• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of carrier gas effects on flow field, species concentration and deposition rate in the chemical vapor deposition of carbon

    2018-08-30 12:49:02YINTengJIANGBingyanSUZheanFANZheqiongHUANGQizhong
    新型炭材料 2018年4期

    YIN Teng, JIANG Bing-yan, SU Zhe-an, FAN Zhe-qiong, HUANG Qi-zhong

    (1. State Key Laboratory of High-Performance Complex Manufacturing, Central South University, Changsha400083, China;2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha400083, China)

    Abstract: A 2D numerical model was established for simulating the chemical vapor deposition (CVD) of carbon in a vertical reactor. A full multi-component diffusion model was proposed to describe the diffusion of the gas species. The effects of Ar, N2 or H2 carrier gases on the flow field, species concentration and deposition rate of pyrocarbon were investigated using C3H6 as the carbon source. Results show that H2 improves the stability of the gas flow. The concentration distributions of CH4, C2H2, C2H4 and C6H6 are uniform in H2. The pyrocarbon deposition rate is lowered, but the uniformity of deposition is improved when H2 is used as the carrier gas compared with N2 or Ar. The simulation results agree well with the experimental ones.

    Key words: Chemical vapor deposition; Diffusion; Simulation; Carrier gas

    1 Introduction

    Chemical vapor deposition (CVD) is an advanced technology which can be used to prepare pyrocarbon, nanofibers, carbon nanotubes and graphene[1-4]. CVD offers a lot of unique advantages such as versatility, reproducibility and cost effectiveness. CVD is a combined physical and chemical process that includes gas flow and chemical reactions. So the chemical and physical process should be considered at the same time to describe the CVD. However, the process is much difficult to study by trial and error methods because of the complexity of the interaction between the diffusion of the gaseous species and the deposition reactions of products. Numerical simulation is a promising tool for a deep understanding of the CVD. A number of woks on modeling CVD have been reported until now[5-7]. Hejun Li[8]used the parallel-consecutive model and the bimodal pore model to simulate the diffusion of reactants in the pores with different sizes. Pratyush[9]simulated the CVI in a vertical reactor. In his work, the Fick diffusion model was used to describe the diffusion. Zhang[10]used the Fick and Knudsen diffusion model to simulate the effects of methane partial pressure on the deposition rate of the reactants. Some published works have showed that the carrier gas plays an important role in the CVD. When H2was used as a carrier gas, the deposition reaction was inhibited by blocking most active sites to prevent an uncontrolled deposition of pyrocarbon[11].Li[12]simulated the H2inhibiting mechanism on the CVD. However, most of their works dealt with the chemical process and the chemical mechanism of the carrier gas. The effect of the carrier gas on the flow and diffusion of reactants was neglected by many researchers.

    In the present work, a multi-component diffusion model is proposed to simulate transport phenomena of gas species. The effects of the carrier gas on transport phenomena of the reactants and intermediate products are studied. The deposition rate and uniformity are also calculated and analyzed. The simulation results were validated by corresponding experiments. This work will provide useful insights into CVD mechanism for further computational research.

    2 Modelling

    2.1 Physical model

    Fig. 1 (a) shows the configuration of the CVD reactor. The CVD reactor is vertically mounted with an inlet at the bottom and an outlet at the top. The reactor consists of a cylindrical section (L1= 280 mm,D1=60 mm) which is covered by a piece of graphite paper on the inner side of the wall, and a conic

    Fig. 1 Schematic drawing of the vertical CVD reactor:(a)physical dimensions and (b) 2D axisymmetric model.

    section (L2=30 mm,D2=10 mm) which is at the bottom of the cylindrical section. Only half of the fluid zone is simulated due to its axial symmetry. In this study, propylene as the precursor, and hydrogen, nitrogen or argon as carrier gas are pumped into the CVD reactor. The deposition of pyrocarbon occurs on the surface of the graphite paper.

    2.2 Assumptions and governing equations

    The incompressible ideal gas law is used to describe the densities of gases. The laminar flow is assumed in this work. Heat generation by chemical reactions is neglected. All the reactions are regarded as irreversible first-order reactions. According to the assumptions mentioned above, mass conservation, momentum conservation, energy conservation, and species conservation equations are used[13].

    The formulation of mass conservation is given as:

    ▽·(ρu)=0

    (1)

    whereρis the density anduis the velocity of the fluid.

    The momentum equation is solved using the Navier-Stokes equation:

    ▽·ρuu+▽P+▽·τ=0

    (2)

    wherePis the pressure andτrepresents the shear stress.

