• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spatial Fractal Properties of Loess Plateau in the Northern Shaanxi Province of China Kamila J

    2020-07-16 09:01:20-,,,,
    南京師大學報(自然科學版) 2020年2期
    關鍵詞:分維河網(wǎng)南京師范大學

    -, , , ,

    (1.School of Geography,Nanjing Normal University,Nanjing 210023,China) (2.School of Geosciences,University of Energy and Natural Resources,Sunyani 214,Ghana) (3.Earth Observation Research and Innovation Centre(EORIC),University of Energy and Natural Resources,Sunyani 214,Ghana) (4.Key Laboratory of Virtual Geographic Environment of Ministry of Education,Nanjing Normal University,Nanjing 210023,China) (5.Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,Nanjing 210023,China)

    Abstract:The Loess Plateau of the Northern Shaanxi Province of China is an important area of research for geomorphological studies. Several studies have been conducted in the past in this particular subject of geomorphology. However,spatial variability of fractal dimension(FD)vis-à-vis its relationship with landform characteristics have been limited. Thus,the paper assessed the application of fractal methodology to investigate the fractal properties the terrain and stream networks. The results show that Grid Size(GS)for the FD estimation affects the distribution of the values obtained. It was recommended that for the Loess Plateau understudy,a GS of 32 was realistic and mimics well with the landform classification types provided by other studies. The GS of 16 and 64 underestimates and overestimates the FD respectively. The FD values for the stream networks indicate that Strahler Numbers(SN)and FD are related. For instance,the higher SN,the higher FD. However,a more in-depth analysis of the SN and FD needs to be conducted in future studies. The findings from this study could provide a baseline support for future research on geomorphology in the Loess Plateau and support for other regions interested in similar work.

    Key words:digital elevation model,grid size,fractal dimension,Strahler number,landform types

    CLCnumber:P208Documentcode:AArticleID:1001-4616(2020)02-0056-07

    陜北黃土高原地貌空間分形特征

    卡米拉1,2,3,湯國安1,4,楊 昕1,5,那嘉明4,5,熊禮陽1,5

    (1.南京師范大學地理科學學院,江蘇 南京 210023) (2.能源與自然資源大學地球科學學院,加納 蘇尼亞尼 214) (3.能源與自然資源大學地球觀測研究和創(chuàng)新中心,加納 蘇尼亞尼 214) (4.南京師范大學虛擬地理環(huán)境教育部重點實驗室,江蘇 南京 210023) (5.江蘇省地理信息資源開發(fā)與利用協(xié)同創(chuàng)新中心,江蘇 南京 210023)

    [摘要]陜北黃土高原因其地貌類型既豐富又典型,是地貌研究的重要區(qū)域,已有不少關于本地區(qū)的地貌研究成果. 然而對分維值的空間分異及其與地貌特征之間的關系的認識還十分有限. 因此,本文評估了用分形方法探索地形和河網(wǎng)的分維特征的應用適宜性. 結果顯示,計算分維值的窗口大小影響結果的空間分布特性. 當格網(wǎng)大小為32時是最適合黃土高原地區(qū)的分維值估算,其結果與其他研究展示的地貌分類一致. 網(wǎng)格大小分別為16和64時,會產(chǎn)生高估或低估分維值的結果. 對河網(wǎng)的分形研究表明,分維值與Strahler級數(shù)相關,河網(wǎng)級數(shù)越多,分維值越大. 河網(wǎng)結構的分形特征還有待進一步研究. 本文研究成果可為地貌特征和其他地區(qū)的分形研究提供參考.

    [關鍵詞]數(shù)字高程模型,格網(wǎng)大小,分維數(shù),Strahler 級數(shù),地貌類型

    Receiveddata:2019-03-29.

    Foundationitem:Support by the National Natural Science Foundation of China(41930102,41771415),the Priority Academic Program Development of Jiangsu Higher Education Institutions(164320H116).

    Correspondingauthor:Yang Xin,PhD,Professor,majored in digital terrain analysis. E-mail:xxinyang@njnu.edu.cn

    doi:10.3969/j.issn.1001-4616.2020.02.010

    Digital Terrain Models(DTMs)provide an easy simple data structure that allows for easy and effective extraction of terrain derivatives and hence has led to the wide acceptability and use of DTMs for geomorphological studies,hydrology and soil science[1]. Geomorphological features include points,lines and polygons such as peaks,ridges,saddles and gullies on the land surface that help to classify landform types. Such features control the spatial geomorphology of a particular place in question. Several Chinese scholars have proposed the extracting of geomorphological points from DTMs,typically from Digital Elevation Models. Typical examples include extraction of saddles based on runoff concentration simulations or extreme elevation points along water-shed boundaries[2]. Watershed hydrology is one of the key components of geomorphometry. For instance,surface geomorphometry affects the water flow regime,flow generation and the routing in the watershed hydrology. Differences in terrain,also affect the spatial dynamics of the hydrological characteristics. DEMs have been used for hydrological modelling and prove to be an important entry point for geomorphometry studies[1,3].

