熊 平,汪春江,孫建軍,查曉明
(1.國網(wǎng)湖北省電力有限公司電力科學(xué)研究院,湖北 武漢430077;2.武漢大學(xué) 電氣工程學(xué)院,湖北 武漢430072)
隨著能源與環(huán)境問題的日益嚴(yán)重,分布式能源是當(dāng)前研究熱點(diǎn)。以光伏、風(fēng)電為代表的可再生能源發(fā)電并網(wǎng)是緩解能源危機(jī),降耗去霾的有效途徑[1-4]。近年來,伴隨分布式并網(wǎng)技術(shù)的發(fā)展以及國家政策的大力扶持,光伏和風(fēng)電用并網(wǎng)逆變器數(shù)量急劇上升。然而,隨著分布式能源并網(wǎng)裝備大量接入配電網(wǎng)中,潮流分布由單向輻射狀供電模式往雙向潮流的集成分布式發(fā)電的有源配電模式轉(zhuǎn)變,并且考慮蜂巢狀的有源配電網(wǎng)構(gòu)想、關(guān)鍵技術(shù)成為未來發(fā)展的方向[5-7]。大規(guī)模分布式電源的引入難免帶來一系列問題,如電能質(zhì)量,供電能力消納及管控等問題,其中以配電網(wǎng)寬頻域的諧振問題尤為突出[8-10]。因此,有效評(píng)估有源配電網(wǎng)諧振風(fēng)險(xiǎn)、定位其發(fā)生位置,開展諧振抑制策略的研究,是促進(jìn)新能源消納和提高配電網(wǎng)運(yùn)行穩(wěn)定性的關(guān)鍵,具有重要的現(xiàn)實(shí)意義。
近年來,國內(nèi)外已出現(xiàn)多起這類諧振問題,其頻率從10 Hz~1 000 Hz 不等[11-13]。而且,大型光伏電站接入電網(wǎng)后的安全、穩(wěn)定及經(jīng)濟(jì)運(yùn)行等問題也逐漸凸現(xiàn)[14-15]。尤其是,弱電網(wǎng)下的并網(wǎng)逆變?cè)O(shè)備引發(fā)的一系列電能質(zhì)量問題[16-17]。文獻(xiàn)[18-20]中,分別對(duì)主動(dòng)孤島模式下、并網(wǎng)模式下以及分布式電源集群化并入配電網(wǎng)模式下存在的諸多寬頻域諧波諧振交互問題進(jìn)行分析,揭示其發(fā)生機(jī)理,并提出相應(yīng)的諧振治理方案。諧振不僅會(huì)帶來諧波問題,嚴(yán)重時(shí)甚至?xí)?dǎo)致不穩(wěn)定現(xiàn)象,對(duì)配電網(wǎng)造成重大危害,而逆變器復(fù)雜的控制特性常常為配電網(wǎng)帶來額外的諧振風(fēng)險(xiǎn)。因此,有必要研究含光伏逆變器的配電網(wǎng)諧振風(fēng)險(xiǎn)評(píng)估。
針對(duì)諧振風(fēng)險(xiǎn)評(píng)估,傳統(tǒng)的方法是特征根分析法、復(fù)轉(zhuǎn)矩系數(shù)法、頻率掃描法[21-23]。特征根分析法能準(zhǔn)確表達(dá)諧振模態(tài)及諧振風(fēng)險(xiǎn),但缺點(diǎn)是建模計(jì)算量大,容易出現(xiàn)維數(shù)災(zāi)問題;而頻率掃描法操作簡便,對(duì)大型電網(wǎng)比較適用,但相較精確建模存在測(cè)量誤差等問題。文獻(xiàn)[24]則綜合了以上兩種方法,一定程度上規(guī)避了兩種方法各自的問題,但從原理上不夠直觀。文獻(xiàn)[25-27]中,提出含多電壓源型換流器(VSC)配電網(wǎng)高頻諧振特性分析方法,圍繞VSC 接入配電網(wǎng)數(shù)量和濾波器配置形式兩方面展開研究,揭示兩因素對(duì)配電網(wǎng)高頻諧振方面的影響。文獻(xiàn)[28]和文獻(xiàn)[29]分別構(gòu)建了逆變器等效RLC電路模型,提供了另一種諧振風(fēng)險(xiǎn)評(píng)估的思路,即利用等效RLC 電路模型,這也是本文所采用的方法。
綜上,本文針對(duì)含光伏逆變器的低壓有源配電網(wǎng)系統(tǒng)的諧振問題,首先建立含光伏逆變器的低壓有源配電網(wǎng)等效電路模型,利用RC 電路來等效逆變器PI控制作用;其次,考慮用電路模型分析法對(duì)低壓有源配電網(wǎng)進(jìn)行諧振風(fēng)險(xiǎn)評(píng)估,得到本文配電網(wǎng)算例存在28.2 Hz 和84.7 Hz 兩個(gè)頻率的諧振風(fēng)險(xiǎn)的結(jié)論;最后分析影響諧振的關(guān)鍵因素,指出變壓器容量及逆變器輸電距離將分別影響28.2 Hz和84.7 Hz兩個(gè)頻率處諧振頻率及峰值,在實(shí)際中可通過增加變壓器支路線路電阻及輸電距離降低諧振風(fēng)險(xiǎn)。
