• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Microstructure and thermophysical properties of graphite foam/Sn-Bi alloy composites for use as a thermal sink for electronics

    2018-08-30 12:50:32LIANPengfeiSONGJinliangLEIShiwenTAOZechaoZHAOHongchaoZHANGJunpengLIUZhanjun
    新型炭材料 2018年4期

    LIAN Peng-fei, SONG Jin-liang, LEI Shi-wen, TAO Ze-chao, ZHAO Hong-chao, ZHANG Jun-peng, LIU Zhan-jun

    (1. Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan030001, China; 2. Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai201800, China)

    Abstract: Two mesophase pitch-based graphite foams with densities of 0.62±0.01 (GF1) and 0.84±0.01 g/cm3 (GF2) were prepared by foaming the pitch in an autoclave at 723 K, 6.0 MPa and 763 K, 13.4 MPa, respectively, followed by carbonization at 1273 K for 2 h and graphitization at 2973 K for 0.5 h. The GFs were infiltrated by a Sn-Bi liquid to prepare GF/Sn-Bi alloy composites for use as thermal sinks for electronics. The microstructures and thermophysical properties of the composites were investigated. Results indicated that GF1 had a larger cells and thinner cell walls than GF2. The Sn-Bi liquid was well infiltrated into cells of the GFs, resulting in composites with densities of 5.60±0.01 and 3.83±0.01 g/cm3 for GF1 and GF2, respectively. The thermal diffusivity and coefficient of thermal expansion (CTE) of the GF1/Sn-Bi composite were 51.6±2 mm2/s and 16.6±0.02 ppm/K, respectively. The corresponding values for the GF2/Sn-Bi were 163.1±3 mm2/s and 8.08±0.02 ppm/K. The GF2/Sn-Bi composite had a high thermal diffusivity and a low CTE value matching that of semiconductor chips and packaging materials.

    Key words: Mesophase pitch-based graphite foam; Sn-Bi alloy; High thermal conductivity; Low coefficient of thermal expansion

    1 Introduction

    Thermal management and thermal stresses are critical issues in many electronic devices, including microprocessors, power semiconductors, high-power radio frequency devices, light-emitting diodes[1-3]. Although thermal management is a complex issue, it is clear that packaging materials with a high thermal diffusivity and tailorable coefficient of thermal expansion (CTE) ranging 3-10 ppm/K are needed to ensure the reliability and performance of semiconductor chips[1-4]. However, with the increase of power density, the properties of the conventional electronic packaging materials cannot well satisfy the demands of electronic devices[1,4]. Mesophase pitch (MP)-derived graphite foams are composed of inherent interconnected networks of ligaments or struts, which make them suitable candidates as the matrix of high-thermal-conductivity composites[5-7]. Furthermore, the foams exhibit an isotropic feature, leading to the formation of isotropic graphite foam composites that are different from the anisotropic type continuous carbon fiber composites[8]. Klett et al.[5]suggested that the ligaments and cell walls of the foams exhibit thermal conductivites greater than 1 500 W/(m·K) based on the analysis of X-ray diffraction. This suggests that the thermal conductivity of graphite foam composites may be much higher if the foam framework is not damaged or the foam possesses a higher density[6]. Therefore, some composites involving graphite foams have been developed for thermal management. Klett et al.[6]investigated the thermal properties of graphite foams (0.54 g/cm3) infiltrated with several polymers. The thermal conductivity of the graphite foam/polycyanate composites reaches 129 W/(m·K) at room temperature. McCoy and Vrable[8]reported that graphite foam/copper composites exhibited a low CTE of 7.43 ppm/K and a high thermal conductivity of 342 W/mK. A pressureless infiltration method has been used to prepare graphite foam/copper composites which is realized by the synthesis of Mo2C coating on the graphite foam walls. Thermal conductivity of the obtained graphite foam/copper composites reaches 268.4 W/(m·K) and the average CTE is decreased to 8.91 from 18.59 ppm/K of copper. However, the high infiltration temperature and cost limit the wide application of the composites as electronic package materials[9].

    Sn/Bi alloy is an important welding and electronic packaging material. The alloy matrix is attractive due to its tailorable thermal conductivity and CTE, compared with most of the pure metals and polymers[2,10]. Thus, the thermophysical properties of the composites can be retained during manufacturing and thermal cycling. Furthermore, the infiltration temperature of alloy into graphite foams can be controlled by changing its composition[10]. Unfortunately, to the best of our knowledge, the fabrication technique of graphite foam/alloy composites and their thermophysical properties have not been focused.