    The energy conservation equation is applied for the fluid domain:

    CP▽·(ρuT)-▽·(λ▽T)=0

    (3)

    whereCPis the specific heat capacity of the gas mixture (J/kg/K);Tis the temperature (K),λis heat conductivity (W/mK).

    The species transport equation incorporating the chemical reactions is used as follows:

    (4)

    (5)

    D=[Dij]

    (6)

    whereNis the number of chemical species andYjis the mass fraction of speciesj. Because the mass fraction of the propylene is too large to be considered as dilute, the full multi-component diffusion model is used to solve the diffusion problem. In order to describe the multi-component diffusion, the [Dij] use a (N-1)×(N-1)matrix of the coefficients,Dijwhich can be defined by the equation[11]:

    (7)

    whereMiandMjare the molecular weight of speciesiandj, respectively (g/mol),Pabsis the absolute pressure (Pa),Ωis the diffusion collision integral andσijis the collision diameter.

    2.3 Kinetic mechanism

    The CVD reaction include homogeneous gas-phase reactions and heterogeneous reactions. The homogeneous reaction model, which consists of 19 species in 27 reactions, was used in this study[8]. The heterogeneous reactions model employ the deposition mechanism from Becker′s[1]research. Methane, acetylene, ethylene and benzene are the main deposition source in heterogeneous reactions. The temperature dependence of reaction rate is described by the well-known Arrhenius equation[14]:

    (8)

    wherekis the specific reaction rate,Tis the absolute temperature,Ris the ideal gas constant,Ais the pre-exponential factor andEis the activation energy. The pre-exponential factor and the activation energy used in this work is listed in Table 1[1].

    Table 1 Original surface reaction kinetic data of various species.

    2.4 Simulation conditions and the numerical method

    The following boundary conditions are imposed. The inner and outer walls of the reactor are adiabatic. The no-slip condition is imposed at the walls. The surface reactions are carried out on the vertical wall where the temperature isTw=1 173 K.

    In this simulation, The carrier gas is hydrogen, nitrogen or argon. The gas mixture, with a volume ratio of C3H6to carrier gas of 1∶10, enters the reactor with a velocityUin=0.1 m/s.

    Fluent uses the finite volume methods to discretize the governing equations (Eq.1, Eq.2,Eq.3,Eq.4,Eq.8) that are then solved with a segregated solver. SIMPLE algorithm is used to and the first order upwind scheme is applied for the governing equations. A convergence criterion of 1×10-6is used to the residuals of continuity, momentum, energy and species balance equations. The computational mesh number in this work is 18 780, which are created by Gambit with quadrilateral elements.

    3 Results and discussion

    3.1 Validation of simulation model

    An experiment is carried out to validate the simulation model. The size of the experiment reactor is the same as the simulation model. The wall is heated at

    Fig. 2 The simulation and experiment results of the temperature in the reactor: (a) temperature contour of the reactor, (b) the simulation and experiment results for the temperature at X=20 mm and (c) the simulation and experiment results for the temperature at Y=140 mm.

    1 170 K. The temperature distribution inside the reactor is measured by thermocouples at different parts in the reactor. Fig.2(a) shows the simulated contour of the temperature in the reactor. The temperature near the wall is higher than that in the center part of the reactor. Because the wall is used for heating element. The gas near the wall is heated by the heating element. So the temperature of the gas near the wall is high. The gas in the center part is heated through heat convection transfer. The gas at room temperature flows continuously through the reactor from the inlet to outlet. So the reactor is continuously cooled down in the center part. As a result, the temperature in the center part is lower than that near the wall. The dash lines in Fig.2(a) (X=20 mm and Y=140 mm) represents the positions used for extraction of the calculated and measured temperatures. Fig.2(b) shows the simulation and experiment results for the line of X=20 mm.The temperatures increase and then decrease from bottom to top for both simulation and experiment results. The maximum and minimum temperatures appears at the similar position. The average temperature is around 1 140 K for the calculated and measured results. The maximum difference of the temperature between the simulation and the experiment is less than 10 K. Fig.2(c) shows the simulation and experiment results for the line of Y=140 mm. The temperature increase from center to the wall in both results. The maximum difference of

    the temperature between the simulation and the experiment is less than 12 K.Therefore, it is reasonable to conclude that the simulation model is reliable.

    3.2 Effect of carrier gas on the gas flow field

    Fig.3 shows the flow field contours in the CVD reactor with the velocity colored in proportion to their magnitude (m/s) for clear visualization. As the figure shows, the velocity is maximum at the inlet and decreases as the gas approaches to the wall in all cases. Fig.3(a) shows that the flow field is steady when H2is used. As observed from the Fig.3(b) and (c), there is a circular region existing between the inlet and the wall. No such region is observed for the H2case. The velocity value of the flow is negative (visible in blue: -0.04~0 m/s). It means that the direction of the velocity is changed. As a result, the stability of the flow field is decreased when N2or Ar is used.