如圖1所示為低壓有源配電網(wǎng)系統(tǒng),G為10 kV電網(wǎng),T 為10 kV/380 V 變壓器,Lσ為變壓器漏感,R1為光伏逆變器并網(wǎng)電纜線路電阻,Lf為逆變器濾波電感,Cc、Cdc分別為并聯(lián)補(bǔ)償電容、光伏逆變器直流側(cè)電容。光伏逆變器采取電流控制模式,控制器為PI 控制,其控制結(jié)構(gòu)如下:
圖1 低壓有源配電網(wǎng)系統(tǒng)Fig.1 Low voltage active distribution system
圖2 逆變器控制結(jié)構(gòu)Fig.2 Control block diagram of inverter
圖2 中,iref、i 分別為逆變器輸出指令電流、實(shí)際電流,uPWM為調(diào)制電壓,uo為逆變器輸出電壓。
如圖1 所示的低壓有源配電網(wǎng)系統(tǒng)中,包含交流電壓源、變壓器、并聯(lián)補(bǔ)償電容、光伏逆變器等,下面對(duì)光伏逆變器進(jìn)行建模。
如圖2 所示的逆變器結(jié)構(gòu),控制器實(shí)現(xiàn)電流跟蹤控制,調(diào)節(jié)輸出電流i 跟蹤指令電流iref,電流偏差ie輸入到PI 控制器進(jìn)行調(diào)節(jié),得到調(diào)制電壓信號(hào)uo。數(shù)學(xué)模型可以表示為:
對(duì)比串聯(lián)RC電路,假設(shè)電流為ie,則電壓為:
R、L、C 分別為電阻、電感、電容元件。若令uRLC=uo,則PI控制器與串聯(lián)RC電路由相同的數(shù)學(xué)模型組成,即:
二者參數(shù)之間的對(duì)應(yīng)關(guān)系為:
即電流跟蹤控制模式的光伏逆變器可以用串聯(lián)RC 電路等效其控制過程,如圖3所示。
圖3 逆變器等效電路Fig.3 The equivalent circuit of inverter
其中,K 為PWM 等效調(diào)制增益,等于1。因此,低壓有源配電網(wǎng)等效電路模型如圖4所示。
如圖4所示的等效電路,根據(jù)疊加定理,考慮光伏逆變器對(duì)10 kV配電網(wǎng)影響,如圖5所示。
圖4 低壓有源配電網(wǎng)等效電路Fig.4 The equivalent circuit of low voltage active distribution grid
圖5 逆變器諧振風(fēng)險(xiǎn)評(píng)估等效電路Fig.5 The equivalent of inverter for resonance risk assessment
根據(jù)圖5 所示的等效電路,計(jì)算得逆變器注入10 kV配電網(wǎng)的電壓ur、電流ir為:
對(duì)于逆變器并網(wǎng)輸電線路電纜,電纜選型原則為額定電壓需高于使用電壓,此處選用常見的VV0.6/1 kV電纜,銅導(dǎo)線[30],查閱相關(guān)標(biāo)準(zhǔn)其電阻為3.08 Ω/km,以10 m電纜為例,其電阻R1為:
變壓器容量取200 kVA,短路電壓Vs%=10.5%,故變壓器漏感為:
并聯(lián)補(bǔ)償電容器容量慣例取變壓器容量的30%,計(jì)算補(bǔ)償電容:
綜上,低壓有源配電網(wǎng)的等效電路參數(shù)如表1所示。
依據(jù)表1 的參數(shù)及式(5)、式(6)作逆變器注入10 kV配電網(wǎng)的電壓電流伯德圖,Hu為電壓傳遞函數(shù),Hi為電流傳遞函數(shù)。
表1 低壓有源配電網(wǎng)等效電路參數(shù)Table 1 Parameters of circuit
