• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Rapid Cooling Rate on Microstructure Formation and Microhardness of Binary Ti-44Al Alloy

    2020-07-15 06:30:16XiaoyuChenHongzeFangQiWangRuirunChenHongshengDingYanqingSuandJingjieGuo

    Xiaoyu Chen, Hongze Fang, Qi Wang, Ruirun Chen*, Hongsheng Ding, Yanqing Su and Jingjie Guo

    (1. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;2. School of Electromechanic Engineering, Qingdao University, Qingdao 266071, Shandong, China)

    Abstract: In order to refine microstructure grains and improve mechanical properties of TiAl alloys, Ti44Al (at.%) alloy was rapidly solidified by melt spinning under different cooling rates. Microstructure and microhardness of the alloy before and after rapid solidification were investigated. XRD results show that the ratio of α2 phase in binary alloy increased with the cooling rates, which is caused by more α phases directly transforming to α2 phases. Grain morphology changed from long dendrite to the mixture of equiaxed and dendrite to equiaxed with the increase of cooling rates. The grain size was refined from 200-600 μm of as-cast to 18 μm of the alloy cooled at 4.9×105 K/s, which is caused by the undercooling induced from rapid solidification. Lamellar spacing was decreased from 4.5 μm of as-cast to 1.1 μm by rapid solidification. With the increase of cooling rate, the content of α2 phase increased and γ phase decreased gradually. Rapid solidification can reduce the segregation of elements. The microhardness was improved from 247 HV to 556 HV, which results from grain refinement strengthening, reduction of lamellar spacing, and more content of α2 phase.

    Keywords: Ti-44Al alloy; microstructure; microhardness; melt spinning; solidification path

    1 Introduction

    TiAl-based alloys have been applied in aviation and astronautics, military, vehicle engineering, and biomedical engineering, due to their low density, high intensity, good creep resistance, and excellent properties at high temperature[1-5]. However, the as-cast microstructures are coarse columnar lamellar (α2+γ) grains which produce low fracture toughness and poor room-temperature ductility[6-7]. Improving the ductility of TiAl-based alloys has recently been a focus of research. It is suggested that rapid solidification is an important branch in the field of materials science and engineering, which generates smaller grains, homogenous microstructures, and more excellent properties than conventional solidification[8-10]. The microstructures, the primary phase, and the microhardness of rapid solidified TiAl alloys can also be changed with increasing undercooling[11-13].

    The microstructures of binary TiAl alloys are controlled by the volume fraction ofα2/γ. According to thermodynamic equilibrium theory, the volume fractions ofα2/γof binary alloys are mainly affected by the content of aluminum[14-16]. Kenel and Leinenbach[17]used the CALPHAD approach to predict and explain the microstructure of binary TiAl alloys under high cooling rates. They found that when Al ≤ 45 at.%, the alloys formed a coarse-grainedα/α2microstructure, while the alloys showed mixed microstructure consisting of coarseα/α2grains when 45 < Al < 48 at.% with local gamma grains and lamellarα2+γ. Ti-48Al alloy exhibits dendritic microstructure of lamellarα2+γdendrites and interdendritic gamma grains. Liu et al.[18]concluded that the two-phase (αandγ) coupled growing morphology in Ti-(51-54) Al (at.%) changes from regular lamellar to irregular blocks and equiaxed structures with the decrease of temperature gradient during growth. The solute diffusion and the dissolution ofγphase play important roles in coupled microstructure evolution. The transformation from a peritectic (L+α→γ) to metastable eutectic reaction (L→α+γ) of TiAl alloys induces the formation of two-phase coupled growth morphologies[19]. Actually, the study about binary TiAl alloys via rapid solidification is expected to be further studied and improved.

    Chill-block melt-spinning method is frequency used to prepare TiAl-based alloys ribbons[20-21]with a flat surface and a thin thickness. Images captured by high speed infrared imaging revealed that ribbon formation is controlled by thermal transfer[22]. Most of the cooling rates are calculated by counting the rate of heat flow in Newton′s cooling mode[23-24]. The roll wheel speed and the cooling rate are in linear correlation, and the cooling rate increases with the increase of roll wheel speed.

    Controlling microstructure of TiAl-based alloys strongly depends on both Al concentration and cooling rates. In this paper, the chill-block melting-spinning method was used to prepare the binary TiAl alloy. Its phases, microstructures and mechanical properties were analyzed. Based on these data, the microstructure and its effect on mechanical properties of rapidly solidified Ti-44Al alloy were elucidated.

    2 Materials and Experimental Methods

    As-cast ingot with nominal composition of Ti-44Al (at.%) was prepared from titanium sponge (>99.9 %, wt. %) and aluminum (> 99.9 %, wt. %) using vacuum consumable arc-melting. The samples were cut into smaller pieces for melt spinning technique. In this experiment, the wheel material was pure copper and was set at different speeds. Table 1 shows the physical parameters of alloys for calculating cooling rates. The cooling rates were calculated by Newton heat transfer model[25]in the interface, as shown by Eq.(1). The physical parameters used in Eq. (1) are listed in Table 1, and the calculated results are listed in Table 2.