    In the present work, two graphite foam/Sn-Bi alloy composites have been developed at the infiltration pressure of 2 MPa. Two important performance parameters of electronic packaging materials, namely thermal diffusivity (thermal conductivity) and CTE, have been characterized. The effects of the structure and thermophysical properties of graphite foams on the thermal behavior of the composites have been discussed.

    2 Experimental

    2.1 Sample preparation

    Mesophase pitch synthesized from Mitsubishi naphthalene was used to produce graphite foams in an autoclave. Two kinds of graphite foams were prepared and denoted as GF1 (with a density of 0.62±0.01 g/cm3)and GF2 (with a density of 0.84±0.01 g/cm3). The final foaming temperatures and pressures for the GF1 and GF2 were 723 K, 6.0 MPa and 763 K, 13.4 MPa, respectively. The foams were carbonized at a heating rate of 0.5 K/min to 1 273 K, held for 2 h and then graphitized at 2 973 K for 0.5 h. One kind of alloy material (a weight ratio of Sn/Bi = 4∶1, a melting point of ~483 K) was infiltrated into the two graphite foams at 493 K under 2 MPa and kept under 2 MPa for 1 h. The final composites were denoted as GF1/alloy and GF2/alloy, respectively. The basic properties of the graphite foams and alloy were listed in Table 1.

    Table 1 Properties of the graphite foams and alloy.

    2.2 Sample characterization

    Scanning electron microscopic (SEM) images obtained on a LEO 1530VP were used to characterize the average pore diameters and microstructures of the samples. The density of the samples was determined by a densitometer (Accupy 1 340 Micromericics USA). Thermal diffusivity (a) of the samples (Sample size: 10 mm × 10 mm × 4 mm) were measured by a Netzsch LFA447/2-2 InSb Nano Flash machine at room temperature. Thermal conductivity (k) was calculated by the formulak= a · Cp·ρ, whereCpandρwere the specific heat capacity and bulk density of each sample, respectively. TheCpof the alloy was characterized by the differential scanning calorimeter technique (NETZSCH DSC 204F1). TheCpof the composite was calculated based on the “rule of mixtures” and the skeleton density of graphite foam was 2.25 g/cm3[8,11-13]. The CTEs were tested by a dilatometer (DIL 402 PC NETZSCH. Sample size: 3.5 mm × 3.5 mm × 25 mm). Temperature was varied from 298 to 373 K with a heating rate of 3 K/min.

    3 Results and discussion

    3.1 Microstructure

    Fig. 1a shows the XRD patterns of the Sn-Bi alloy. The peaks at 30.6°, 32.0°, and 44.9° indicated the characteristic peaks of Sn. While the peaks at 27.2°, 39.6°, and 37.9° were the characteristic peaks of Bi. Fig. 1b shows the specific heat capacity of the Sn-Bi alloy. The specific heat capacity at room temperature was 0.11 J/gK and the peak temperatures of phase transformation appeared at 419 K and 485 K. The phase change of the alloy implied the volume change at the two temperatures, which might lead to fractures during the preparation of the Sn-Bi alloy and packaging matrix. Enhancing the thermal conductivity could limit the expansion of the Sn-Bi alloy, ensure the quick heat dissipation and dimensional stability, and inhibit the fracture of the package materials.

    Fig. 1 (a) XRD patterns, (b) the specific heat capacity of the Sn-Bi alloy and (c, d) the EDS line-scan analysis across the interface of GF and alloy.

    Fig. 1c and d show EDS line-scan analysis of the major element distribution in the interface zone between the GF and Sn-Bi alloy. The interpenetrated interface structures and interconnected graphite network were expected to reinforce the foam matrix and to constrain the CTE of alloy effectively by utilizing the mechanical interlocking and the space limitations of the graphite network.

    Fig. 2a and b show the microstructures of GF1 and GF2. Both foams exhibited a spherical structure with open, interconnected pores (P in Fig. 2a) and microcracks in graphite walls (W in Fig. 2a). The interconnected structure facilitated the infiltration of molten alloy into graphite foams. It can be seen that there were significant differences in the cell sizes and microstructures between GF1 and GF2. GF1 possessed an average cell size of ~ 300 μm and many big pores of ~ 100 μm between the cells at the connection of two big pores. GF2 had thicker foam walls, a smaller average cell size of ~ 150 μm and fewer big pores. Fig. 2c and d show the cross sectional SEM images of the GF1/alloy and GF2/alloy samples, respectively. The foams had a good contact with alloy and a high degree of alloy infiltration was realized, even at the smallest cell size of ~ 100 μm.

    Fig. 2 SEM images of (a) GF1 (P-cell pore, W-foam wall), (b) GF2, (c, e) GF1/alloy (F- flat faces) and (d, f) GF2/alloy.

