区精品久久久| 欧美乱码精品一区二区三区| 亚洲精品国产区一区二| 日韩欧美三级三区| 99香蕉大伊视频| 国产成人精品久久二区二区免费| 成人特级黄色片久久久久久久| 天堂动漫精品| 免费在线观看亚洲国产| 国产精品国产高清国产av | 99久久综合精品五月天人人| 国产精品乱码一区二三区的特点 | 久久久久精品国产欧美久久久| 日韩中文字幕欧美一区二区| 国产精品.久久久| 国产成人欧美在线观看 | 亚洲精品中文字幕一二三四区| 可以免费在线观看a视频的电影网站| 亚洲色图av天堂| 久久精品国产亚洲av香蕉五月 | 久久久久国产精品人妻aⅴ院 | 中文字幕色久视频| 国产成+人综合+亚洲专区| 日韩免费av在线播放| 成在线人永久免费视频| 亚洲成a人片在线一区二区| 在线观看免费高清a一片| 人人妻,人人澡人人爽秒播| 亚洲精品中文字幕一二三四区| 高清在线国产一区| 精品一区二区三区视频在线观看免费 | 国产区一区二久久| 亚洲一区二区三区不卡视频| 啦啦啦免费观看视频1| 色精品久久人妻99蜜桃| 亚洲在线自拍视频| 美女视频免费永久观看网站| 色94色欧美一区二区| 老司机午夜十八禁免费视频| 日韩免费高清中文字幕av| 国产不卡一卡二| 18禁裸乳无遮挡免费网站照片 | 亚洲精华国产精华精| 多毛熟女@视频| 一二三四在线观看免费中文在| 午夜免费观看网址| 国产av又大| 啦啦啦视频在线资源免费观看| 久久久久久久国产电影| 国产av精品麻豆| 精品欧美一区二区三区在线| 手机成人av网站| 亚洲片人在线观看| 91国产中文字幕| 精品国内亚洲2022精品成人 | 午夜福利视频在线观看免费| 成年人黄色毛片网站| 高清欧美精品videossex| 国产野战对白在线观看| 69av精品久久久久久| 成人18禁高潮啪啪吃奶动态图| 久久婷婷成人综合色麻豆| 日本精品一区二区三区蜜桃| 国产精品秋霞免费鲁丝片| 亚洲欧美精品综合一区二区三区| 在线天堂中文资源库| 免费在线观看亚洲国产| 一边摸一边抽搐一进一出视频| 19禁男女啪啪无遮挡网站| 99热网站在线观看| 97人妻天天添夜夜摸| 国产午夜精品久久久久久| 可以免费在线观看a视频的电影网站| 亚洲三区欧美一区| 久久国产精品大桥未久av| 91麻豆av在线| 亚洲专区中文字幕在线| av网站免费在线观看视频| 亚洲精品av麻豆狂野| 涩涩av久久男人的天堂| 日本a在线网址| 色尼玛亚洲综合影院| 久久久精品区二区三区| 国产精品自产拍在线观看55亚洲 | 精品人妻1区二区| 久久天躁狠狠躁夜夜2o2o| 亚洲aⅴ乱码一区二区在线播放 | 久久久久久人人人人人| 国产精品av久久久久免费| svipshipincom国产片| 韩国精品一区二区三区| 久久精品91无色码中文字幕| 午夜日韩欧美国产| 精品人妻在线不人妻| 黄色片一级片一级黄色片| 国产乱人伦免费视频| 老汉色av国产亚洲站长工具| 欧美日韩亚洲国产一区二区在线观看 | 丰满饥渴人妻一区二区三| cao死你这个sao货| 欧美性长视频在线观看| 男女免费视频国产| 99久久99久久久精品蜜桃| 视频区欧美日本亚洲| 亚洲色图综合在线观看| 国产免费av片在线观看野外av| 99久久综合精品五月天人人| 欧美+亚洲+日韩+国产| 嫁个100分男人电影在线观看| 亚洲国产精品合色在线| 亚洲九九香蕉| 在线观看舔阴道视频| 成在线人永久免费视频| 看免费av毛片| 午夜福利,免费看| 成人影院久久| 国产精品香港三级国产av潘金莲| 亚洲成国产人片在线观看| 老熟女久久久| 亚洲人成伊人成综合网2020| www.