    Fig. 3 Gas flow field in the reactor when the carrier gas is (a) H2, (b) N2 and (c) Ar.

    Fig. 4 Velocity vector contour when the carrier gas is (a) H2, (b) N2 and (c) Ar.

    In order to investigate the circulation part of the flow, a 30×30 mm2region is extracted and the velocity vectors are shown in Fig.4. Fig.4(a) shows the velocity-vectors in the H2case. Most of the flow is a steady flow. In a small region (x=20-30 mm,y=0-15 mm) near the inlet, the direction of the flow is changed and some turbulence emerges. Fig.4(b) and Fig.4(c) shows the velocity-vectors in the N2and Ar cases, respectively. The velocity vectors are similar in both cases. The vector contours show two part of gas flow with different directions. The turbulence region in the N2and Ar cases is much bigger than that in the H2case. Compared with the three cases, it can be concluded that the stability of the flow field can be improved by using H2as a carrier gas.

    The stability of the flow can be described by the Reynolds number[15]. Equation 9 shows the Reynolds number:

    (9)

    whereρis the density of the gas (kg/m3),vis the velocity (m/s),Dis the reactor diameter (m),ηis the dynamic viscosity(Pa·s) andγis the kinematic viscosity (mm2/s). With the value ofReincrease, the turbulence of the fluid increases and the stability of the fluid field decreases.

    Table 2 shows the kinematic viscosity of H2, N2and Ar[16, 17]. The kinematic viscosity of the gas mixture increases in the order of Ar, N2, H2. As the kinematic viscosity of the gas mixture increases, theReof the fluid decrease. As a result, the stability of the flow field can be enhanced.

    Table 2 The kinematic viscosity of the carrier gases.

    3.3 Effect of carrier gas on concentration distributions of species

    Since CH4, C2H2,C2H4and C6H6are the main byproducts and deposition sources, it is important to examine changes of concentration distributions of these species along the wall substrate. Fig.5 shows the molar concentrations of major chemical components found at the substrate along the wall in H2, N2

    and Ar. The molar concentrations of CH4(a), C2H2(b), C2H4(c) and C6H6(d) are plotted as a function of the axial distance from the inlet.

    The molar concentrations of CH4, C2H2, C2H4and C6H6in the H2case are much lower than those in the cases of N2and Ar. The molar concentrations of the byproducts in the Ar case is highest among the three cases. In order to investigate the uniformity of the species, the concentration variance (S2) is used, which is defined as:

    (10)

    ByproductsConcentration variance (mol/m3)2H2N2ArCH41.810.011.1C2H21.06.37.5C2H41.47.79.2C6H61.620.723.9

    3.4 Effect of the carrier gas on deposition process

    Fig.6 shows the simulation results of deposited pyrocarbon distribution in the H2, N2or Ar cases.From the picture, the average deposition rate of the pyrocarbon in H2is much lower than in N2or Ar. Along the height of the wall, the deposition rate increases along the axial distance from the inlet below the height of 200 mm. After then, the deposition rate decreases along the wall because of the consumption of the carbon source and byproducts. However, the deposition rate in H2is much uniform than in Ar or N2.

    Fig. 6 The deposition rate along the substrate wall with different carrier gases.

    4 Deposition experiment

    4.1 Experimental details

    According to the simulation results, deposition experiments are carried out under the similar conditions to the simulation experiments. A vertical reactor is mounted with the gas inlet in the bottom and the outlet on the top. Graphite paper is employed as the substrate in the deposition experiments. C3H6is used as the carbon source, and H2, N2or Ar is used the carrier gas. The detailed experiment parameters are listed in Table 4.

    Table 4 The CVD experimental conditions.

    4.2 Experimental results

    In the experiment, the deposition rates can be measured by the thickness of the pyrocarbon on the graphite paper. Fig.7 shows the deposition rate at different heights of the substrate. According to Fig.7, the deposition rate in the carrier gas of H2is much lower than that in the N2and Ar cases. When N2or Ar is used as the carrier gas, the deposition rate increases along the height of the substrate below the height of 180 mm or decreases along the substrate above the height of 180 mm, respectively. The deposition rate is relatively more uniform when H2is used as the carrier gas, which agrees well with the simulation results.

    Fig. 7 Deposition rate with different carrier gases as a function of substrate height.