    (1)

    whereQis the heat transfer in the direction of heat flow,his the heat transfer coefficient,Ais the boundary area of heat flow,Tis the temperature of alloy droplet,TAis the temperature of copper roll,ρis the density of alloy,cPis the specific heat capacity, anddis the thickness of the thin strip produced by vacuum belt rejection.

    Table 1 Physical parameters of Ti-44Al alloy

    Table 2 Cooling rates (CR) of rapidly solidified Ti-44Al alloy

    Samples12345CR (K/s)2.5×1053.1×1053.5×1054.2×1054.9×105

    The rapidly solidified specimens were polished and etched with the reagent of 5%HF+5%HNO3+90%H2O (volume fraction). Phase constitution and crystal structure were analyzed by X-ray diffraction (XRD). Microstructures were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM, Tecnai G2 F30), compositions were measured by energy dispersive X-ray spectrometry (EDS), and microhardness was tested by HVS-1000 Digital Microhardness Tester.

    3 Results and Discussion

    3.1 Microstructures of As-Cast Ti-44Al Alloy

    Based on binary TiAl alloy phase diagram, the transformation of Ti-44Al alloy followsL→L+β→β→β+α→α→α+γ→α2+γ, as shown in Fig.1.

    TiAl alloys with Al ≤ 45 at.% were fully solidified viaβ-Ti region, while the peritectic reaction occurred when Al is 48 at.%. Figs. 2(a)-(b) show the coarse lamellae microstructure of as-cast Ti-44Al alloy. The grain sizes of this alloy are hundreds of micros (200-600 μm), and the grain boundaries are irregular. The average lamellar spacing was measured by intercept method, which was calculated as 4.5 μm. XRD results show this alloy consists ofα2andγphases, as shown in Fig.3.

    Fig.1 Equilibrium solidification diagram of Ti-Al alloys

    Fig.3 XRD pattern ofas-cast Ti-44Al alloy

    3.2 Microstructure of Rapidly Solidified Ti-44Al Alloy

    SEM-BSE microstructures of rapidly solidified Ti-44Al alloy at different cooling rates are shown in Fig.4. Dendrite morphologies are presented in Figs.4(a)-(b). It is noteworthy that the primary dendrites in Fig.4(a) are larger and longer than that in Fig.4(b). Equiaxed grains and one dendrite are displayed in Fig.4(c), while there are only equiaxed grains in Figs.4(d)-(e). It can be seen that the grain morphology changes from dendrite to mixture of equiaxed grains and dendrite to equiaxed grains with the increase of cooling rates. Meanwhile, the grain size is decreased from 50 μm (cooled at 2.5×105K/s) to 18 μm (cooled at 4.9×105K/s), the statistical results and changing trend of which are shown in Fig.5. It can be concluded that rapid solidification not only influences grain morphology, but also grain size. When the cooling rate is low (less than 3.1×105K/s), which means the roll rotation speed is low, the rapidly solidified alloy shows dendrite or near dendrite. Under this condition, the heat transfer is comparatively slow, which provides enough time for dendrite to be formed, as shown in Figs.4(a)-(b). With the increase of cooling rates, dendrite morphology decreases and equiaxed grain begins to form. When cooling rate is further increased, the equiaxed grain size decreases. The discontinuous arms are caused by the supercooled liquid surrounding the first solidified alloy, which stops most of the latent heat generated from crystallization from being transmitted. Because of the high concentration of solute and low melting point at the junction of dendrite arms, the latent heat from crystallization is released here and the temperature at the junction of dendrite arms is increased. As a result, the dendrite arms are partly melted, and then become isolated and interrupted.

    Fig.4 Microstructure of rapid solidified Ti-44Al alloy under different cooling rates (a) 2.5×105K/s (b) 3.1×105K/s (c) 3.5×105K/s (d) 4.2×105K/s (e) 4.9×105K/s

    Fig.5 Effect of cooling rates on different average grain sizes of Ti-44Al alloy

    Figs.4(c)-(e) show irregular equiaxed grains. With the increase of cooling rate, the grain size gradually decreases to about 18 μm. When the cooling rate is 3.5×105K/s, the alloy begins to form ribbon, and the microstructure consists of equiaxed dendrites and irregular equiaxed grains (Fig.4(c)), which is the critical state of transformation from the dendrite to the equiaxed. When the cooling rate is 4.2×105K/s, the microstructure consists solely of irregular equiaxed grains with obvious lamellae and several light dark structures distributed around grain boundaries, as shown in Fig.4(d). When the cooling rate is 4.9×105K/s, there is no irregular equiaxed grain boundary, and the light dark structure becomes thinner and presents continuous network distribution. Based on the lamellar microstructure of Ti-44Al alloy and the X-ray diffraction pattern, it is considered that the gray matrix phase obtained by rapid solidification is composed ofγphase andα2phase.