自偷自拍.com| 欧美人与性动交α欧美精品济南到| 亚洲国产精品合色在线| 黄频高清免费视频| 在线播放国产精品三级| 欧美精品高潮呻吟av久久| 欧美色视频一区免费| 国产精品免费视频内射| 在线看a的网站| av电影中文网址| 成人免费观看视频高清| 精品少妇久久久久久888优播| 少妇被粗大的猛进出69影院| 亚洲avbb在线观看| 色在线成人网| 国产麻豆69| 嫩草影视91久久| 如日韩欧美国产精品一区二区三区| 亚洲色图av天堂| 91av网站免费观看| 看黄色毛片网站| 岛国毛片在线播放| 国产精品一区二区在线不卡| 99re在线观看精品视频| x7x7x7水蜜桃| 老熟妇仑乱视频hdxx| 在线观看免费日韩欧美大片| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av熟女| 午夜91福利影院| 久久久久精品人妻al黑| 丰满人妻熟妇乱又伦精品不卡| 久久国产乱子伦精品免费另类| 十八禁人妻一区二区| 热99国产精品久久久久久7| 国产欧美日韩精品亚洲av| 男女高潮啪啪啪动态图| 亚洲精品久久成人aⅴ小说| 欧美一级毛片孕妇| 婷婷精品国产亚洲av在线 | 中文字幕精品免费在线观看视频| 国产av精品麻豆| 久久久久久久久免费视频了| 国产xxxxx性猛交| 最新在线观看一区二区三区| 国产精品98久久久久久宅男小说| 亚洲av欧美aⅴ国产| 久久精品亚洲熟妇少妇任你| 少妇裸体淫交视频免费看高清 | 日韩欧美一区视频在线观看| 色综合欧美亚洲国产小说| 成人国产一区最新在线观看| 操出白浆在线播放| 久久久久久久国产电影| 国产极品粉嫩免费观看在线| 欧美 日韩 精品 国产| 久久性视频一级片| 亚洲欧美激情在线| 久9热在线精品视频| 国产亚洲精品久久久久久毛片 | 下体分泌物呈黄色| 久久99一区二区三区| 岛国在线观看网站| 啪啪无遮挡十八禁网站| 欧美精品亚洲一区二区| 欧美在线一区亚洲| 成年人午夜在线观看视频| 亚洲av第一区精品v没综合| 高清欧美精品videossex| 精品国产乱码久久久久久男人| 精品久久久精品久久久| 露出奶头的视频| 亚洲精品av麻豆狂野| 国产欧美亚洲国产| 国精品久久久久久国模美| 大香蕉久久网| 人妻丰满熟妇av一区二区三区 | 久久精品成人免费网站| 亚洲色图av天堂| 高清黄色对白视频在线免费看| 亚洲va日本ⅴa欧美va伊人久久| 精品免费久久久久久久清纯 | 天堂中文最新版在线下载| 又黄又爽又免费观看的视频| 人成视频在线观看免费观看| www日本在线高清视频| 极品教师在线免费播放| 咕卡用的链子| 露出奶头的视频| 亚洲精品av麻豆狂野| 黄色视频不卡| 久久精品国产综合久久久| 五月开心婷婷网| 国精品久久久久久国模美| 19禁男女啪啪无遮挡网站| 精品高清国产在线一区| 日韩视频一区二区在线观看| 在线国产一区二区在线| 在线天堂中文资源库| 成人精品一区二区免费| 国产亚洲欧美在线一区二区| netflix在线观看网站| 久久人妻福利社区极品人妻图片| 女性被躁到高潮视频| 日韩人妻精品一区2区三区| 侵犯人妻中文字幕一二三四区| 欧美日韩成人在线一区二区| 久久婷婷成人综合色麻豆| 成人黄色视频免费在线看| 日韩免费av在线播放| 人人妻人人澡人人看| 国产在线一区二区三区精| aaaaa片日本免费| 午夜影院日韩av| 大码成人一级视频| 精品一区二区三卡| 黄色丝袜av网址大全| 免费在线观看完整版高清| 午夜免费鲁丝| 亚洲精品粉嫩美女一区| 精品国产国语对白av| 大陆偷拍与自拍| 成人永久免费在线观看视频| 99国产精品一区二区蜜桃av | а√天堂www在线а√下载 | 国产精品久久久久久人妻精品电影| 手机成人av网站| 最新的欧美精品一区二区| 午夜两性在线视频| 欧美成狂野欧美在线观看| 日韩欧美国产一区二区入口| 首页视频小说图片口味搜索| 日韩精品免费视频一区二区三区| 男女高潮啪啪啪动态图| 高清视频免费观看一区二区| 窝窝影院91人妻|