    Fig.8 presents surface morphology of the deposition carbon in different carrier gases. The deposition carbon presents a spherical cap morphology. The average diameters of the cap are 50, 80 and 80 μm when H2, N2and Ar are used as the carbon sources, respectively. Apparently, the diameters of the cap in N2(Fig.8 (b)) and Ar case (Fig.8 (c)) are much larger than that in H2(Fig.8 (a)), which implies that the reaction is much fast when N2or Ar is used as the carrier gas. However, Fig.8(a) shows a smooth and uniform morphology, which implies that H2helps to improve the uniformity of the pyrocarbon deposition.

    Fig. 8 SEM surface images of pyrocarbon prepared with different carrier gases: (a) H2, (b) N2 and (c) Ar.

    5 Conclusions

    This paper has employed a full multi-component diffusion model to simulate the CVD. The effects of H2, N2and Aron as the carrier on gas flow, species concentration and deposition rate have been investigated. As shown in the results,H2can improve the stability of the flow field. The reactant component distribution is much more uniform in H2than that in N2or Ar. Although the deposition rate is lower in H2compared with in N2or Ar, the deposition uniformity is much improved when H2is used. Under the existing operating conditions, the simulation results of this study have good agreement with the experimental ones.

    在线观看66精品国产| 51午夜福利影视在线观看| 中文亚洲av片在线观看爽| 妹子高潮喷水视频| 美女大奶头视频| 亚洲精品一卡2卡三卡4卡5卡| 成年版毛片免费区| 午夜视频精品福利| 日韩精品免费视频一区二区三区| 宅男免费午夜| 国产一区二区三区在线臀色熟女| 99riav亚洲国产免费| 久久久国产成人免费| 国产视频内射| 国产精品一区二区免费欧美| 无限看片的www在线观看| 亚洲成人免费电影在线观看| 在线视频色国产色| 日韩三级视频一区二区三区| 夜夜爽天天搞| 久9热在线精品视频| 十分钟在线观看高清视频www| 丰满人妻熟妇乱又伦精品不卡| 日日摸夜夜添夜夜添小说| 中文字幕精品免费在线观看视频| 少妇粗大呻吟视频| 国产又色又爽无遮挡免费看| 亚洲中文av在线| 久久人妻福利社区极品人妻图片| 久久九九热精品免费| 热99re8久久精品国产| 精品久久蜜臀av无| 一级毛片女人18水好多| 国产激情偷乱视频一区二区| 精品卡一卡二卡四卡免费| 麻豆成人av在线观看| 亚洲一区中文字幕在线| 午夜视频精品福利| 他把我摸到了高潮在线观看| 嫩草影院精品99| 国产精品久久视频播放| 亚洲欧美激情综合另类| 免费在线观看日本一区| 日本成人三级电影网站| 岛国视频午夜一区免费看| 天天添夜夜摸| 在线观看免费午夜福利视频| 亚洲欧洲精品一区二区精品久久久| 久久 成人 亚洲| 美女国产高潮福利片在线看| 婷婷精品国产亚洲av在线| 两个人免费观看高清视频| 国产三级黄色录像| 日韩大码丰满熟妇| 特大巨黑吊av在线直播 | 日韩欧美国产一区二区入口| www.