    From Fig.5, with the increase of cooling rates, the grain size of Ti-44Al alloy decreases gradually. Supercooling has an effect on nucleation rate and growth rate. Increasing supercooling in a certain range will increase the nucleation rate and growth rate at differentrates of increase. The rate of increase of nucleation rate is faster than that of growth rate, as shown in Fig.6. In the supercooling range of general metals, the larger the undercooling degree is, the larger the ratio of nucleation rate to growth rate is, and the smaller the grain size is. In this study, the method of increasing supercooling is to increase the cooling rate of liquid metal, which changes in the order of 105K/s. Rapid solidification technology is an efficient method to obtain fine grains. In addition, the rapid solidification at a higher cooling rate of more than 105K/s can rapidly cool the molten liquid metal and obtain great degree of supercooling. The atoms have no time to diffuse to maintain the short-range ordered arrangement of the liquid, and to solidify to obtain the solid metal, which is the amorphous metal.

    Fig.6 Effect of undercooling on nucleation rate and growth rate

    3.3 Lamellar Structure of Rapidly Solidified Ti-44Al Alloy

    Lamellar structure is a very important aspect for TiAl alloys. Not only lamellar colony size, but also lamellar spacing influences their mechanical properties. Lamellar structure with higher magnification is shown in Fig.7. Lamellar spacing was measured and the average lamellar spacing was calculated. The results are shown in Fig. 8. Lamellar spacing is decreased from 4.5 μm of as-cast to 1.1 μm of rapidly solidified at 4.9×105K/s. It can be seen that rapid solidification can decrease the lamellar spacing, and lamellar spacing decrease with the increase of cooling rates.

    3.4 Phase Composition of Rapidly Solidified Ti-44Al Alloy

    The rapidly solidified Ti-44Al alloy samples were examined by XRD. Results show that the phases are mainly composed ofα2phase andγphase, as shown in Fig.9. Main diffraction peak ofα2phase is (103) in rapid solidified Ti-44Al alloy. With the increase of cooling rate, the diffraction peaks (113) (311) ofγphase gradually decrease and disappear, which indicates the content ofγphase decreases gradually, whereasα2phase increases. The volume fraction ofγphase is lower than that of as-cast alloy. Phase volume fraction of as-cast and rapidly solidified Ti-44Al alloy with different cooling rates is listed in Table 3.

    Fig.7 Lamellae structure of rapidly solidified alloy at different cooling rates (a) 2.5×105K/s (b) 3.1×105K/s (c) 3.5×105K/s (d) 4.2×105K/s (e) 4.9×105K/s

    Fig.8 Lamellae spacing of rapidly solidified alloy at different cooling rates

    Fig.9 XRD patterns of rapidly solidified Ti-44Al alloy

    Table 3 Phase volume fraction of as-cast and rapidly solidified Ti-44Al alloy

    Cooling rate(K/s)α2 phase (%)γ phase (%)As-cast38.761.32.5×10545.654.43.1×10548.851.23.5×10550.249.84.2×10553.146.94.2×10554.745.3

    The microstructure of rapidly solidified Ti-44Al alloy was analyzed by TEM, as shown in Fig.10. The matrix is massiveα2phase, and the lathy shape isγphase. The lamellae structures are observed in other regions and the coarse lamellae are broken down into smaller lamellar. The formation of lamellar is incomplete. Based on the structural characteristics of the Ti-44Al alloy before and after rapid solidification, the primary phase of as-cast Ti-44Al alloy isβphase, while it isαphase when it is rapidly solidified. With increasing cooling rate, the stable primaryβphase was depressed, and the (L+α) metastable zone of undercooled alloys firstly solidified. Most of metastableαphase was reserved, and then orderly transformed intoα2phase instead of completely changing intoγphase. Theγphase in lathy shape always nucleates and grows at the grain boundary and some high energy areas, such as stacking fault. In addition, the lamellar structure forms incompletely, resulting from slower diffusion of elements. The higher the cooling rate is, the less time the elements diffuse. Based on the above analysis, solidification path of rapidly solidified Ti-44Al alloy isL→L+α→α+γm→α+α2+γm→(α2+γ) +α2+γm→α2+γ+γm.