圖6顯示,在28.2 Hz處,電流有一個(gè)負(fù)諧振峰,電壓有一個(gè)正諧振峰,峰值較大,分別為-146 dB、157 dB;而在84.7 Hz 頻率處,電壓電流均存在35.8 dB 的正諧振峰。這說明,光伏逆變器控制結(jié)構(gòu)的引入,將對(duì)10 kV 配電網(wǎng)引入28.2 Hz 諧振電壓及84.7 Hz 的諧振電壓及電流。這些諧振電壓電流將在10 kV配電網(wǎng)內(nèi)部傳播,造成不可小覷的經(jīng)濟(jì)損失。
圖6 逆變器注入配電網(wǎng)電壓電流伯德圖Fig.6 Bode diagram of voltage and current
圖6 伯德圖中逆變器并網(wǎng)輸電距離選為10 m,但在實(shí)際中,逆變器并網(wǎng)位置常常是隨機(jī)的,輸電距離也遠(yuǎn)遠(yuǎn)不止10 m一種情況,而輸電距離關(guān)乎R1的數(shù)值,因此,有必要探討輸電距離對(duì)諧振的影響。
圖7顯示,輸電距離變化帶來線路電阻的變化,對(duì)諧振電壓及電流的影響體現(xiàn)在84.7 Hz的諧振峰上,當(dāng)距離由10 m增大至200 m時(shí),諧振峰值從35.8 dB/30.7 dB下降至13.2 dB/8.2 dB;說明該線路電阻能阻尼84.7 Hz諧振。因此,適當(dāng)?shù)卦龃竽孀兤鞑⒕W(wǎng)的輸電距離,可以降低84.7 Hz 處的諧振風(fēng)險(xiǎn),而輸電距離的變化對(duì)28.2 Hz頻率處的諧振并無影響。
圖7 輸電距離對(duì)諧振電壓電流影響Fig.7 The impact of distance to resonance
上述兩節(jié)分析中,逆變器并網(wǎng)輸電距離及變壓器容量對(duì)28.2 Hz頻率處的諧振并無影響,該諧振峰受其他因素影響。由于之前的變壓器模型中,只考慮變壓器漏感,但實(shí)際在200 kVA規(guī)模的變壓器中,鐵耗等效的電阻與漏抗的大小具有可比性,因此,這部分電阻也需要考慮其中。以Rk為變壓器等效電阻,取鐵耗為容量的2%,有:
圖8 變壓器容量對(duì)諧振電壓電流影響Fig.8 The impact of transformer capacity
圖9 變壓器鐵耗對(duì)諧振電壓電流影響Fig.9 The impact of transformer iron loss
其余參數(shù)依舊按表1所示,作諧振電壓電流伯德圖,如圖9 所示??梢钥吹?,鐵耗等效電阻的加入可以阻尼28.2 Hz頻率諧振,因此,無需考慮該諧振峰的影響。且可以通過增加變壓器支路線路電阻的措施來抑制該諧振,降低該頻率處的諧振風(fēng)險(xiǎn),如增加線路長度。
本文通過構(gòu)建含光伏逆變器的低壓有源配電網(wǎng)等效電路模型,對(duì)配電網(wǎng)進(jìn)行諧振風(fēng)險(xiǎn)評(píng)估,并分析了配電網(wǎng)諧振風(fēng)險(xiǎn)的影響因素,得到以下結(jié)論:
1)PI控制的電流跟蹤控制逆變器,其PI環(huán)節(jié)可用RC串聯(lián)電路等效,控制參數(shù)與RC參數(shù)存在對(duì)應(yīng)關(guān)系;
2)光伏逆變器、補(bǔ)償電容、變壓器的共同作用,會(huì)導(dǎo)致配電網(wǎng)存在28.2 Hz 和84.7 Hz 兩個(gè)頻率的諧振風(fēng)險(xiǎn);
3)逆變器輸電距離將影響84.7 Hz的諧振峰值,即輸電線路電阻能阻尼84.7 Hz諧振,適當(dāng)?shù)卦龃竽孀兤鞑⒕W(wǎng)的輸電距離,可降低84.7 Hz處的諧振風(fēng)險(xiǎn);變壓器容量影響28.2 Hz頻率處諧振,影響諧振頻率及峰值,增加變壓器支路線路電阻可以降低28.2 Hz諧振風(fēng)險(xiǎn)。
[參考文獻(xiàn)](References)
[1] 阮新波,王學(xué)華,潘冬華,等.LCL 型并網(wǎng)逆變器的控制技術(shù)[M].北京:科學(xué)出版社,2019.RUAN Xinbo,WANG Xuehua,PAN Donghua,et al.Control techniques for LCL-type grid-connected inverters[M].Beijing:Science Press,2019.