    One of the emerging techniques,has been the application of fractals to improve understanding of hydrological regimes and geomorphological feature complexity. The word fractal invented by Mandelbrot was to bring together under one umbrella of objects that have certain structural features in common,regardless of their appearance in geography,astronomy,fluid dynamics,probability theory and pure mathematics[4]. This fractal phenomena has received several attention in the field of mathematics,biology and geomorphology[5-12]. It has evolved to become new for traditional applied mathematics and a revolution in topological space theory research,which is applicable for simulating and characterizing landscapes precisely by using mathematical formulae[13].

    The integrated and cumulative influence of various geological processes result in the formation of topographic features[14]. The spatial entities are the result of different features such as in shape,size,and relief. Fractal properties of geomorphic features have been investigated by several authors such as slopes[15],coral reefs[16]and river networks[17]. In landscape research,fractal measurements provide information about the space-filling properties of a mosaic of patches at all scales. The fractal dimension,FD,provides a characteristic variable to indicate the variation that is useful in terms of the processes influenced by development. In order to estimate the fractal dimension of any linear phenomenon,variety of methods exist. These include box counting,triangular prism areas,projective covering method and fractal Brownian model[18-21].

    In this paper,we assessed spatial fractal properties of stream networks in the Loess Plateau in the Northern Shaanxi Province. Terrain complexities in general are shaped by various riverine processes on the landscape indicating their degree of importance of rivers and streams. The degree of complexity of the fractal properties of the stream networks would inform about unit of complexity of such a geomorphic feature. Therefore,the research findings would bring to fore,deeper understanding of differential changes in geomorphological features. This could also be used in conjunction with traditional methods for improved interpretation and understanding of landform complexity.

    1 Materials and Methods

    1.1 Study area and dataset

    The Northern Shaanxi region is dominated by continental monsoon climate but with some regional disparities. The average annual precipitation is 570 mm. This falls within the period of July-October. The climate is characterised by warm,windy spring when the temperatures rise steadily. The average annual temperature is 13.8 ℃. The main rainfall occurs in the periods in July-September. The study area is located between 107°28′E-111°15′E and 35°20′N-39°34′N showing the middle belt of the Loess Plateau(See Fig.1). The Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER)Digital Elevation Model(hereby referred to as GDEM2)was obtained from the Earth Explorer[22].

    1.2 Box counting method(BCM)

    The BCM is mostly used to determine the fractal dimension. It has been widely used to determine area of irregular cartographic features. It is sometimes called the grid or reticular cell counting method[19]. The box counting approach has been applied to many several studies about streams,coastlines and linear features[21]. The general mathematical form of the box counting method is:

    N(r)=Cr-D,

    (1)

    whereDis the fractal dimension,N(r)is the number of boxes that cover the linear object measured,ris the side length of the square box andCis the constant. The log-log form of this equation is:

    log[N(r)]=-Dlog(r)+log(C).

    (2)

    To obtain the truthful value ofD,one needs to count theN(r)for different side lengths ofr,then obtain theDfrom the data pairsN(r)andrusing least square regressions. This method works best for self-similar linear objects. The primary data form used with this method,is grid-based DEM.

    Some challenges have been identified with the standard application of the method as it depends on significant computation power. To overcome the large computation problems associated with this method,an automated Matlab function was developed to allow for the automatic unsupervised box counting[5].

    1.3 Selection of grid size and stream networks

    The ASTER DEM was used to delineate watersheds of approximate equal areas of 10 km2. This was to ensure easy comparison for the terrain complexity of the watersheds. About 124 sub-watersheds were created for the study area. Out of this number,a selection of 12 representative sub-watersheds’ stream networks were selected. Each of the stream network was denoted per the location presented in Fig.1 as SNet(1). This implies SNet(1)denotes a stream network within location(1)of the sub-watershed under discussion.

    The fractal dimension estimation is scale dependent and this is particular true for different grid sizes. Some researchers have mentioned the importance of this scale effect on the fractal dimension estimation[13,23-25]. Therefore,in this paper,three Grid Sizes(GS)were considered—16,32 and 64. The comparison of the effect of the GS on the FD estimates also provided some understanding to deciding the appropriate scale adequate for the purpose of this study.

    2 Results and Discussions

    2.1 FD in the Northern Shaanxi with varied grid size

    Fig.2 shows the fractal dimension for Grid Size(GS)of 16,32 and 64. The GS=16 shows an FD behaviour of minimum of 2.00 and a maximum of 2.53 with a mean value of 2.09. The spatial distribution of the frequency shows two distinct peaks divided between 2.00-2.11(21.7%)and 2.11-2.53(78.3%). In contrasts to the GS=32,where the minimum FD is 2.03,maximum value of 2.51 with a mean of 2.12. The FD for GS=32 shows three zones as 2.03-2.13(14.8%),2.13-2.28(20%)and 2.28-2.51(65.2%). The GS=64 shows more contrast compared to the GS=32. Its minimum FD is 2.07,maximum of 2.56 with a mean of 2.16. The histogram distribution shows principally two zones of 2.07-2.37(33.6%)and 2.37-2.56(66.4%). The standard deviation(SD)for the GS of 16,32 and 64 respectively are 0.13,0.17 and 0.20.