    3.5 Compositional Distribution of Rapidly Solidified Ti-44Al Alloy

    Besides refining the grain size of the alloy, rapid solidification can reduce the segregation of elements. Energy spectrum analysis was carried out at different areas including bright contrast area (I), dark contrast area (II), and grain boundary (III), as shown in Fig.4. The analyses results are shown in Table 4. When the cooling rate is 2.5×105K/s, the Al content of all areas are 47.30 at.%, 47.24 at.%, and 46.92 at.%, respectively, which are all more than 44 at.%. When the cooling rate is 3.1×105K/s, the Al content of bright contrast area is 42.65 at.%, which is less than 44 at.%, but those of other two areas are a little higher than normal. When the cooling rate increases to 3.5×105K/s, the contents of Al are 46.03 at. %, 45.22 at.%, and 45.28 at.%, respectively, which are close to 44 at.%. The above EDS data show that there is a segregation of Al element when the cooling rate is low. At a higher cooling rate, the Al content of the three areas are 44.35 at.%, 43.82 at.%, and 44.52 at.%, respectively, where the segregation is very little.

    Fig.10 TEM images of rapidly solidified TiAl alloy at 4.9×105K/s (a)α2andγphase (b-c)α2andγlamellar (d)SAED pattern ofα2andγlamellar

    3.6 Microhardness of As-Cast and Rapidly Solidified Ti-44Al Alloy

    Fig.11 shows the microhardness of as-cast and rapidly solidified Ti-44Al alloy. It is noted that the microhardness of all rapidly solidified alloy is improved more than 100 %, which increases with increasing cooling rates. When the cooling rate is 4.9×105K/s, the microhardness reaches 556 HV. The improvement of microhardness results from grain refinement strengthening, reduction of lamellar spacing, and the variation of phase proportions. It is confirmed thatβphase is the hardest in TiAl-based alloys,α2phase is intermediate, andγphase is the weakest of all. According to the above conclusion, the volume fraction ofα2phase increases in rapidly solidified Ti-44Al alloy. Consequently, it is meaningful to improve the mechanical properties of TiAl-based alloys by controlling theα2/γratio except during refining.

    Table 4 EDS results of different areas of the rapidly solidified Ti-44Al alloy

    Fig.11 Microhardness of as-cast and rapidly solidified Ti-44Al alloy

    4 Conclusions

    1) Grain morphology changes from long dendrite to the mixture of equiaxed grains and dendrite to equiaxed grains with the increase of cooling rates. The grain size was refined as 50 μm (cooled at 2.5×105K/s) and 18 μm (cooled at 4.9×105K/s) from hundreds of micros (200-600 μm) as-cast. They result from undercooling induced by rapid solidification.

    2) The phases are mainly composed ofα2phase andγphase. With the increase of cooling rate, the content ofα2phase increased andγphase decreased gradually. The volume fraction ofγphase was lower than that of as-cast alloy.

    3) Lamellar spacing was decreased from 4.5 μm of as-cast to 1.1 μm of rapidly solidified at 4.9×105K/s. Rapid solidification can reduce the segregation of elements. The faster the solidification rate, the more uniform the composition.

    4) The microhardness of rapidly solidified Ti-44Al alloy were greatly improved, which was increased from 247 HV to 556 HV. The improvement of the microhardness results from grain refinement strengthening, reduction of lamellar spacing, and moreα2phase.