    Fig. 2e and f show the fracture surfaces of GF1/alloy and GF2/alloy, respectively. The nearly spherical alloy particles were embedded within the foam cells. Some of the alloy particles were broken and the flat faces (F in Fig. 2d and e) had been formed during the fracture of the composites. The foams and alloy combined compactly without obvious interfacial separation or cracks in the composites. The alloy particles in GF1 were mainly connected with each other by big pores in the foam. Due to the existence of fractures across these big pores at the joint of the two cells, some alloy particles had flat faces (F in Fig. 2e). The molten alloy was infiltrated into GF2 mainly through the microcracks in the foam walls and the alloys could not be fully infiltrated in the foams, leading to a low density of 3.83±0.01 g/cm3of the GF2 composites. Before the alloy particles were pulled out from the cell, the alloy particles were surrounded by the graphite flakes of the foam (Fig. 2c and d). It could be observed that the alloy particles were embedded in the foam cells. After the alloy particles were pulled out from the cells, the fractograph of the two particles at the big pore between the two cells is shown in Fig. 2c. The ligaments and cell wall of the cell framework were retained well after alloy infiltration. All the microcracks in the cell wall were saturated with alloy (Fig. 2c), which was crucial for the complete infiltration of alloy into the GF1 to attain the high density of 5.60±0.01 g/cm3of the composites. The smooth cell wall without obvious fractures (Fig. 2e and f) indicated poor chemical interfacial bonding between the graphite foam and the alloy, which was favorable to minimize thermal stress during the casting process and thermal cycling. The graphite foam was considered as rigid network, while the alloy particles as the elastic balls were connected by elastic alloy rods. During solidification and thermal cycling, the shrinkage and expansion of the two phases were nonsynchronous. Strong interfacial bonding and compact structure might damage the foam framework, leading to the degradation of thermal properties of the foams[6]. In addition, the mechanical interlocking and space limitations of the foam network could play a crucial role in limiting the thermal expansion of the alloy, which will be discussed in the later section.

    3.2 Thermophysical property

    Table 2 lists the properties of the Sn-Bi alloy and graphite foam/alloy composites. The thermal diffusivity of GF1/alloy and GF2/alloy reached 51.6±2 and 163.1±3 mm2/s, which were 2.0 and 6.4 times of the Sn-Bi alloy, respectively. The heat capacity and bulk density of GF2/alloy were 0.40 J/gK and 3.83±0.01 g/cm3, respectively. The thermal conductivity of GF2/alloy reached 249.9±4.6 W/mK, which was higher than that of aluminum and most of the electronic substrates and packaging materials[1-4, 10]. The calculated results based on the mass-density relationship indicated that the alloy filled more than 93% and 64% of the available pore volume of GF1 and GF2, respectively. The alloy was uniformly dispersed in the graphite cells or into the cell walls (Fig. 2c), which increased obviously the total contact area between the graphite foam and the alloy. Excellent continuity at the interfaces and throughout the foam supplied good pathways for heat transfer. The high thermal conductivity of the ligaments and the walls in graphite foams ensured a rapid heat transfer throughout the composites. The smaller the pores (P in Fig. 2a) and average cell size of the foams, the larger the contact area between graphite foams and the alloy, and the higher thermal diffusivities of the composites. As for the GF2/alloy composite, the average cell size was small and most alloy particles were connected with each other by the alloy saturating in the foam microcracks, which led to more effective heat dissipation from the composites.

    Table 2 Properties of the graphite foam/alloy composites and copper.

    Fig. 3 show the thermal expansion curves of GF1, GF2, alloy, GF1/alloy and GF2/alloy after ten thermal cycles from 298 to 373 K. The average CTEs of graphite foams and the corresponding composites are listed in Table 1 and Table 2, respectively. As can be seen, the GF2 with a CTE of 1.71±0.02 ppm/K could decrease the CTE of the Sn-Bi alloy to 8.08±0.02 ppm/K. The alloy based composites had been subjected to ten thermal cycles from 298 to 373 K at the heating and cooling rates of 3 K/min. The thermal expansion curves of the composites mutually entangled. No obvious CTE changes could be identified before and after the thermal cycles, which indicated that the composites possessed an excellent thermal stability. When the composites were heated, the faster expansion of the alloy was constrained by the graphite network. This became a complex tug-of-war where the strain mismatch was resolved into stresses at the interfaces where the two interpenetrated phases met. The mechanical interlocking and the space limitations of the foam network plays a crucial role on constraining the thermal expansion of the alloy. The space limitations caused by the high modulus of the graphite contributed much greater to constraining the thermal expansion. Owing to the thermal stability of GF2 composite, it is expected as the promising candidate of electronic packaging materials used in military, aviation, aerospace, et al. The average CTE of GF2/alloy was 8.08±0.02 ppm/K, which was in good agreement with that of AlN substrate (4.3 ppm/K) and semiconductor chips such as Si (4.1 ppm/K), GaAs (5.8 ppm/K) and InP (4.8 ppm/K)[1-4]. The CTEs of the composites could be adjusted by changing the volume fractions of graphite foams in the composites. As to the two phase composite, one may expect the CTE of the composite to follow a simple "rule of mixtures" for composites[14]given by the equation:

    αc=αaVa+αfVf

    (1)

    Whereαis the CTE value,Vis the volume fraction, and subscripts c, a, f refer to the composite, alloy and graphite foam, respectively. As shown in Table 2, the experimental CTE value of GF2/alloy was smaller than the calculated ones according to Eq.(1). It was in good agreement with the reported results when interconnected materials were used as effective reinforcements[8,11,14]. The foam reinforced composites possessed lower CTEs than the simple two phase composite like particle/fiber reinforced composites due to the space limitation of the foam skeleton structure[14]. For the SiC/Al composites, SiC foam reinforced composite also exhibited a lower CTE than that of SiC particle reinforced one with the same volume fraction of SiC[14].

    Fig. 3 Thermal expansion curves of GF1, GF2, alloy, GF1/alloy and GF2/alloy after ten thermal cycles from 298 to 373 K.

    4 Conclusions

    Graphite foam/Sn-Bi alloy composites with high thermal diffusivities and low CTEs were prepared. Microstructure analysis indicated that the alloy was well dispersed in the graphite cells or into the cell walls. The thermal diffusivity of the composite with a density of 3.83±0.01 g/cm3reached 163.1±3 mm2/s, 6.4 times that of the alloy. The CTEs of the composites decreased from 16.40±0.02 to 8.08±0.02 ppm/K, and the CTE of the high density foam (GF2/alloy) composite decreased from 20.70 of the alloy to 8.08±0.02 ppm/K of the obtained composite, which matched the CTE requirements of semiconductor chips and packaging materials well. The composites exhibited an excellent dimensional stability. After ten thermal circles between 298 and 373 K, the CTE values of these two composites were essentially maintained.