自偷自拍.com| 久久天堂一区二区三区四区| 亚洲九九香蕉| 中文字幕精品亚洲无线码一区 | 欧美 亚洲 国产 日韩一| 麻豆成人av在线观看| 国产三级在线视频| 亚洲熟妇中文字幕五十中出| 国产精品久久视频播放| 老司机午夜十八禁免费视频| 日韩有码中文字幕| 无人区码免费观看不卡| 亚洲aⅴ乱码一区二区在线播放 | 久久精品国产亚洲av香蕉五月| 色在线成人网| 国产真人三级小视频在线观看| 男女午夜视频在线观看| 成人av一区二区三区在线看| 999久久久精品免费观看国产| 777久久人妻少妇嫩草av网站| 无限看片的www在线观看| 欧美激情久久久久久爽电影| www日本在线高清视频| 中文资源天堂在线| 亚洲精品av麻豆狂野| 夜夜躁狠狠躁天天躁| 久久久久久久久免费视频了| 午夜久久久久精精品| 国产又黄又爽又无遮挡在线| 亚洲avbb在线观看| 婷婷丁香在线五月| 老司机午夜福利在线观看视频| 欧美另类亚洲清纯唯美| 国产免费男女视频| 亚洲av成人不卡在线观看播放网| 变态另类丝袜制服| 制服丝袜大香蕉在线| 香蕉国产在线看| 欧美成人免费av一区二区三区| 欧美一级毛片孕妇| 成人欧美大片| 精品国产超薄肉色丝袜足j| 国产精品香港三级国产av潘金莲| 听说在线观看完整版免费高清| 午夜福利视频1000在线观看| 国产高清videossex| 中文字幕av电影在线播放| 久久久久精品国产欧美久久久| 欧美午夜高清在线| 精品免费久久久久久久清纯| 欧美黑人欧美精品刺激| 天堂动漫精品| 一区福利在线观看| 中文字幕人成人乱码亚洲影| 午夜a级毛片| 国产蜜桃级精品一区二区三区| 一区二区日韩欧美中文字幕| 国内揄拍国产精品人妻在线 | 免费一级毛片在线播放高清视频| 亚洲精品av麻豆狂野| 看片在线看免费视频| 国产免费男女视频| 无遮挡黄片免费观看| 黄色视频不卡| 久9热在线精品视频| 亚洲天堂国产精品一区在线| 亚洲熟女毛片儿| 一区福利在线观看| 色精品久久人妻99蜜桃| 中出人妻视频一区二区| 熟妇人妻久久中文字幕3abv| 日本五十路高清| 中文字幕人妻丝袜一区二区| 欧美人与性动交α欧美精品济南到| 色尼玛亚洲综合影院| 不卡av一区二区三区| www.自偷自拍.com| 亚洲精品美女久久av网站| 嫁个100分男人电影在线观看| 欧美中文日本在线观看视频| 男男h啪啪无遮挡| 在线十欧美十亚洲十日本专区| 日本五十路高清| 亚洲中文av在线| 亚洲色图 男人天堂 中文字幕| 色尼玛亚洲综合影院| 亚洲国产精品合色在线| 久久精品aⅴ一区二区三区四区| 国产精品av久久久久免费| 无人区码免费观看不卡| 91九色精品人成在线观看| 男人舔女人的私密视频| videosex国产| 久久久精品国产亚洲av高清涩受| 成人欧美大片| 亚洲精品在线观看二区| 免费观看人在逋| 无人区码免费观看不卡| 亚洲av片天天在线观看| 天天躁夜夜躁狠狠躁躁| or卡值多少钱| 亚洲色图 男人天堂 中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 搞女人的毛片| 亚洲真实伦在线观看| 亚洲av成人av| 十八禁人妻一区二区| 中文字幕人妻熟女乱码| 国产成人啪精品午夜网站| 美国免费a级毛片| 亚洲男人的天堂狠狠| 91九色精品人成在线观看| 日韩欧美国产一区二区入口| 亚洲精品美女久久久久99蜜臀| 精品久久久久久久末码| 精品日产1卡2卡| netflix在线观看网站| 妹子高潮喷水视频| 一a级毛片在线观看| 欧美激情 高清一区二区三区| 亚洲av熟女| 中出人妻视频一区二区| 亚洲一区中文字幕在线| 