    Twelve locations as indicated in Fig.1 were selected as a means to validate and compare other findings in this research and also with other studies. The notation SNet(x)has been used to denote each of the locations. This implies that location(1)becomes SNet(1). Thus,the values of the FD at each of these locations were extracted for validation and comparison with other studies.

    For instance,for SNet(7),the FD shows 2.21(16),2.17(32)and 2.29(64). This shows a comparative increase of FD as the GS increases. This location is the core area of the Loess Mountains with a relative erosion in the range of 500-10 000 t/m2per year[26]. Therefore,the GS=64 appears to estimate much higher FD compared to the rest. Of course,this GS aggregates more terrain surfaces within a window for analysis and hence indicates the reason for its estimation of high values.

    Another example is SNet(8)characterised by erosion amounts of 20 000-25 000 t/m2per year. The spatial FD shows 2.2,2.33 and 2.34 respectively for GS(16,32 and 64). Again,it is clear that the grid 64 has slightly higher values compared to the 16 and 32.

    Table 1 Comparison of FD for GS of 16,32 and 64 grids at 12 locations

    The SNet(1-6,9-12)shows similar trend across as shown in Table 1. It implies that the FD for 16,32 and 64 varies incrementally across the GS used for the estimation of the FD. A closer look at the 32 grid reveals that this GS provides a much better representation in terms of space and distribution across the various landforms,mapping out the hilly-mountainous areas and the desert areas more closely. The expectation is that,hilly and mountainous regions should have much higher FD compared to desert regions. The GS=16 and GS=64 do not reflect this case. In this case,the SD of 0.17 may appear acceptable for the FD estimation. Though GS=16 gives a lesser SD variation within the datasets,the variation of 0.17 seems much close to reality as to the representation of the FD.

    The overall findings show that FD values are site specific and has a strong relationship with the grid size used. Therefore,it is important that for every specific landform,to select the best grid size that suit the landform type. The GS of 32 was found to provide reasonable estimates and hence was recommended for use in this study area.

    2.2 Spatial pattern of FD in the Northern Shaanxi

    The Northern Shaanxi is characterised by various changing landforms spread across the study sub-areas. These include-loess tableland ridge,loess tableland,rocky hill ridge,loess middle-low Mountain,loess hill-ridge,loess low-hill,loess incision gorge-hill and desert-loess transitional area. Nine classes were divided into three for easy explanation of the findings-Southern Belt(SB),Middle Belt(MB)and Northern Belt(NB)(Fig.3). The SB comprises primarily of loess tableland-ridge and loess tableland. The MB comprises of loess ridge,loess hill-ridge and loess-low Mountain while the NB comprises of the loess hill ridge,desert loess transitional area and loess incision gorge-hill. The spatial pattern of the FD was categorised into three continuous intervals[2.00-2.19],[2.20-2.34]and[2.35-2.51]. The NB is characterised by fractal values mostly shared evenly between[2.00-2.19]and[2.20-2.34]with few pockets of parcels between[2.35-2.51]. This corresponds to the landform characteristics of hills and desert loess forms. The MB is characterised by mostly fractal values of[2.34-2.51]representing the complexity of the various mountainous landforms in this region. The SB is a complex mix of various forms sparsely distributed between the[2.00-2.19],[2.20-2.34]and[2.35-2.51]. The spatial correlation between the FD and elevation characteristics was found to be(R2=67%),indicating that,FD is able to characterise the terrain complexities.

    2.3 Fractal dimension of stream networks

    Fig.4 and Table 2 show the variation of the various river networks for the selected 12 sites in the Northern Shaanxi Province of China. In the case of SNet(7)the watershed area is 1 070 km2with a Strahler Number(SN)of 4. The FD shows a fractal value of 1.30 within a possible dendritic river network. The dendritic nature indicates the complexity in the watershed and a sign of possible intense erosion potential. Case of SNet(8),a smaller watershed area of 401 km2,it shows a simple structure with a SN of 2 and a low FD of 1.15. In comparison to SNet(8),SNet(7)has a larger watershed area with larger complexity and thus,a higher FD.

    In the case of SNet(9),the catchment has an area of 1 220 km2with SN of 3 with a FD of 1.26. The FD is smaller compared to SNet(7)with SN of 4. The possible reason for this higher FD of SNet(7)compared to SNet(9),could be the result of the fact that,higher SN implies more complexity. Therefore,the higher the SN,the higher the FD. Case SNet(10)is similar to SN compared to SNet(7). However,SNet(10)has a smaller catchment area of 419 km2almost half of SNet(7)and shows a parallel river network. This gives a FD of SNet(10)as 1.23.