    婷婷丁香在线五月| 久久久久久大精品| 亚洲av中文av极速乱 | 亚洲美女视频黄频| 欧美日韩精品成人综合77777| 欧美+亚洲+日韩+国产| 亚洲无线观看免费| 深夜精品福利| 久久99热这里只有精品18| 精品一区二区免费观看| 日本色播在线视频| 久久热精品热| avwww免费| 久久久久久伊人网av| 国产精品人妻久久久影院| 男女边吃奶边做爰视频| 狠狠狠狠99中文字幕| 亚洲黑人精品在线| a在线观看视频网站| 国产单亲对白刺激| 久9热在线精品视频| 国内精品宾馆在线| 非洲黑人性xxxx精品又粗又长| 一进一出抽搐动态| 亚洲图色成人| 久久人妻av系列| 欧美最黄视频在线播放免费| 伦理电影大哥的女人| 18+在线观看网站| 亚洲午夜理论影院| 精品久久久久久久人妻蜜臀av| 日本三级黄在线观看| 久久久久久久久久久丰满 | 国产日本99.免费观看| 久久99热6这里只有精品| 亚洲人成网站在线播| 午夜久久久久精精品| 日日摸夜夜添夜夜添小说| 色5月婷婷丁香| 日本熟妇午夜| 色哟哟哟哟哟哟| 久久欧美精品欧美久久欧美| 97碰自拍视频| 老熟妇仑乱视频hdxx| 色在线成人网| www.色视频.com| 女生性感内裤真人,穿戴方法视频| av在线天堂中文字幕| 日韩av在线大香蕉| 99热6这里只有精品| 如何舔出高潮| a级一级毛片免费在线观看| 男女那种视频在线观看| 性插视频无遮挡在线免费观看| 99热精品在线国产| 又爽又黄无遮挡网站| 色综合亚洲欧美另类图片| 国产成人一区二区在线| 成人综合一区亚洲| 99久久成人亚洲精品观看| 亚洲美女搞黄在线观看 | 丰满乱子伦码专区| 尾随美女入室| 国产日本99.免费观看| 精品乱码久久久久久99久播| 熟妇人妻久久中文字幕3abv| 51国产日韩欧美| 欧美黑人欧美精品刺激| 99久久九九国产精品国产免费| 欧美色欧美亚洲另类二区| 极品教师在线免费播放| 欧美性猛交黑人性爽| 国产精品,欧美在线| 亚洲精品国产成人久久av| 国产黄色小视频在线观看| 一区二区三区免费毛片| 亚洲人成伊人成综合网2020| 国产高清三级在线| 天堂av国产一区二区熟女人妻| 久久久久久久久久成人| 又黄又爽又免费观看的视频| 国内少妇人妻偷人精品xxx网站| 又粗又爽又猛毛片免费看| 无遮挡黄片免费观看| 亚洲成人中文字幕在线播放| 色综合站精品国产| 国产精华一区二区三区| 精品午夜福利视频在线观看一区| 欧美极品一区二区三区四区| 免费看光身美女| 久久人人精品亚洲av| 色综合站精品国产| 亚洲精品456在线播放app | 偷拍熟女少妇极品色| 一进一出抽搐动态| 成人永久免费在线观看视频| av国产免费在线观看| 欧美性猛交╳xxx乱大交人| 一级黄片播放器| 欧美高清成人免费视频www| 大型黄色视频在线免费观看| 免费看美女性在线毛片视频| 99热这里只有精品一区| 国产精品亚洲一级av第二区| 亚洲精品色激情综合| 午夜免费激情av| 国产综合懂色| 国产三级中文精品| av视频在线观看入口| 蜜桃亚洲精品一区二区三区| 欧美最新免费一区二区三区| 国产私拍福利视频在线观看| 久9热在线精品视频| 窝窝影院91人妻| 男女啪啪激烈高潮av片| 我要搜黄色片| av黄色大香蕉| 国产精品一区二区性色av| 床上黄色一级片| 好男人在线观看高清免费视频| 亚洲在线观看片| 亚洲一区二区三区色噜噜| 波多野结衣高清作品| 亚洲成av人片在线播放无| 国产精品1区2区在线观看.| 久久精品夜夜夜夜夜久久蜜豆| 国产高清有码在线观看视频| 别揉我奶头 嗯啊视频| 国产精品98久久久久久宅男小说| 亚洲av美国av| 乱系列少妇在线播放| 国产欧美日韩精品一区二区| 午夜福利18| 国产精品女同一区二区软件 | 国产免费av片在线观看野外av| 日本 欧美在线| 欧美国产日韩亚洲一区| 全区人妻精品视频| 淫秽高清视频在线观看| 如何舔出高潮| 色哟哟哟哟哟哟| 亚洲国产欧美人成| 女的被弄到高潮叫床怎么办 | 亚洲欧美日韩高清专用| 中文字幕av在线有码专区| 男人舔奶头视频| 国产一区二区三区在线臀色熟女| 精品久久久久久成人av| 麻豆久久精品国产亚洲av| 欧美性猛交黑人性爽| 夜夜夜夜夜久久久久| 国产亚洲精品综合一区在线观看| 日韩中字成人| 久久久久国内视频| 免费一级毛片在线播放高清视频| 国产精品无大码| 