国产又色又爽无遮挡免费看| 两个人视频免费观看高清| 97超级碰碰碰精品色视频在线观看| 国产99久久九九免费精品| 日韩高清综合在线| 亚洲欧美日韩高清在线视频| av中文乱码字幕在线| 99国产综合亚洲精品| 午夜成年电影在线免费观看| 精品福利观看| 欧美在线黄色| 狠狠狠狠99中文字幕| www国产在线视频色| 国产亚洲精品一区二区www| 欧美又色又爽又黄视频| 亚洲无线在线观看| 女警被强在线播放| 亚洲精品av麻豆狂野| 精品电影一区二区在线| 黑丝袜美女国产一区| 久久久精品国产亚洲av高清涩受| 日本熟妇午夜| 91麻豆精品激情在线观看国产| 午夜福利在线观看吧| √禁漫天堂资源中文www| 国产精品国产高清国产av| 一级a爱片免费观看的视频| 亚洲第一青青草原| 欧美成狂野欧美在线观看| xxx96com| 91字幕亚洲| 久久久久久国产a免费观看| 欧美日韩一级在线毛片| 亚洲国产日韩欧美精品在线观看 | 国产熟女xx| 人人妻,人人澡人人爽秒播| 91成年电影在线观看| 午夜老司机福利片| 一区二区三区国产精品乱码| 无遮挡黄片免费观看| 久久精品国产亚洲av高清一级| 色av中文字幕| 亚洲成人免费电影在线观看| 欧美日韩中文字幕国产精品一区二区三区| 国产区一区二久久| 一边摸一边抽搐一进一小说| 在线观看舔阴道视频| 亚洲真实伦在线观看| 日本免费a在线| 精品午夜福利视频在线观看一区| 亚洲人成网站在线播放欧美日韩| 国产一区二区在线av高清观看| 在线观看免费午夜福利视频| 国产伦一二天堂av在线观看| 精品国产一区二区三区四区第35| 大香蕉久久成人网| 久久 成人 亚洲| 欧美又色又爽又黄视频| 黄频高清免费视频| 色播在线永久视频| 99在线人妻在线中文字幕| 亚洲精品国产一区二区精华液| 久久久久久人人人人人| 久久久久国内视频| 白带黄色成豆腐渣| 久久中文字幕人妻熟女| 国产激情欧美一区二区| 国产私拍福利视频在线观看| 特大巨黑吊av在线直播 | 97超级碰碰碰精品色视频在线观看| 午夜两性在线视频| 亚洲国产欧美一区二区综合| 成人永久免费在线观看视频| 琪琪午夜伦伦电影理论片6080| 欧美国产日韩亚洲一区| 波多野结衣av一区二区av| 成人手机av| 免费在线观看视频国产中文字幕亚洲| 长腿黑丝高跟| 女警被强在线播放| 搞女人的毛片| 日韩欧美一区二区三区在线观看| 成年人黄色毛片网站| 精品久久久久久久人妻蜜臀av| 久久久久亚洲av毛片大全| 日韩欧美免费精品| 亚洲第一电影网av| 久久精品人妻少妇| 欧美性猛交╳xxx乱大交人| 女人被狂操c到高潮| 久久久久国产精品人妻aⅴ院| 丝袜在线中文字幕| 亚洲av电影在线进入| 日韩一卡2卡3卡4卡2021年| 亚洲国产日韩欧美精品在线观看 | ponron亚洲| 成人免费观看视频高清| 免费看日本二区| 免费无遮挡裸体视频| 免费在线观看完整版高清| 欧美人与性动交α欧美精品济南到| 精品卡一卡二卡四卡免费| 精华霜和精华液先用哪个| 亚洲国产欧美一区二区综合| 日日夜夜操网爽| 村上凉子中文字幕在线| 一本久久中文字幕| 午夜日韩欧美国产| 日本 av在线| 一本久久中文字幕| 久久久久免费精品人妻一区二区 | 黄频高清免费视频| 国产又黄又爽又无遮挡在线| 亚洲美女黄片视频| 国产色视频综合| 精品卡一卡二卡四卡免费| 国产又色又爽无遮挡免费看| 在线观看日韩欧美| 老熟妇乱子伦视频在线观看| 长腿黑丝高跟| 欧美日韩亚洲国产一区二区在线观看| 亚洲午夜精品一区,二区,三区| 美女午夜性视频免费| 国产精品 国内视频| 欧美久久黑人一区二区| 麻豆成人av在线观看| 国产黄a三级三级三级人| 在线看三级毛片| 欧美激情久久久久久爽电影| av有码第一页| 亚洲avbb在线观看| 大型黄色视频在线免费观看| 欧美zozozo另类| 最近最新中文字幕大全电影3 | 婷婷精品国产亚洲av在线| 午夜免费观看网址| 欧美日韩福利视频一区二区| 国产精品乱码一区二三区的特点| 亚洲久久久国产精品| 亚洲成a人片在线一区二区| 亚洲av片天天在线观看| 久久精品91蜜桃| 国产精品亚洲美女久久久| 久久久久精品国产欧美久久久| 国产成人av激情在线播放| 在线观看舔阴道视频| 