    Case SNet(11)has a FD of 1.23 and SN of 3 and a catchment area of 604 km2. This FD behaviour is similar to SNet(1). There is a slight variation in the catchment area. SNet(2)shows a slightly higher FD of 1.24 as a result of the slightly larger catchment area of 739.6 km2. SNet(3)has a catchment area of 436.7 km2and an FD of 1.19 and SN of 3 but a simple structure. This simplicity of structure is related to the small FD obtained. Cases SNet(3,4,5 and 6)all have the same SN of 3 and catchment areas of 436.7 km2,942.5 km2,629.8 km2and 507.7 km2respectively. SNet(3)has a smaller area and hence has a smaller FD of 1.19. All other have similar FD of 1.25-1.26.

    The higher the strahler numbers,the higher the fractal dimension values obtained. This implies,some relationship between the SN and FD values. A more detailed study of the relationship between the SN and FD could be investigated in future studies. Other studies such as Khanbabaei et al. attempted to study the relationship between the FD and some geomorphological and found that,the river branching could be investigated,as a way to further establish the direct link between them[27]. Rivers characteristic patterns in terms of the level of branching(dendritic,trellis,parallel)do have an influence on the FD values obtained. Thought,there was not in-depth studies on the river network patterns and their influence on the FD,it can be shown that,the denser the river pattern,the higher the FD obtained. The FD is also related to the catchment area. Larger catchment areas tend to have higher FD values. Earlier studies from Rosso et al. have confirmed the relationship between the length and area;and hence the derivation of FD functions were implemented[28].

    Table 2 FD and stream network characteristics

    3 Conclusion

    Several studies have been conducted in the Northern Shaanxi Province of China in respect of geomorphological studies. However,the application of modern techniques such as fractal geometry to provide additional insights to landform complexity and dynamics has been limited. Thus,this paper assessed the spatial variability of terrain and stream networks using estimation of fractal dimension. The comparison of the fractals from the terrain and stream networks are further compared and interpreted. The findings show that the FD for the terrain are site specific and has a strong relationship with the GS used. Therefore,for every terrain,it was imperative to investigate and select the best GS to suit the particular landform type. The spatial distribution of FD for the study was developed and showed close proximity with the various landform types identified in previous studies. This explained that FD can play a key role in the classification and further deeper interpretation of the landform in terms of its proneness to anthropogenic and other natural transformations such as erosion processes. Another finding was that,the degree of the Strahler Numbers corresponded with the fractal dimension values. This was comparable to other studies that say river branching provide useful information for its complexity. The authors anticipate that the findings from this work would be useful for supporting other studies interested in understanding the anthropogenic nature of the Loess Plateau in the Northern Shaanxi Province of China.