久久久久久久精品吃奶| 成人美女网站在线观看视频| 午夜免费成人在线视频| 精品久久久久久久末码| 啦啦啦观看免费观看视频高清| 国产高清视频在线播放一区| 舔av片在线| 免费看av在线观看网站| av福利片在线观看| 亚洲精品粉嫩美女一区| 欧美成人免费av一区二区三区| 欧美不卡视频在线免费观看| 国产蜜桃级精品一区二区三区| 亚洲五月天丁香| 精品久久久久久久久久免费视频| 女同久久另类99精品国产91| 九色成人免费人妻av| 久久久色成人| 日本三级黄在线观看| 一级av片app| 草草在线视频免费看| 日本-黄色视频高清免费观看| 欧美+亚洲+日韩+国产| 日本与韩国留学比较| 亚洲乱码一区二区免费版| 国产一区二区在线观看日韩| 婷婷色综合大香蕉| 一a级毛片在线观看| 国产伦精品一区二区三区视频9| 丰满人妻一区二区三区视频av| 丰满的人妻完整版| 琪琪午夜伦伦电影理论片6080| 91在线精品国自产拍蜜月| 久久久久精品国产欧美久久久| 国产视频一区二区在线看| 天堂动漫精品| 国产单亲对白刺激| 欧美日韩黄片免| 亚洲av日韩精品久久久久久密| 欧美丝袜亚洲另类 | 国产精品自产拍在线观看55亚洲| 成年女人毛片免费观看观看9| 色综合色国产| 亚洲内射少妇av| 国产真实乱freesex| 国产伦一二天堂av在线观看| 丰满的人妻完整版| 桃色一区二区三区在线观看| 一级黄色大片毛片| or卡值多少钱| 久久精品国产鲁丝片午夜精品 | 狂野欧美白嫩少妇大欣赏| 日韩在线高清观看一区二区三区 | 一区二区三区免费毛片| 成人精品一区二区免费| 99久久精品热视频| 亚洲人成伊人成综合网2020| 女同久久另类99精品国产91| 免费看美女性在线毛片视频| 欧美一级a爱片免费观看看| 久久精品人妻少妇| 免费人成视频x8x8入口观看| 18+在线观看网站| 久久精品久久久久久噜噜老黄 | 欧美日本亚洲视频在线播放| 久久国内精品自在自线图片| 国内精品一区二区在线观看| av在线天堂中文字幕| 最近最新中文字幕大全电影3| 欧美又色又爽又黄视频| 国产精品久久视频播放| 日韩,欧美,国产一区二区三区 | 欧美激情久久久久久爽电影| a级毛片a级免费在线| 日本三级黄在线观看| 婷婷精品国产亚洲av在线| 久久午夜福利片| 色综合婷婷激情| 九九久久精品国产亚洲av麻豆| 国产中年淑女户外野战色| 欧美最新免费一区二区三区| 岛国在线免费视频观看| 亚洲性久久影院| 亚洲18禁久久av| 人妻久久中文字幕网| 12—13女人毛片做爰片一| 亚洲欧美日韩卡通动漫| 亚洲午夜理论影院| 女生性感内裤真人,穿戴方法视频| 亚洲不卡免费看| 97碰自拍视频| 人妻少妇偷人精品九色| 999久久久精品免费观看国产| 成人午夜高清在线视频| 久久久久久久久久成人| 最近视频中文字幕2019在线8| 国产精品一区二区免费欧美| 99热网站在线观看| 欧美日韩亚洲国产一区二区在线观看| 午夜福利18| av女优亚洲男人天堂| 黄色一级大片看看| 亚洲av第一区精品v没综合| 国产av麻豆久久久久久久| 国产精品久久久久久精品电影| 成年免费大片在线观看| 国产69精品久久久久777片| 欧美日韩综合久久久久久 | 可以在线观看毛片的网站| 成人三级黄色视频| 久久久色成人| 中国美白少妇内射xxxbb| 少妇人妻一区二区三区视频| videossex国产| 亚洲av不卡在线观看| 久久国产精品人妻蜜桃| 国产精品av视频在线免费观看| 亚洲成a人片在线一区二区| 成人特级黄色片久久久久久久| 国产成年人精品一区二区| 中文字幕免费在线视频6| 一级黄色大片毛片| 天美传媒精品一区二区| 国模一区二区三区四区视频| 又爽又黄a免费视频| 1000部很黄的大片| 免费观看人在逋| 在线免费观看不下载黄p国产 | 成人性生交大片免费视频hd| 搡老熟女国产l中国老女人| 99在线人妻在线中文字幕| 麻豆精品久久久久久蜜桃| 伦精品一区二区三区| 亚洲成人精品中文字幕电影| 亚洲欧美日韩无卡精品| 99热精品在线国产| 亚洲精品亚洲一区二区| 热99在线观看视频| 日日撸夜夜添| 亚洲精品久久国产高清桃花| a在线观看视频网站| 日本欧美国产在线视频| 国产大屁股一区二区在线视频| 亚洲国产日韩欧美精品在线观看| 精品久久久久久,| 国产黄a三级三级三级人| 午夜爱爱视频在线播放| 国产精品乱码一区二三区的特点| 