    精品人妻一区二区三区麻豆| 少妇的逼水好多| 在线观看人妻少妇| 熟妇人妻不卡中文字幕| 男人狂女人下面高潮的视频| 国产视频内射| 久久久久久久大尺度免费视频| 嘟嘟电影网在线观看| 天堂俺去俺来也www色官网| 香蕉精品网在线| 国产深夜福利视频在线观看| 在线观看人妻少妇| 国产av码专区亚洲av| 少妇丰满av| 久久ye,这里只有精品| 女性被躁到高潮视频| 精品人妻一区二区三区麻豆| 肉色欧美久久久久久久蜜桃| 少妇人妻一区二区三区视频| 欧美日韩视频精品一区| 久久久久久伊人网av| 欧美少妇被猛烈插入视频| 一级毛片我不卡| 自线自在国产av| www.av在线官网国产| 自拍偷自拍亚洲精品老妇| √禁漫天堂资源中文www| 国内精品宾馆在线| 国产日韩欧美在线精品| 亚洲第一区二区三区不卡| 99久久精品热视频| 好男人视频免费观看在线| 午夜精品国产一区二区电影| 三级经典国产精品| 精品一区二区免费观看| 日韩免费高清中文字幕av| 亚洲图色成人| 中文字幕人妻丝袜制服| 欧美精品国产亚洲| 亚洲国产色片| 欧美变态另类bdsm刘玥| 免费高清在线观看视频在线观看| 男女国产视频网站| 99热这里只有是精品在线观看| 午夜免费观看性视频| 亚洲av日韩在线播放| av免费在线看不卡| 最后的刺客免费高清国语| 亚洲图色成人| 大话2 男鬼变身卡| 2018国产大陆天天弄谢| 午夜激情福利司机影院| 亚洲性久久影院| 欧美亚洲 丝袜 人妻 在线| 亚洲欧洲日产国产| 国产乱来视频区| 国产又色又爽无遮挡免| 国产精品偷伦视频观看了| 日韩强制内射视频| 一级黄片播放器| 少妇被粗大的猛进出69影院 | 国产亚洲精品久久久com| 亚洲av在线观看美女高潮| 黄色一级大片看看| av免费在线看不卡| 熟女人妻精品中文字幕| 熟女av电影| 久久99精品国语久久久| 黄色毛片三级朝国网站 | 亚洲av.av天堂| 精品卡一卡二卡四卡免费| 老熟女久久久| 高清黄色对白视频在线免费看 | 国产伦理片在线播放av一区| 国产熟女午夜一区二区三区 | 晚上一个人看的免费电影| 99国产精品免费福利视频| 国产一区二区三区av在线| 久久人人爽av亚洲精品天堂| 女的被弄到高潮叫床怎么办| 黄色配什么色好看| 欧美日韩视频精品一区| 91精品国产国语对白视频| 2021少妇久久久久久久久久久| www.色视频.com| 国产又色又爽无遮挡免| 日日摸夜夜添夜夜添av毛片| 午夜视频国产福利| 一个人看视频在线观看www免费| 国产精品.久久久| 亚洲电影在线观看av| 国产av码专区亚洲av| 91久久精品电影网| 这个男人来自地球电影免费观看 | 春色校园在线视频观看| 热re99久久国产66热| 美女内射精品一级片tv| 中文字幕亚洲精品专区| 亚洲四区av| 最近的中文字幕免费完整| 在线免费观看不下载黄p国产| 麻豆乱淫一区二区| 狠狠精品人妻久久久久久综合| 在线观看人妻少妇| av视频免费观看在线观看| 日韩熟女老妇一区二区性免费视频| 永久网站在线| 国产永久视频网站| 精品久久久久久久久亚洲| 少妇人妻久久综合中文| 久久影院123| 少妇人妻 视频| 亚洲av福利一区| 亚洲怡红院男人天堂| 色哟哟·www| 久久国产亚洲av麻豆专区| 一区二区三区乱码不卡18| 色视频www国产| 男女无遮挡免费网站观看| 亚洲久久久国产精品| 日本-黄色视频高清免费观看| 久久久午夜欧美精品| 国产精品人妻久久久影院| 亚洲欧洲精品一区二区精品久久久 | 亚洲第一区二区三区不卡| 国产黄色免费在线视频| 97在线视频观看| 老司机影院成人| 国产深夜福利视频在线观看| 青春草视频在线免费观看| 亚洲欧美成人精品一区二区| 免费大片黄手机在线观看| 欧美精品人与动牲交sv欧美| 国产伦精品一区二区三区视频9| 日韩强制内射视频| 大香蕉97超碰在线| 国产欧美日韩一区二区三区在线 | 青春草视频在线免费观看| 少妇高潮的动态图| 久久免费观看电影| 免费观看a级毛片全部| 搡女人真爽免费视频火全软件| 男女边吃奶边做爰视频| 亚洲,一卡二卡三卡| 国产精品嫩草影院av在线观看| a级毛色黄片| 午夜影院在线不卡| 欧美高清成人免费视频www| 人人妻人人澡人人爽人人夜夜| 伊人亚洲综合成人网| 日韩制服骚丝袜av| 久久久久人妻精品一区果冻| 午夜老司机福利剧场| 久热久热在线精品观看| 午夜福利,免费看| 国产精品一区二区性色av| 精华霜和精华液先用哪个| 亚洲一级一片aⅴ在线观看| 午夜久久久在线观看| 午夜福利视频精品| 在线免费观看不下载黄p国产| 午夜影院在线不卡| 国产精品.