    猜你喜歡
    分維河網(wǎng)南京師范大學
    基于小世界網(wǎng)絡的海河流域河網(wǎng)結構及功能響應
    水科學進展(2023年4期)2023-10-07 11:23:44
    木質(zhì)材料視覺感觀語義分維量化評價研究
    包裝工程(2023年16期)2023-08-25 11:36:32
    南京師范大學附屬中學
    江蘇教育(2021年54期)2021-08-31 10:12:32
    改進的投影覆蓋方法對遼河河道粗糙床面分維量化研究
    基于PSR模型的上海地區(qū)河網(wǎng)脆弱性探討
    不同引水水源對平原河網(wǎng)影響分析
    MIKE11模型在城市河網(wǎng)生態(tài)調(diào)水工程中的應用
    Faceàma propre culture
    法語學習(2016年3期)2016-04-16 21:45:33
    基于分形滲流模型的導電瀝青混凝土的分維計算
    échange humain sous le contexte de la mondialisation
    法語學習(2015年1期)2015-04-17 06:13:06
    亚洲男人的天堂狠狠| 久久 成人 亚洲| 成在线人永久免费视频| 免费在线观看完整版高清| 黄色视频不卡| 我要搜黄色片| 国产精品日韩av在线免费观看| 一进一出好大好爽视频| www.自偷自拍.com| 久久久久亚洲av毛片大全| 亚洲美女黄片视频| 国产真人三级小视频在线观看| 一区福利在线观看| 女人高潮潮喷娇喘18禁视频| 美女免费视频网站| 久久久国产欧美日韩av| 亚洲精品久久成人aⅴ小说| 美女大奶头视频| 国产又色又爽无遮挡免费看| 国产真人三级小视频在线观看| 两个人免费观看高清视频| 国产蜜桃级精品一区二区三区| 老汉色av国产亚洲站长工具| 制服丝袜大香蕉在线| 色综合站精品国产| 桃色一区二区三区在线观看| 在线国产一区二区在线| 午夜福利18| 亚洲狠狠婷婷综合久久图片| 热99re8久久精品国产| 免费观看精品视频网站| 欧美+亚洲+日韩+国产| 变态另类丝袜制服| 欧美色视频一区免费| 两个人看的免费小视频| 亚洲精品在线美女| 国产精品日韩av在线免费观看| 成人av在线播放网站| 亚洲在线自拍视频| 国产99白浆流出| 18禁国产床啪视频网站| 亚洲人与动物交配视频| 亚洲中文日韩欧美视频| 日韩欧美精品v在线| 久久久久久国产a免费观看| 最近在线观看免费完整版| 精品第一国产精品| 国产爱豆传媒在线观看 | 成年女人毛片免费观看观看9| 亚洲av成人一区二区三| 亚洲国产精品999在线| 日韩欧美免费精品| 亚洲国产中文字幕在线视频| 亚洲色图av天堂| 日本 av在线| 国产亚洲精品久久久久5区| 两人在一起打扑克的视频| 亚洲午夜理论影院| 美女大奶头视频| 性色av乱码一区二区三区2| 午夜激情福利司机影院| 成人欧美大片| 亚洲精品一区av在线观看| 精品久久久久久久毛片微露脸| 国产成人av教育| 一区二区三区国产精品乱码| 婷婷精品国产亚洲av在线| 国产黄a三级三级三级人| 欧美人与性动交α欧美精品济南到| 99热这里只有是精品50| 伊人久久大香线蕉亚洲五| 亚洲av电影在线进入| 非洲黑人性xxxx精品又粗又长| 一区二区三区国产精品乱码| 精品人妻1区二区| 最近视频中文字幕2019在线8| 老司机午夜十八禁免费视频| 成人永久免费在线观看视频| 一级a爱片免费观看的视频| 一夜夜www| 成人亚洲精品av一区二区| 亚洲一区中文字幕在线| 国产精品免费一区二区三区在线| 久久午夜亚洲精品久久| 天堂av国产一区二区熟女人妻 | 99riav亚洲国产免费| 成人国产综合亚洲| 丁香欧美五月| 欧美在线一区亚洲| 亚洲国产中文字幕在线视频| 在线观看免费视频日本深夜| 欧美黄色片欧美黄色片| 国产麻豆成人av免费视频| 中文字幕av在线有码专区| 精品人妻1区二区| 一夜夜www| 精品久久久久久成人av| 精品国产亚洲在线| 亚洲无线在线观看| 99久久综合精品五月天人人| 亚洲午夜精品一区,二区,三区| 久久亚洲精品不卡| www.www免费av| 欧美久久黑人一区二区| 神马国产精品三级电影在线观看 | av免费在线观看网站| 久久天堂一区二区三区四区| 香蕉国产在线看| 久久 成人 亚洲| 亚洲精品一区av在线观看| 51午夜福利影视在线观看| 校园春色视频在线观看| 久久婷婷成人综合色麻豆| 亚洲中文av在线| 亚洲欧美激情综合另类| 老司机在亚洲福利影院| 宅男免费午夜| 午夜老司机福利片| 欧美日韩瑟瑟在线播放| 亚洲男人天堂网一区| av福利片在线| 欧美精品啪啪一区二区三区| 