麻豆久久精品国产亚洲av| 波多野结衣高清作品| 乱人视频在线观看| 18禁裸乳无遮挡免费网站照片| 级片在线观看| 国产精品99久久久久久久久| 日韩欧美国产一区二区入口| 亚洲无线在线观看| 一本一本综合久久| av专区在线播放| 伦理电影大哥的女人| 日韩一本色道免费dvd| 日韩精品有码人妻一区| 国产精品爽爽va在线观看网站| 欧美3d第一页| 黄色欧美视频在线观看| 少妇高潮的动态图| 成人av一区二区三区在线看| 舔av片在线| 好男人在线观看高清免费视频| 久久久久久久精品吃奶| ponron亚洲| 亚洲av中文av极速乱 | 国产av不卡久久| 毛片一级片免费看久久久久 | 男女视频在线观看网站免费| 少妇人妻精品综合一区二区 | 欧美精品啪啪一区二区三区| 亚洲精品一区av在线观看| 国产精品一及| 亚洲国产精品成人综合色| 久久精品国产亚洲网站| 久久久久久久亚洲中文字幕| 亚洲电影在线观看av| 成人国产麻豆网| 午夜亚洲福利在线播放| 亚洲精品456在线播放app | 精品不卡国产一区二区三区| 久久久久性生活片| 又黄又爽又刺激的免费视频.| 夜夜看夜夜爽夜夜摸| 国产 一区精品| 91久久精品国产一区二区三区| 一本久久中文字幕| 99热这里只有是精品50| 在线观看免费视频日本深夜| 舔av片在线| 免费av观看视频| 国产高清激情床上av| 如何舔出高潮| 久久精品人妻少妇| 99精品久久久久人妻精品| 亚洲av二区三区四区| 少妇猛男粗大的猛烈进出视频 | 亚洲熟妇熟女久久| 中文字幕免费在线视频6| eeuss影院久久| 成人av在线播放网站| 亚洲中文字幕一区二区三区有码在线看| 免费大片18禁| 成人高潮视频无遮挡免费网站| 国产亚洲91精品色在线| 男女那种视频在线观看| 在线观看一区二区三区| 成人亚洲精品av一区二区| 麻豆久久精品国产亚洲av| 真人一进一出gif抽搐免费| 久久久久国产精品人妻aⅴ院| 欧美成人性av电影在线观看| 中文字幕高清在线视频| 亚洲无线在线观看| 天堂网av新在线| 天堂√8在线中文| 免费黄网站久久成人精品| 久久亚洲精品不卡| bbb黄色大片| 99视频精品全部免费 在线| 18禁在线播放成人免费| 欧美+日韩+精品| 亚洲精品一区av在线观看| 国产69精品久久久久777片| 久久久午夜欧美精品| 久9热在线精品视频| 国产高清视频在线播放一区| 国模一区二区三区四区视频| 九色国产91popny在线| 不卡一级毛片| 欧美色视频一区免费| 欧美不卡视频在线免费观看| 日韩高清综合在线| 色5月婷婷丁香| 丰满人妻一区二区三区视频av| 日本免费a在线| 色视频www国产| 久久精品人妻少妇| 久久亚洲真实| 国产成人一区二区在线| 此物有八面人人有两片| 天天躁日日操中文字幕| 欧美激情国产日韩精品一区| 亚洲综合色惰| 亚洲美女搞黄在线观看 | 精品欧美国产一区二区三| 九九爱精品视频在线观看| 伊人久久精品亚洲午夜| 国产av不卡久久| 国产精品一区www在线观看 | 黄色女人牲交| 男插女下体视频免费在线播放| 搡老熟女国产l中国老女人| 午夜影院日韩av| 一个人观看的视频www高清免费观看| 波多野结衣巨乳人妻| 成人三级黄色视频| 久久久久久久精品吃奶| 国产亚洲精品av在线| 国产不卡一卡二| 久久精品国产亚洲网站| 精品一区二区三区视频在线观看免费| 国产美女午夜福利| 小说图片视频综合网站| 久久久国产成人免费| 国产伦在线观看视频一区| 搡老妇女老女人老熟妇| 免费在线观看日本一区| 俄罗斯特黄特色一大片| 不卡视频在线观看欧美| 欧美日韩乱码在线| 又紧又爽又黄一区二区| 中亚洲国语对白在线视频| 亚洲电影在线观看av| 日韩欧美免费精品| 亚洲午夜理论影院| av视频在线观看入口| 国产精品不卡视频一区二区| 丝袜美腿在线中文| 伊人久久精品亚洲午夜| 午夜福利在线观看吧| 成人精品一区二区免费| 岛国在线免费视频观看| 99视频精品全部免费 在线| 夜夜爽天天搞| 不卡一级毛片| 国产精华一区二区三区| 中文字幕av成人在线电影| 日韩高清综合在线| 又粗又爽又猛毛片免费看| 久久99热6这里只有精品| 亚洲精品亚洲一区二区| 久久草成人影院| 成人av一区二区三区在线看| 女人被狂操c到高潮| 草草在线视频免费看| 久久草成人影院| 18禁黄网站禁片免费观看直播| 日韩欧美免费精品| www日本黄色视频网| 亚洲av熟女| netflix在线观看网站| 国产精品av视频在线免费观看| 亚洲四区av| 亚洲专区国产一区二区| 亚洲内射少妇av| 观看免费一级毛片| 日韩精品青青久久久久久| 免费观看人在逋| 色综合婷婷激情| 男女做爰动态图高潮gif福利片| 国产日本99.