久久久| 五月伊人婷婷丁香| 久久青草综合色| 熟女人妻精品中文字幕| 欧美精品高潮呻吟av久久| 尾随美女入室| 国产免费一级a男人的天堂| 久久久久精品久久久久真实原创| 夫妻午夜视频| 国产精品久久久久久av不卡| 中文字幕精品免费在线观看视频 | 777米奇影视久久| 精品少妇内射三级| 色视频www国产| 午夜免费观看性视频| 国产有黄有色有爽视频| 精品国产乱码久久久久久小说| 18禁在线播放成人免费| 丝袜喷水一区| 成人黄色视频免费在线看| 日本av手机在线免费观看| 性色av一级| 乱人伦中国视频| 中文字幕久久专区| 看十八女毛片水多多多| 日本与韩国留学比较| 最近最新中文字幕免费大全7| 嫩草影院新地址| 欧美3d第一页| 欧美人与善性xxx| 亚洲精品,欧美精品| 国产精品三级大全| 日韩欧美精品免费久久| 久久久久久久国产电影| 18+在线观看网站| 亚洲成人av在线免费| 欧美日韩精品成人综合77777| 色哟哟·www| 国产免费一区二区三区四区乱码| 久久精品国产亚洲网站| 精品一区二区三卡| 黑丝袜美女国产一区| 最黄视频免费看| 久久久久人妻精品一区果冻| 男人爽女人下面视频在线观看| 精品亚洲成国产av| 国产av国产精品国产| 欧美精品亚洲一区二区| av视频免费观看在线观看| 国产熟女欧美一区二区| 国内揄拍国产精品人妻在线| 乱系列少妇在线播放| www.av在线官网国产| 一级片'在线观看视频| 亚洲av不卡在线观看| 亚洲欧美一区二区三区黑人 | 亚洲国产日韩一区二区| 国产高清国产精品国产三级| 老熟女久久久| 观看av在线不卡| 色婷婷久久久亚洲欧美| 大陆偷拍与自拍| 伦理电影免费视频| 午夜影院在线不卡| 九九久久精品国产亚洲av麻豆| 国产精品久久久久久精品电影小说| 久久鲁丝午夜福利片| 午夜久久久在线观看| 国产深夜福利视频在线观看| 深夜a级毛片| 国产精品久久久久成人av| 国产高清三级在线| 九草在线视频观看| 欧美bdsm另类| 日日爽夜夜爽网站| 日韩视频在线欧美| 桃花免费在线播放| 国产爽快片一区二区三区| 纵有疾风起免费观看全集完整版| videossex国产| 色5月婷婷丁香| 国产精品国产三级国产av玫瑰| 国产精品久久久久久精品古装| 亚洲电影在线观看av| 国产高清有码在线观看视频| av视频免费观看在线观看| 色婷婷av一区二区三区视频| 亚洲国产欧美日韩在线播放 | 欧美3d第一页| 午夜日本视频在线| 久久国内精品自在自线图片| 欧美日本中文国产一区发布| 狂野欧美激情性xxxx在线观看| 伊人久久国产一区二区| 日本av免费视频播放| 中文乱码字字幕精品一区二区三区| 女性生殖器流出的白浆| 久久综合国产亚洲精品| 80岁老熟妇乱子伦牲交| 精品久久久久久电影网| 99热这里只有精品一区| 国产一区二区三区av在线| 曰老女人黄片| 中文字幕人妻丝袜制服| 嫩草影院入口| 精品酒店卫生间| 久久影院123| 亚洲三级黄色毛片| 久久久久久伊人网av| 2021少妇久久久久久久久久久| 一个人免费看片子| 在线看a的网站| 亚洲内射少妇av| 男人狂女人下面高潮的视频| 色网站视频免费| 久久久久视频综合| 欧美日韩国产mv在线观看视频| 日日啪夜夜爽| 精品熟女少妇av免费看| 免费久久久久久久精品成人欧美视频 | 妹子高潮喷水视频| 成人免费观看视频高清| 丰满人妻一区二区三区视频av| 国产精品久久久久久精品电影小说| 91精品一卡2卡3卡4卡| 国产 一区精品| 精品少妇内射三级| 日韩电影二区| 亚洲美女黄色视频免费看| 少妇猛男粗大的猛烈进出视频| 欧美精品高潮呻吟av久久| 在线观看免费日韩欧美大片 | 日韩一区二区三区影片| 人人妻人人澡人人爽人人夜夜| 国产国拍精品亚洲av在线观看| 啦啦啦啦在线视频资源| 国产有黄有色有爽视频| 丰满迷人的少妇在线观看| 中文字幕人妻熟人妻熟丝袜美| 久久免费观看电影| 大片免费播放器 马上看| 国产av一区二区精品久久| 国产熟女午夜一区二区三区 | 亚洲综合精品二区| a级一级毛片免费在线观看| 一级,二级,三级黄色视频| 一级二级三级毛片免费看| 国产精品伦人一区二区| 国产精品.