亚洲成人国产一区在线观看| 一级作爱视频免费观看| 国产午夜精品论理片| 一a级毛片在线观看| 午夜福利在线观看吧| 黄色a级毛片大全视频| 久久久久久九九精品二区国产 | 国产精品98久久久久久宅男小说| 88av欧美| 性欧美人与动物交配| 少妇熟女aⅴ在线视频| 黄色女人牲交| 午夜老司机福利片| 三级男女做爰猛烈吃奶摸视频| 久久久久久久久久黄片| 久久久久久亚洲精品国产蜜桃av| 国产乱人伦免费视频| 国产私拍福利视频在线观看| 99精品久久久久人妻精品| 久久久久免费精品人妻一区二区| 午夜a级毛片| 亚洲五月婷婷丁香| 久久久久免费精品人妻一区二区| 男女做爰动态图高潮gif福利片| 亚洲成av人片免费观看| 欧美 亚洲 国产 日韩一| 久久精品aⅴ一区二区三区四区| 男插女下体视频免费在线播放| 啦啦啦韩国在线观看视频| 人人妻,人人澡人人爽秒播| 亚洲精品中文字幕一二三四区| 亚洲国产精品久久男人天堂| ponron亚洲| 香蕉丝袜av| 蜜桃久久精品国产亚洲av| 久久精品91蜜桃| 久久久久久国产a免费观看| 免费看日本二区| 日本成人三级电影网站| 淫秽高清视频在线观看| 欧美大码av| 久久久久久九九精品二区国产 | 国产午夜福利久久久久久| or卡值多少钱| 国产又黄又爽又无遮挡在线| 午夜福利在线在线| 日本一二三区视频观看| 可以在线观看毛片的网站| 久久人人精品亚洲av| 老鸭窝网址在线观看| 怎么达到女性高潮| av欧美777| 制服诱惑二区| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av五月六月丁香网| 亚洲中文av在线| 老司机福利观看| 亚洲人成网站在线播放欧美日韩| 色综合站精品国产| 亚洲自偷自拍图片 自拍| 色综合亚洲欧美另类图片| 国产成人aa在线观看| 亚洲va日本ⅴa欧美va伊人久久| 宅男免费午夜| 老司机福利观看| 999精品在线视频| 日韩欧美免费精品| 一级毛片精品| 一区福利在线观看| 夜夜夜夜夜久久久久| 国产精品免费视频内射| 国内毛片毛片毛片毛片毛片| 日本一本二区三区精品| 五月伊人婷婷丁香| 国产成人aa在线观看| 白带黄色成豆腐渣| 亚洲性夜色夜夜综合| 天堂影院成人在线观看| 在线视频色国产色| 一级作爱视频免费观看| 国产亚洲av高清不卡| 国产精品爽爽va在线观看网站| 亚洲avbb在线观看| 免费看a级黄色片| 1024视频免费在线观看| 亚洲午夜理论影院| 哪里可以看免费的av片| 黄色丝袜av网址大全| 悠悠久久av| 岛国在线免费视频观看| 国产成人av激情在线播放| 欧美av亚洲av综合av国产av| 99在线视频只有这里精品首页| 天天一区二区日本电影三级| 天堂动漫精品| 级片在线观看| 18禁黄网站禁片免费观看直播| 91国产中文字幕| 91九色精品人成在线观看| 香蕉av资源在线| x7x7x7水蜜桃| 悠悠久久av| 99久久无色码亚洲精品果冻| 亚洲av成人一区二区三| АⅤ资源中文在线天堂| 日韩欧美国产在线观看| 男女下面进入的视频免费午夜| 可以在线观看的亚洲视频| 精品福利观看| 久久精品国产亚洲av高清一级| 黄色a级毛片大全视频| 国产真人三级小视频在线观看| 一级作爱视频免费观看| 日本黄色视频三级网站网址| 香蕉丝袜av| 中文字幕久久专区| 国产不卡一卡二| 操出白浆在线播放| 色哟哟哟哟哟哟| 日韩av在线大香蕉| 久久精品亚洲精品国产色婷小说| 精品乱码久久久久久99久播| 精品午夜福利视频在线观看一区| 久久精品人妻少妇| 俺也久久电影网| 99国产精品一区二区三区| АⅤ资源中文在线天堂| xxx96com| 他把我摸到了高潮在线观看| 国产成人欧美在线观看| 好男人电影高清在线观看| 麻豆av在线久日| 好看av亚洲va欧美ⅴa在| 亚洲国产欧洲综合997久久,| 人妻久久中文字幕网| 又粗又爽又猛毛片免费看| 亚洲精品久久国产高清桃花| 特级一级黄色大片| 淫秽高清视频在线观看| 怎么达到女性高潮| 男女做爰动态图高潮gif福利片| 97超级碰碰碰精品色视频在线观看| av福利片在线观看| 狠狠狠狠99中文字幕| 看黄色毛片网站| 亚洲av美国av| 亚洲av电影不卡..