国产亚洲av高清不卡| 精品卡一卡二卡四卡免费| 欧美不卡视频在线免费观看 | 午夜精品久久久久久毛片777| 久久久久精品国产欧美久久久| 国产精品亚洲美女久久久| 精品电影一区二区在线| 中文字幕人妻丝袜一区二区| 在线观看免费日韩欧美大片| 99国产精品99久久久久| 午夜福利欧美成人| 久9热在线精品视频| 国产精品国产高清国产av| 亚洲精品美女久久av网站| 可以免费在线观看a视频的电影网站| 亚洲成人免费电影在线观看| 视频区欧美日本亚洲| 午夜成年电影在线免费观看| 亚洲真实伦在线观看| 在线观看午夜福利视频| 亚洲自偷自拍图片 自拍| 国产精品久久久久久精品电影 | 人人妻人人澡人人看| 老熟妇乱子伦视频在线观看| 久久亚洲真实| 欧美精品亚洲一区二区| 日本 欧美在线| 手机成人av网站| 男女之事视频高清在线观看| 欧美性长视频在线观看| 色播亚洲综合网| 欧美不卡视频在线免费观看 | svipshipincom国产片| 久久精品夜夜夜夜夜久久蜜豆 | 啦啦啦观看免费观看视频高清| 美女高潮喷水抽搐中文字幕| 夜夜躁狠狠躁天天躁| 亚洲熟妇中文字幕五十中出| 黄色毛片三级朝国网站| 嫩草影院精品99| 9191精品国产免费久久| 国产亚洲精品久久久久5区| 欧美乱色亚洲激情| 久久中文字幕一级| 欧美 亚洲 国产 日韩一| 一夜夜www| 不卡av一区二区三区| 性色av乱码一区二区三区2| 美国免费a级毛片| 制服丝袜大香蕉在线| 老司机深夜福利视频在线观看| 搡老妇女老女人老熟妇| 午夜激情av网站| 人成视频在线观看免费观看| 国产精品亚洲一级av第二区| 又大又爽又粗| 动漫黄色视频在线观看| 麻豆国产av国片精品| 久久久久久人人人人人| 免费在线观看亚洲国产| 丁香欧美五月| 亚洲精品国产一区二区精华液| 亚洲精品久久成人aⅴ小说| 久久伊人香网站| 男女做爰动态图高潮gif福利片| 日本在线视频免费播放| 久久中文看片网| 黄色a级毛片大全视频| 男女床上黄色一级片免费看| 国产精品电影一区二区三区| 久久久国产精品麻豆| 亚洲午夜理论影院| 亚洲性夜色夜夜综合| 韩国av一区二区三区四区| 欧美激情高清一区二区三区| 欧美日韩瑟瑟在线播放| 国产精品久久久久久人妻精品电影| 婷婷亚洲欧美| 久久久久九九精品影院| 久久婷婷成人综合色麻豆| 99在线视频只有这里精品首页| 精品电影一区二区在线| 亚洲一区高清亚洲精品| 久久精品aⅴ一区二区三区四区| 亚洲第一电影网av| 波多野结衣高清作品| 黄色毛片三级朝国网站| 精品国产乱码久久久久久男人| 国产免费男女视频| 亚洲精华国产精华精| 午夜两性在线视频| 真人一进一出gif抽搐免费| 999久久久国产精品视频| 国内精品久久久久久久电影| 中文字幕人成人乱码亚洲影| 久久午夜综合久久蜜桃| 亚洲久久久国产精品| 国产精品野战在线观看| 成在线人永久免费视频| 白带黄色成豆腐渣| 欧美乱妇无乱码| 日韩欧美 国产精品| 亚洲人成伊人成综合网2020| 亚洲国产精品sss在线观看| 精品久久久久久成人av| 欧美激情 高清一区二区三区| 免费在线观看日本一区| 叶爱在线成人免费视频播放| 精品福利观看| 最近在线观看免费完整版| 日本免费一区二区三区高清不卡| xxxwww97欧美| 久热这里只有精品99| 国产在线精品亚洲第一网站| 亚洲av电影在线进入| 天天一区二区日本电影三级| 中国美女看黄片| 色哟哟哟哟哟哟| 黑人欧美特级aaaaaa片| 免费在线观看完整版高清| 亚洲精品av麻豆狂野| 欧美性猛交╳xxx乱大交人| 色婷婷久久久亚洲欧美| 一区二区三区精品91| 精品电影一区二区在线| 可以免费在线观看a视频的电影网站| 国内揄拍国产精品人妻在线 | 亚洲片人在线观看| 人人澡人人妻人| 亚洲av日韩精品久久久久久密| 国产熟女xx| 国产精品久久久久久人妻精品电影| 亚洲三区欧美一区| 中文字幕精品亚洲无线码一区 | 国内精品久久久久久久电影| 巨乳人妻的诱惑在线观看| 级片在线观看| videosex国产| 曰老女人黄片| 欧美乱妇无乱码| 午夜福利在线在线| 亚洲国产中文字幕在线视频| 亚洲男人天堂网一区| 日日爽夜夜爽网站| 免费观看人在逋| 又紧又爽又黄一区二区| 18禁黄网站禁片午夜丰满| 