久久久| 亚洲av福利一区| 国产精品一二三区在线看| 三级经典国产精品| 2018国产大陆天天弄谢| 亚洲av综合色区一区| 欧美最新免费一区二区三区| 国产亚洲欧美精品永久| 国产亚洲一区二区精品| 最近中文字幕2019免费版| 国产男女内射视频| 中文字幕亚洲精品专区| 日本黄大片高清| 偷拍熟女少妇极品色| 观看免费一级毛片| 日韩人妻高清精品专区| 成年人午夜在线观看视频| 国产熟女欧美一区二区| 春色校园在线视频观看| 最近中文字幕2019免费版| 毛片一级片免费看久久久久| 看十八女毛片水多多多| 91精品伊人久久大香线蕉| 久久鲁丝午夜福利片| 少妇裸体淫交视频免费看高清| 中文字幕人妻熟人妻熟丝袜美| 美女大奶头黄色视频| 午夜福利视频精品| 97超碰精品成人国产| 夫妻午夜视频| 久久久欧美国产精品| 国产亚洲午夜精品一区二区久久| 男人添女人高潮全过程视频| 日本猛色少妇xxxxx猛交久久| 夜夜爽夜夜爽视频| 精品久久久久久久久av| 午夜视频国产福利| av天堂久久9| 99久久精品一区二区三区| 国产国拍精品亚洲av在线观看| 成人美女网站在线观看视频| 国产成人精品婷婷| 国产欧美日韩精品一区二区| av一本久久久久| 日韩精品免费视频一区二区三区 | 精品熟女少妇av免费看| 男人和女人高潮做爰伦理| 精品熟女少妇av免费看| 麻豆成人午夜福利视频| 六月丁香七月| 美女脱内裤让男人舔精品视频| av国产久精品久网站免费入址| 人人妻人人澡人人爽人人夜夜| 国产免费视频播放在线视频| 国产精品.久久久| 国产成人免费无遮挡视频| 欧美激情国产日韩精品一区| 久久久久久久精品精品| 女人久久www免费人成看片| 黄色毛片三级朝国网站 | 女性被躁到高潮视频| 男女免费视频国产| 精品一区二区三区视频在线| 一级,二级,三级黄色视频| 狂野欧美白嫩少妇大欣赏| 久久久亚洲精品成人影院| 曰老女人黄片| 最新的欧美精品一区二区| 日韩一区二区三区影片| 在线观看免费日韩欧美大片 | 狠狠精品人妻久久久久久综合| 婷婷色麻豆天堂久久| 高清欧美精品videossex| 欧美激情国产日韩精品一区| 日韩三级伦理在线观看| 国产欧美日韩一区二区三区在线 | 国产午夜精品久久久久久一区二区三区| 丰满少妇做爰视频| 日日摸夜夜添夜夜添av毛片| 国产精品国产三级国产av玫瑰| 嘟嘟电影网在线观看| 美女大奶头黄色视频| 色视频在线一区二区三区| 丁香六月天网| 亚洲激情五月婷婷啪啪| 美女福利国产在线| 久久亚洲国产成人精品v| 丰满人妻一区二区三区视频av| 极品教师在线视频| 亚洲av欧美aⅴ国产| 91精品伊人久久大香线蕉| 91精品一卡2卡3卡4卡| 黑人高潮一二区| 亚洲人成网站在线播| 国产极品天堂在线| 夜夜骑夜夜射夜夜干| 岛国毛片在线播放| 99九九线精品视频在线观看视频| 国产色婷婷99| 日本vs欧美在线观看视频 | 如日韩欧美国产精品一区二区三区 | 国产精品成人在线| 成年人午夜在线观看视频| 免费观看av网站的网址| 一级毛片我不卡| 三级经典国产精品| 久久99热这里只频精品6学生| 91精品一卡2卡3卡4卡| 一级片'在线观看视频| 国产色爽女视频免费观看| 亚洲欧洲国产日韩| 一级黄片播放器| 91久久精品电影网| 2021少妇久久久久久久久久久| 国产精品.久久久| 嫩草影院新地址| 国产成人午夜福利电影在线观看| 99久久中文字幕三级久久日本| 91精品国产九色| 久久99蜜桃精品久久| 久久久久国产精品人妻一区二区| 亚洲av二区三区四区| 人人妻人人添人人爽欧美一区卜| 国产精品不卡视频一区二区| 五月玫瑰六月丁香| 亚洲国产精品国产精品| 欧美日韩在线观看h| 狂野欧美激情性bbbbbb| 人体艺术视频欧美日本| 在线观看免费高清a一片| 国产成人午夜福利电影在线观看| 久久久久久久久大av| 热re99久久精品国产66热6| 交换朋友夫妻互换小说| 国语对白做爰xxxⅹ性视频网站| 岛国毛片在线播放| 久久综合国产亚洲精品| 欧美变态另类bdsm刘玥| 大片电影免费在线观看免费| 日本91视频免费播放| 亚洲怡红院男人天堂| 亚洲精品中文字幕在线视频 | 精品一区在线观看国产| 少妇精品久久久久久久| 国产伦精品一区二区三区视频9| 国产精品蜜桃在线观看| 久久ye,这里只有精品| 美女国产视频在线观看| 丰满饥渴人妻一区二区三| 在线观看av片永久免费下载| 插阴视频在线观看视频| 欧美激情极品国产一区二区三区 | 一个人看视频在线观看www免费| av天堂久久9| 