在线观看| 亚洲中文字幕日韩| 久久久精品欧美日韩精品| 日本撒尿小便嘘嘘汇集6| 欧美日本视频| 婷婷六月久久综合丁香| 欧美日韩一级在线毛片| 不卡av一区二区三区| 男女下面进入的视频免费午夜| av超薄肉色丝袜交足视频| 久久久久精品国产欧美久久久| 国产亚洲精品久久久久久毛片| 在线免费观看的www视频| 麻豆国产av国片精品| 国产精品一区二区免费欧美| 亚洲全国av大片| 亚洲人成77777在线视频| 欧美色欧美亚洲另类二区| 搡老熟女国产l中国老女人| 亚洲国产精品999在线| 69av精品久久久久久| 国产精品久久电影中文字幕| 亚洲人成网站在线播放欧美日韩| 欧美黑人欧美精品刺激| 可以在线观看的亚洲视频| 91在线观看av| 色综合亚洲欧美另类图片| 国产精华一区二区三区| 日日爽夜夜爽网站| 搡老岳熟女国产| 亚洲精华国产精华精| 亚洲av成人精品一区久久| 我的老师免费观看完整版| 女生性感内裤真人,穿戴方法视频| 级片在线观看| 一进一出好大好爽视频| 国内久久婷婷六月综合欲色啪| 国产在线观看jvid| xxxwww97欧美| 亚洲精品一区av在线观看| 在线观看免费午夜福利视频| 人妻夜夜爽99麻豆av| 欧美成人一区二区免费高清观看 | 美女免费视频网站| 成年女人毛片免费观看观看9| www.自偷自拍.com| 国产麻豆成人av免费视频| 我的老师免费观看完整版| 久久久久九九精品影院| 在线观看免费视频日本深夜| 久久精品91无色码中文字幕| 激情在线观看视频在线高清| 久久久久久久精品吃奶| 成人精品一区二区免费| 亚洲国产欧美人成| 亚洲av中文字字幕乱码综合| 国产精品九九99| 黑人欧美特级aaaaaa片| 88av欧美| 怎么达到女性高潮| 久久久水蜜桃国产精品网| 国产精品永久免费网站| 婷婷六月久久综合丁香| 亚洲国产中文字幕在线视频| avwww免费| 精品欧美一区二区三区在线| 在线视频色国产色| 亚洲第一欧美日韩一区二区三区| 午夜影院日韩av| 国产成人av教育| 日韩欧美 国产精品| tocl精华| 一边摸一边做爽爽视频免费| 欧美成人一区二区免费高清观看 | 国产主播在线观看一区二区| 成人亚洲精品av一区二区| 美女大奶头视频| 国产69精品久久久久777片 | 亚洲九九香蕉| 熟妇人妻久久中文字幕3abv| 国产一区二区三区在线臀色熟女| 波多野结衣巨乳人妻| 中文字幕人妻丝袜一区二区| 黑人欧美特级aaaaaa片| www.999成人在线观看| 精品第一国产精品| 亚洲国产欧洲综合997久久,| 精品国内亚洲2022精品成人| 亚洲精品美女久久久久99蜜臀| 国产又黄又爽又无遮挡在线| 18禁国产床啪视频网站| 淫妇啪啪啪对白视频| 91麻豆精品激情在线观看国产| 成人18禁在线播放| 免费电影在线观看免费观看| 欧美大码av| 91麻豆精品激情在线观看国产| 高清在线国产一区| 久久精品国产清高在天天线| 日本一本二区三区精品| 天堂√8在线中文| 高潮久久久久久久久久久不卡| 国内揄拍国产精品人妻在线| 欧美国产日韩亚洲一区| 香蕉av资源在线| 日韩欧美国产在线观看| 99精品欧美一区二区三区四区| 最新美女视频免费是黄的| 久久精品国产清高在天天线| 久久久久久久久免费视频了| 国产精品一区二区三区四区久久| 成人欧美大片| 午夜福利免费观看在线| 香蕉久久夜色| 男女之事视频高清在线观看| 亚洲av五月六月丁香网| 国模一区二区三区四区视频 | 在线永久观看黄色视频| 国产aⅴ精品一区二区三区波| 香蕉av资源在线| 国产又黄又爽又无遮挡在线| 亚洲av成人av| 中文字幕av在线有码专区| 九九热线精品视视频播放| 真人做人爱边吃奶动态| 成在线人永久免费视频| 在线十欧美十亚洲十日本专区| 欧美成人性av电影在线观看| av免费在线观看网站| 国模一区二区三区四区视频 | 国产成年人精品一区二区| 欧美一级a爱片免费观看看 | 国产野战对白在线观看| 欧美一级毛片孕妇| 亚洲精品久久成人aⅴ小说| 国产久久久一区二区三区| 国产免费av片在线观看野外av| 50天的宝宝边吃奶边哭怎么回事| 亚洲熟妇中文字幕五十中出| 久久 成人 亚洲| 91成年电影在线观看| 99久久99久久久精品蜜桃| 国产精品精品国产色婷婷| 91九色精品人成在线观看| 制服丝袜大香蕉在线| 欧美精品啪啪一区二区三区| 18美女黄网站色大片免费观看| 亚洲专区国产一区二区| 久久午夜亚洲精品久久| 97碰自拍视频| 成人国语在线视频| 欧美在线黄色| 99久久精品国产亚洲精品| 欧美日韩黄片免| 欧美zozozo另类| 人人妻人人看人人澡| 亚洲成人国产一区在线观看| 国产精品久久电影中文字幕| 搡老岳熟女国产| 狂野欧美白嫩少妇大欣赏| 黑人巨大精品欧美一区二区mp4| 免费观看人在逋| 黄色毛片三级朝国网站| 国产免费av片在线观看野外av| 国产日本99.