[2] 曾正,趙榮祥,湯勝清,等.可再生能源分散接入用先進(jìn)并網(wǎng)逆變器研究綜述[J].中國電機(jī)工程學(xué)報(bào),2013,33(24):1-12.ZENG Zheng,ZHAO Rongxiang,TANG Shengqing,et al.An overview on advanced grid-connected inverters used for decentralized renewable energy resources[J].Proceedings of the CSEE,2013,33(24):1-12.
[3] 許津銘,謝少軍,張斌鋒.分布式發(fā)電系統(tǒng)中LCL濾波并網(wǎng)逆變器電流控制研究綜述[J].中國電機(jī)工程學(xué)報(bào),2015,35(16):4153-4166.XU Jinming,XIE Shaojun,ZHANG Binfeng.Overview of current control techniques for grid-connected inverters with LCL filters in distributed power generation systems[J].Proceedings of the CSEE,2015,35(16):4153-4166.
[4] 盛萬興,吳鳴,季宇,等.分布式可再生能源發(fā)電集群并網(wǎng)消納關(guān)鍵技術(shù)及工程實(shí)踐[J].中國電機(jī)工程學(xué)報(bào),2019,39(08):2175-2186.SHENG Wanxing,WU Ming,JI Yu,et al.Key techniques and engineering practice of distributed renewable generation clusters integration[J].Proceedings of the CSEE,2019,39(08):2175-2186.
[5] 李文升,徐群,尹志,等.國內(nèi)外分布式電源接納能力及提升方法綜述[J].湖北電力,2017,41(02):38-43.LI Wensheng,XU Qun,YIN Zhi,et al.Research on worldwide restrictive standards and promotion method of distributed generation hosting capacity[J].Hubei Electric Power,2017,41(02):38-43.
[6] 葉保璇,吳育武,陳志威,等.有源配電網(wǎng)電壓控制技術(shù)研究綜述[J].機(jī)電工程技術(shù),2018,47(07):55-59,74.YE Baoxuan,WU Yuwu,CHEN Zhiwei,et al.Research overview on voltage control method of active distribution network[J].Mechanical&Electrical Engineering Technology,2018,47(07):55-59,74.
[7] 江道灼,徐寧,江崇熙,等.蜂巢狀有源配電網(wǎng)構(gòu)想、關(guān)鍵技術(shù)與展望[J].電力系統(tǒng)自動(dòng)化,2019,43(17):1-11.JIANG Daozhuo,XU Ning,JIANG Chongxi,et al.Conception,key technology and prospect of honeycomb-shape active distribution network[J].Automation of Electric Power Systems,2019,43(17):1-11.
[8] 代琴,李軍,胡光耀,等.考慮風(fēng)電隨機(jī)性的配電網(wǎng)隨機(jī)機(jī)會(huì)約束供電能力計(jì)算[J].湖北電力,2017,41(12):11-17.DAI Qin,LI Jun,HU Guangyao,et al.Calculation of power supply capacity of distribution network with stochastic chance constraints considering wind power randomness[J].Hubei Electric Power,2017,41(12):11-17.