免费观看| 小说图片视频综合网站| 欧美在线一区亚洲| 亚洲av中文字字幕乱码综合| 无遮挡黄片免费观看| 黄色丝袜av网址大全| 久久精品影院6| 免费在线观看日本一区| 国产精品女同一区二区软件 | 五月玫瑰六月丁香| 乱码一卡2卡4卡精品| 麻豆国产97在线/欧美| 精品久久久噜噜| 18禁在线播放成人免费| 中文字幕高清在线视频| 一个人观看的视频www高清免费观看| 永久网站在线| 男插女下体视频免费在线播放| 男人舔奶头视频| 久9热在线精品视频| 无遮挡黄片免费观看| 色尼玛亚洲综合影院| 一区福利在线观看| 日日夜夜操网爽| 哪里可以看免费的av片| 国产伦在线观看视频一区| 精品久久久久久久久av| 欧美潮喷喷水| 女人十人毛片免费观看3o分钟| 日本熟妇午夜| 国产亚洲精品久久久com| 网址你懂的国产日韩在线| 午夜精品久久久久久毛片777| 国产 一区精品| 男人狂女人下面高潮的视频| 亚洲自偷自拍三级| 欧美日韩国产亚洲二区| 精品久久国产蜜桃| 国产欧美日韩精品一区二区| 热99在线观看视频| 亚州av有码| 欧美bdsm另类| 男女视频在线观看网站免费| 国产精品99久久久久久久久| 国产一区二区激情短视频| 蜜桃久久精品国产亚洲av| 久久热精品热| 69人妻影院| 亚洲av二区三区四区| 噜噜噜噜噜久久久久久91| 韩国av在线不卡| 午夜福利18| www.www免费av| 99视频精品全部免费 在线| 国产国拍精品亚洲av在线观看| 小蜜桃在线观看免费完整版高清| 久久久久久伊人网av| 99热这里只有是精品50| 日韩欧美 国产精品| 日韩 亚洲 欧美在线| 国产午夜福利久久久久久| 午夜福利在线观看吧| 亚洲色图av天堂| 桃红色精品国产亚洲av| 国产毛片a区久久久久| 亚洲aⅴ乱码一区二区在线播放| 国产伦在线观看视频一区| 91在线精品国自产拍蜜月| 午夜亚洲福利在线播放| 成人亚洲精品av一区二区| 少妇被粗大猛烈的视频| 午夜激情福利司机影院| 免费观看在线日韩| 搡女人真爽免费视频火全软件 | 中文在线观看免费www的网站| 99久久精品热视频| 日本黄色片子视频| 午夜福利欧美成人| 麻豆成人午夜福利视频| 97碰自拍视频| 一级毛片久久久久久久久女| 天天一区二区日本电影三级| 国产欧美日韩精品亚洲av| 免费人成在线观看视频色| 色噜噜av男人的天堂激情| 中文字幕免费在线视频6| 欧美又色又爽又黄视频| 97超级碰碰碰精品色视频在线观看| 国产高潮美女av| 午夜激情福利司机影院| 亚洲成人久久性| 欧美xxxx性猛交bbbb| 999久久久精品免费观看国产| 麻豆成人午夜福利视频| 99视频精品全部免费 在线| 国产亚洲精品久久久com| 波野结衣二区三区在线| 一本久久中文字幕| 亚洲色图av天堂| 亚洲va在线va天堂va国产| 亚洲av二区三区四区| 一夜夜www| 少妇的逼水好多| 国产精品国产三级国产av玫瑰| 女人被狂操c到高潮| 悠悠久久av| 亚洲精品456在线播放app | 校园春色视频在线观看| 久久久久久大精品| 欧美日韩亚洲国产一区二区在线观看| 国产私拍福利视频在线观看| 久久国产精品人妻蜜桃| 成人午夜高清在线视频| 日韩欧美国产一区二区入口| 久久精品国产亚洲网站| 亚洲18禁久久av| 精品福利观看| 国产亚洲av嫩草精品影院| 婷婷色综合大香蕉| 中文字幕av在线有码专区| 免费观看人在逋| 国产爱豆传媒在线观看| 1024手机看黄色片| 久久婷婷人人爽人人干人人爱| 亚洲午夜理论影院| 国产精品女同一区二区软件 | 日本-黄色视频高清免费观看| 最近在线观看免费完整版| 男人舔奶头视频| 久久国内精品自在自线图片| 国产免费一级a男人的天堂| 国产淫片久久久久久久久| www.色视频.com| 国产激情偷乱视频一区二区| 欧美一区二区亚洲| 免费看av在线观看网站| 99热6这里只有精品| 国产高清视频在线播放一区| 男插女下体视频免费在线播放| 国产极品精品免费视频能看的| 亚洲五月天丁香| 午夜福利在线观看免费完整高清在 | ponron亚洲|