国产av一区二区精品久久| 国产亚洲91精品色在线| 老女人水多毛片| 国产成人91sexporn| 亚洲精品一区蜜桃| 视频区图区小说| 极品教师在线视频| 日本色播在线视频| 啦啦啦啦在线视频资源| 亚洲真实伦在线观看| 秋霞在线观看毛片| 一级,二级,三级黄色视频| 热99国产精品久久久久久7| 国产男女超爽视频在线观看| 久久97久久精品| 99re6热这里在线精品视频| 中国国产av一级| 99久久精品一区二区三区| 午夜久久久在线观看| 久久狼人影院| 少妇的逼好多水| av专区在线播放| 有码 亚洲区| 青春草视频在线免费观看| 亚洲精品色激情综合| 中文字幕亚洲精品专区| 亚洲精品日韩av片在线观看| 三级国产精品片| 亚洲精品自拍成人| 狂野欧美白嫩少妇大欣赏| 日韩av在线免费看完整版不卡| 亚洲欧美一区二区三区国产| 人妻夜夜爽99麻豆av| 亚洲av免费高清在线观看| 日韩制服骚丝袜av| 久久久久久久久久久丰满| 菩萨蛮人人尽说江南好唐韦庄| 精品人妻一区二区三区麻豆| 成人国产av品久久久| 国产男女内射视频| a 毛片基地| 午夜福利网站1000一区二区三区| 国产成人a∨麻豆精品| 九草在线视频观看| 日日摸夜夜添夜夜爱| 黄色一级大片看看| 亚洲色图综合在线观看| 黄色配什么色好看| 国产免费视频播放在线视频| 人人妻人人澡人人爽人人夜夜| 热re99久久国产66热| 人人妻人人澡人人爽人人夜夜| 欧美日韩国产mv在线观看视频| 黑丝袜美女国产一区| 精品久久久精品久久久| 你懂的网址亚洲精品在线观看| 欧美日韩国产mv在线观看视频| 最近中文字幕2019免费版| 人妻人人澡人人爽人人| 天堂中文最新版在线下载| 国产精品熟女久久久久浪| 国产成人精品无人区| 国产精品一区www在线观看| 国产成人精品无人区| 国产精品99久久99久久久不卡 | 极品人妻少妇av视频| 久热这里只有精品99| 啦啦啦中文免费视频观看日本| 全区人妻精品视频| 人妻系列 视频| 国产伦精品一区二区三区视频9| 国产av一区二区精品久久| 91精品伊人久久大香线蕉| 在线观看av片永久免费下载| 亚洲不卡免费看| 激情五月婷婷亚洲| 亚洲成色77777| 亚洲欧美日韩另类电影网站| 美女国产视频在线观看| 日日摸夜夜添夜夜添av毛片| 美女cb高潮喷水在线观看| 91aial.com中文字幕在线观看| videos熟女内射| 美女xxoo啪啪120秒动态图| 老司机影院毛片| 久久精品国产亚洲网站| 日韩大片免费观看网站| 在线精品无人区一区二区三| 日韩亚洲欧美综合| 日韩伦理黄色片| 两个人免费观看高清视频 | 久久久久久久久久久久大奶| 亚洲不卡免费看| 国产高清国产精品国产三级| 国产精品久久久久久久电影| 久久久久精品性色| 国内少妇人妻偷人精品xxx网站| 99热全是精品| 日本色播在线视频| 亚洲国产成人一精品久久久| 国产伦精品一区二区三区视频9| 涩涩av久久男人的天堂| 啦啦啦在线观看免费高清www| 国产免费又黄又爽又色| 久久久精品94久久精品| 久久亚洲国产成人精品v| 日本爱情动作片www.在线观看| 国产欧美亚洲国产| 美女内射精品一级片tv| 国产成人精品久久久久久| 狂野欧美白嫩少妇大欣赏| 如日韩欧美国产精品一区二区三区 | 99热国产这里只有精品6| 亚洲图色成人| 精品午夜福利在线看| 国产精品人妻久久久久久| av国产精品久久久久影院| 亚洲经典国产精华液单| 亚洲精品国产av成人精品| 国产成人精品久久久久久| 亚洲精品第二区| 欧美日韩视频精品一区| 亚洲av综合色区一区| 99久久精品热视频| 青春草视频在线免费观看| 亚洲av电影在线观看一区二区三区| 高清视频免费观看一区二区| 亚洲,一卡二卡三卡| 全区人妻精品视频| 国产黄色视频一区二区在线观看| 蜜臀久久99精品久久宅男| 国产一级毛片在线| 视频区图区小说| 免费少妇av软件| 丰满迷人的少妇在线观看| 三级经典国产精品| 99久国产av精品国产电影| 国产精品国产三级专区第一集| 午夜精品国产一区二区电影| www.色视频.com| 精品视频人人做人人爽| 国产综合精华液| 国产精品一区二区在线观看99| 欧美 亚洲 国产 日韩一| 天堂中文最新版在线下载| 国产乱来视频区| 日韩不卡一区二区三区视频在线| 久久国产精品男人的天堂亚洲 | 亚洲国产精品一区二区三区在线| 麻豆精品久久久久久蜜桃| 美女主播在线视频|