[9] 何正友.分布式新能源接入電網(wǎng)的諧波熱點(diǎn)問題探討[J].南方電網(wǎng)技術(shù),2016,10(03):47-52.HE Zhengyou.Discussion on harmonic hot issues of distributed new energy connected to power grid[J].Southern Power System Technology,2016,10(03):47-52.
[10] 劉懷遠(yuǎn),徐殿國,武健,等.并網(wǎng)換流器系統(tǒng)諧振的分析、檢測(cè)與消除[J].中國電機(jī)工程學(xué)報(bào),2016,36(4):1061-1074,1190.LIU Huaiyuan,XU Dianguo,WU Jian,et al.Analysis,detection and mitigation of resonance in grid-connected converter systems[J].Proceedings of the CSEE,2016,36(4):1061-1074,1190.
[11] Buchhagen C,Rauscher C,Menze A,et al.BorWin1-First experiences with harmonic interactions in converter dominated grids[C].International Etg Congress,Die Energiewendeblueprints for the New Energy Age.VDE,2016.
[12] 謝小榮,劉華坤,賀靜波,等.直驅(qū)風(fēng)機(jī)風(fēng)電場(chǎng)與交流電網(wǎng)相互作用引發(fā)次同步振蕩的機(jī)理與特性分析[J].中國電機(jī)工程學(xué)報(bào),2016,36(09):2366-2372.XIE Xiaorong,LIU Huakun,HE Jingbo,et al.Mechanism and characteristics of subsynchronous oscillation caused by the interaction between full-converter wind turbines and AC systems[J].Proceedings of the CSEE,2016,36(09):2366-2372.
[13] Lukasz Hubert Kocewiak,Jesper Hjerrild,Claus Leth Bak.Wind turbine control impact on stability of wind farms based on real-life systems analysis[C].European Wind Energy Conference&Exhibition,2012.
[14] CHEN Shouchuan,JIANG Xinjian,CHAI Jianyun.Analysis of harmonic and circulating current for paralleling inverters in MW-level wind energy conversion system[C].11th International Conference on Electrical Machines and Systems,2008.
[15] 周林,張密.大型光伏電站諧振現(xiàn)象分析[J].電力自動(dòng)化設(shè)備,2014,34(06):8-14.ZHOU Lin,ZHANG Mi.Analysis of resonance phenomenon in large-scale photovoltaic power plant[J].Electric Power Automation Equipment,2014,34(06):8-14.
[16] Liserre M.,Teodorescu R.,Blaabjerg F..Stability of gridconnected PV inverters with large grid impedance variation[C].Power Electronics Specialists Conference,2004.PESC 04.2004 IEEE 35th Annual,2004.
[17] Marco Liserre,F(xiàn)rede Blaabjerg,Remus Teodorescu.Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values[J].IEEE Transactions on Power Electronics,2006,21(01):263-272.
[18] 陳智勇.離網(wǎng)及并網(wǎng)型分布式發(fā)電系統(tǒng)諧振分析與控制技術(shù)[D].長沙:湖南大學(xué),2016.CHEN Zhiyong.Resonance analysis and control technology for distribution generation system operating in islanded and gridconnected mode[D].Changsha:Hunan University,2016.
[19] 尤燕飛.主動(dòng)配電網(wǎng)諧振分析與抑制方法研究[D].哈爾濱:哈爾濱工業(yè)大學(xué),2016.YOU Yanfei.Analysis and suppression for resonance of active distributeion network[D].Harbin:Harbin Institute of Technology,2016.
[20] 趙映忠.大規(guī)模光伏接入條件下配電網(wǎng)諧振機(jī)理分析[D].蘭州:蘭州理工大學(xué),2018.ZHAO Yingzhong.Analysis of resonance mechanism of distribution network under largescale photovoltaic access[D].Lanzhou:Lanzhou University of Technology,2018.
[21] 李晨,孫海順,朱鑫要,等.降低次同步諧振風(fēng)險(xiǎn)的大型火電基地經(jīng)串補(bǔ)線路送出規(guī)劃和運(yùn)行方案[J].電網(wǎng)技術(shù),2014,38(01):3715-3721.LI Chen,SUN Haishun,ZHU Xinyao,et al.Planning and operation schemes for reducing SSR risk of outward power transmission of large-scale thermal generation bases via transmission line with series compensation[J].Power System Technology,2014,38(01):3715-3721.