午夜福利18| 日韩欧美在线二视频| 亚洲熟妇中文字幕五十中出| 国产成+人综合+亚洲专区| 色播亚洲综合网| 亚洲精品中文字幕在线视频| aaaaa片日本免费| 中文字幕人成人乱码亚洲影| 我的亚洲天堂| 中文字幕另类日韩欧美亚洲嫩草| 手机成人av网站| 午夜精品在线福利| 无遮挡黄片免费观看| 精品久久久久久久久久久久久 | 国产aⅴ精品一区二区三区波| 国产亚洲欧美在线一区二区| 美女国产高潮福利片在线看| 久9热在线精品视频| 波多野结衣av一区二区av| 正在播放国产对白刺激| 亚洲精品国产精品久久久不卡| netflix在线观看网站| 免费搜索国产男女视频| 久久久久久九九精品二区国产 | 白带黄色成豆腐渣| 别揉我奶头~嗯~啊~动态视频| 亚洲欧美日韩无卡精品| 国产在线精品亚洲第一网站| 免费看美女性在线毛片视频| 亚洲中文字幕日韩| 夜夜夜夜夜久久久久| av中文乱码字幕在线| 国产精品永久免费网站| 国产精品九九99| 又黄又爽又免费观看的视频| 久久久国产成人免费| 欧美av亚洲av综合av国产av| 久久久久久人人人人人| 色综合欧美亚洲国产小说| 色在线成人网| 两个人看的免费小视频| 香蕉丝袜av| 亚洲最大成人中文| 欧美色视频一区免费| 国产野战对白在线观看| 国产人伦9x9x在线观看| 午夜福利免费观看在线| 亚洲色图av天堂| 久9热在线精品视频| 精华霜和精华液先用哪个| 我的亚洲天堂| 久久精品国产亚洲av高清一级| 国产午夜福利久久久久久| 欧美黄色淫秽网站| 深夜精品福利| 欧美性长视频在线观看| 1024手机看黄色片| 国产精品久久久av美女十八| 亚洲欧美日韩高清在线视频| 国产高清有码在线观看视频 | 久久久国产欧美日韩av| 精品久久久久久久久久免费视频| 性色av乱码一区二区三区2| 国产一级毛片七仙女欲春2 | 免费电影在线观看免费观看| 精品卡一卡二卡四卡免费| 18美女黄网站色大片免费观看| 国产精品久久久久久亚洲av鲁大| 亚洲欧洲精品一区二区精品久久久| 国产一区二区三区在线臀色熟女| 一边摸一边做爽爽视频免费| 亚洲免费av在线视频| 久久精品国产清高在天天线| 国产伦在线观看视频一区| 久久性视频一级片| 美女免费视频网站| 国产激情欧美一区二区| 国产精品 国内视频| 久久欧美精品欧美久久欧美| 中文在线观看免费www的网站 | 十分钟在线观看高清视频www| 国产主播在线观看一区二区| 久久国产精品人妻蜜桃| 国产午夜精品久久久久久| 制服人妻中文乱码| 一级毛片高清免费大全| 国产91精品成人一区二区三区| 亚洲人成网站高清观看| 变态另类丝袜制服| 国产1区2区3区精品| 亚洲人成77777在线视频| 91九色精品人成在线观看| 精品免费久久久久久久清纯| 国产乱人伦免费视频| 色精品久久人妻99蜜桃| 欧美三级亚洲精品| 久9热在线精品视频| 此物有八面人人有两片| 国产视频内射| www日本黄色视频网| 夜夜夜夜夜久久久久| 在线视频色国产色| 亚洲一区高清亚洲精品| 国产真人三级小视频在线观看| 国产片内射在线| 久久亚洲精品不卡| 国内久久婷婷六月综合欲色啪| 在线免费观看的www视频| 中文字幕久久专区| 精品免费久久久久久久清纯| 午夜两性在线视频| 中文字幕精品亚洲无线码一区 | 91av网站免费观看| 精品不卡国产一区二区三区| 青草久久国产| 伊人久久大香线蕉亚洲五| 国产亚洲欧美98| 国产精品久久久久久精品电影 | 免费高清在线观看日韩| 色婷婷久久久亚洲欧美| 国产精品久久久久久人妻精品电影| 在线观看www视频免费| 国产成人av教育| 中文字幕人成人乱码亚洲影| 欧美一级a爱片免费观看看 | АⅤ资源中文在线天堂| av电影中文网址| 色播亚洲综合网| 国产亚洲精品久久久久久毛片| 真人一进一出gif抽搐免费| 91字幕亚洲| 国产熟女午夜一区二区三区| 午夜福利18| 可以在线观看的亚洲视频| 精品一区二区三区视频在线观看免费| 欧美人与性动交α欧美精品济南到| 亚洲av成人不卡在线观看播放网| 国产极品粉嫩免费观看在线| 欧美+亚洲+日韩+国产| 国产成人一区二区三区免费视频网站| 自线自在国产av| 国产精品美女特级片免费视频播放器 | 色综合亚洲欧美另类图片|