免费观看| 妹子高潮喷水视频| 午夜亚洲福利在线播放| 亚洲av片天天在线观看| 国产又色又爽无遮挡免费看| 老鸭窝网址在线观看| 狂野欧美激情性xxxx| a在线观看视频网站| svipshipincom国产片| 999精品在线视频| 久久久水蜜桃国产精品网| 午夜老司机福利片| 岛国在线观看网站| 亚洲成人国产一区在线观看| 可以在线观看的亚洲视频| 精品久久久久久久人妻蜜臀av| av中文乱码字幕在线| 又大又爽又粗| 亚洲一区中文字幕在线| 久久人妻福利社区极品人妻图片| 国产精品电影一区二区三区| 91麻豆精品激情在线观看国产| 成熟少妇高潮喷水视频| 久久久久亚洲av毛片大全| 欧美日韩一级在线毛片| 精品国产超薄肉色丝袜足j| a级毛片在线看网站| 免费在线观看视频国产中文字幕亚洲| 国产精品野战在线观看| 麻豆国产av国片精品| 国产一级毛片七仙女欲春2| 91国产中文字幕| 精品一区二区三区视频在线观看免费| 十八禁人妻一区二区| 脱女人内裤的视频| 午夜福利18| 毛片女人毛片| 亚洲自偷自拍图片 自拍| 国产午夜精品久久久久久| 久久久久久久久免费视频了| 五月玫瑰六月丁香| 久久久久久久久免费视频了| 在线永久观看黄色视频| 在线播放国产精品三级| 少妇被粗大的猛进出69影院| 亚洲天堂国产精品一区在线| 久久中文看片网| 色尼玛亚洲综合影院| 国产免费av片在线观看野外av| 亚洲avbb在线观看| 国产精品久久久人人做人人爽| 日本三级黄在线观看| 欧美日本亚洲视频在线播放| 久久久久久亚洲精品国产蜜桃av| 丁香欧美五月| 国产激情久久老熟女| 婷婷六月久久综合丁香| 亚洲人成伊人成综合网2020| 啦啦啦免费观看视频1| 麻豆国产av国片精品| 国产午夜福利久久久久久| 欧美成狂野欧美在线观看| 身体一侧抽搐| 久9热在线精品视频| 999久久久精品免费观看国产| 在线观看免费日韩欧美大片| 变态另类成人亚洲欧美熟女| 一边摸一边抽搐一进一小说| 国产精品99久久99久久久不卡| 亚洲五月天丁香| 国产视频一区二区在线看| 男插女下体视频免费在线播放| 999精品在线视频| 99riav亚洲国产免费| 动漫黄色视频在线观看| 男插女下体视频免费在线播放| 999久久久精品免费观看国产| 亚洲精华国产精华精| 又紧又爽又黄一区二区| 99riav亚洲国产免费| 变态另类成人亚洲欧美熟女| 色精品久久人妻99蜜桃| 全区人妻精品视频| 亚洲色图 男人天堂 中文字幕| 亚洲中文字幕一区二区三区有码在线看 | 亚洲成人久久性| 俺也久久电影网| 全区人妻精品视频| tocl精华| 一区二区三区激情视频| 一边摸一边抽搐一进一小说| 国产精品一区二区三区四区免费观看 | 欧美日本视频| 午夜福利免费观看在线| 亚洲精品av麻豆狂野| 两个人免费观看高清视频| 欧美另类亚洲清纯唯美| 亚洲美女黄片视频| 又爽又黄无遮挡网站| av国产免费在线观看| 性欧美人与动物交配| 国产精品久久久av美女十八| www国产在线视频色| 久久99热这里只有精品18| 精品久久久久久久久久久久久| 久久久久久久久久黄片| 国产精品电影一区二区三区| 最近视频中文字幕2019在线8| 亚洲自偷自拍图片 自拍| 99国产精品一区二区蜜桃av| 少妇熟女aⅴ在线视频| 免费搜索国产男女视频| 曰老女人黄片| www.www免费av| 一区二区三区高清视频在线| 老司机午夜十八禁免费视频| 美女大奶头视频| 日本在线视频免费播放| 香蕉av资源在线| 成人一区二区视频在线观看| 舔av片在线| 在线十欧美十亚洲十日本专区| 丝袜人妻中文字幕| 午夜视频精品福利| 成年免费大片在线观看| 久久久国产欧美日韩av| 亚洲欧美精品综合久久99| 久久这里只有精品中国| 精品久久久久久久久久免费视频| 中文字幕人妻丝袜一区二区| 成人精品一区二区免费| 欧美日韩乱码在线| 日韩精品中文字幕看吧| 亚洲黑人精品在线| 超碰成人久久| 久久久久国内视频| 色哟哟哟哟哟哟| 最新在线观看一区二区三区| 99久久精品热视频| 脱女人内裤的视频| 久久久久久久午夜电影| 亚洲午夜理论影院| 黄频高清免费视频| 国产精品98久久久久久宅男小说| 成人手机av| 人人妻,人人澡人人爽秒播| 免费看日本二区| 国产精品,欧美在线| 午夜日韩欧美国产| 丝袜美腿诱惑在线| 国产视频一区二区在线看| 无人区码免费观看不卡| 啦啦啦免费观看视频1| 99热这里只有是精品50| 琪琪午夜伦伦电影理论片6080| 婷婷亚洲欧美| 国产av又大| 黄色 视频免费看| 成年免费大片在线观看| 免费av毛片视频| 99久久99久久久精品蜜桃| 日本 欧美在线| 好男人电影高清在线观看| 人妻久久中文字幕网| 中文字幕人妻丝袜一区二区| 国产亚洲精品av在线| 久久亚洲真实| 成人av一区二区三区在线看| 国产区一区二久久| 亚洲激情在线av| 国产探花在线观看一区二区| 少妇裸体淫交视频免费看高清 | 天天躁狠狠躁夜夜躁狠狠躁| 正在播放国产对白刺激| 99热只有精品国产| 国产在线精品亚洲第一网站| 欧美日韩中文字幕国产精品一区二区三区| 久久久久久久久中文| 日日干狠狠操夜夜爽| 曰老女人黄片| a在线观看视频网站| 久久久久久人人人人人| 桃色一区二区三区在线观看|