[22] YUAN Xiaoming,HU Jiabing,ZHOU Pian,et al.Modeling of VSC connected to weak grid for stability analysis of DC-link voltage control[J].IEEE journal of emerging and selected topics in power electronics,2015,3(04):1193-1204.
[23] 宋瑞華,郭劍波,李柏青,等.基于輸入導(dǎo)納的直驅(qū)風(fēng)電次同步振蕩機(jī)理與特性分析[J].中國電機(jī)工程學(xué)報(bào),2017,37(16):4662-4670.SONG Ruihua,GUO Jianbo,LI Baiqing,et al.Mechanism and characteristics of subsynchronous oscillation in directdrive wind power generation system based on inputadmittance analysis[J].Proceedings of the CSEE,2017,37(16):4662-4670.
[24] 王忠軍,王林川,謝小榮,等.一種綜合頻率掃描和復(fù)轉(zhuǎn)矩系數(shù)的次同步諧振風(fēng)險(xiǎn)定量評(píng)估方法[J].電網(wǎng)技術(shù),2011,35(07):101-105.WANG Zhongjun,WANG Linchuan,XIE Xiaorong,et al.A method integrating frequency scanning and complex torque coefficient to quantitatively evaluate subsynchronous resonance risk[J].Power System Technology,2011,35(07):101-105.
[25] 鐘慶,馮俊杰,王鋼,等.含多電壓源型換流器配電網(wǎng)高頻諧振特性分析[J].電力系統(tǒng)自動(dòng)化,2017,41(05):99-105.ZHONG Qing,F(xiàn)ENG Junjie,WANG Gang,et al.Analysis on high frequency resonance characteristics of distribution network with multiple voltage source converters [J].Automation of Electric Power Systems,2017,41(05):99-105.
[26] 孫振奧,楊子龍,王一波,等.光伏并網(wǎng)逆變器集群的諧振原因及其抑制方法[J].中國電機(jī)工程學(xué)報(bào),2015,35(02):418-425.SUN Zhenao,YANG Zilong,WANG Yibo,et al.The cause analysis and suppression method of resonances in clustered grid-connected photovoltaic inverters[J].Proceedings of the CSEE,2015,35(02):418-425.
[27] 黃亞申,汪海寧,馬志保,等.并網(wǎng)逆變器系統(tǒng)的諧振抑制研究綜述[J].電源學(xué)報(bào),2018,16(04):143-156.HUANG Yashen,WANG Haining,MA Zhibao,et al.Review on researches of resonance suppression for grid-connected inverter system[J].Journal of power supply,2018,16(04):143-156.
[28] 張琛,蔡旭,李征.電壓源型并網(wǎng)變流器的機(jī)-網(wǎng)電氣振蕩機(jī)理及穩(wěn)定判據(jù)研究[J].中國電機(jī)工程學(xué)報(bào),2017,37(11):3174-3183,3372.ZHANG Chen,CAI Xu,LI Zheng.Stability criterion and mechanisms analysis of electrical oscillations in the gridtied VSC system[J].Proceedings of the CSEE,2017,37(11):3174-3183,3372.
[29] 曾正,邵偉華,宋春偉,等.電壓源逆變器典型控制方法的電路本質(zhì)分析[J].中國電機(jī)工程學(xué)報(bào),2016,36(18):4980-4989.ZENG Zheng,SHAO Weihua,SONG Chunwei,et al.Circuitbased analysis of typical control schemes of voltage-source inverter[J].Proceedings of the CSEE,2016,36(18):4980-4989.
[30] 中華人民共和國住房和城鄉(xiāng)建設(shè)部,中華人民共和國國家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局.電力工程電纜設(shè)計(jì)標(biāo)準(zhǔn):GB 50217-2018[S].北京:中國計(jì)劃出版社,2018.Ministry of Housing and Urban-Rural Development of the People's Republic of China,General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China.Standard for design of cables of electric power engineering:GB 50217-2018[S].Beijing:China Planning Press,2018.