• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      多波束測深中聲速剖面的分層EOF自適應(yīng)重構(gòu)

      2020-07-07 06:27:06劉楊范王振杰
      聲學(xué)技術(shù) 2020年3期
      關(guān)鍵詞:階次聲速下層

      劉楊范,王振杰,2,趙 爽

      (1.中國石油大學(xué)(華東)地球科學(xué)與技術(shù)學(xué)院,山東青島266555;2.海洋國家實(shí)驗(yàn)室海洋礦產(chǎn)資源評價(jià)與探測技術(shù)功能實(shí)驗(yàn)室,山東青島266071)

      0 引 言

      海水聲速剖面的深度修正在多波束測深中非常重要。聲速剖面的深度修正是根據(jù)聲速剖面,采用常梯度聲線跟蹤法,通過采用分層計(jì)算和逐層追加的方法計(jì)算分層深度,進(jìn)而對聲線彎曲進(jìn)行修正。因此,若海水聲速剖面存在誤差,將會嚴(yán)重影響多波束測深精度[1-3]。為了提高多波束測深的精度,需對存在誤差的聲速剖面進(jìn)行修正,使其接近真實(shí)的聲速剖面[4]。聲速剖面重構(gòu)是一種有效的聲速剖面誤差修正方法。

      文獻(xiàn)[5]證明了在最小均方誤差意義下,經(jīng)驗(yàn)正交函數(shù)(Empirical Orthogonal Functions, EOF)是描述聲速剖面最有效的基函數(shù),通常只需要前2~3階的經(jīng)驗(yàn)正交函數(shù)就能夠精確地表示測區(qū)內(nèi)任意一條聲速剖面。文獻(xiàn)[6]證明了即使對于與平均聲速剖面存在顯著差異的聲速剖面,通常最多也只需要前5階經(jīng)驗(yàn)正交函數(shù)就能夠精確地表示聲速剖面。文獻(xiàn)[7-9]探討了在淺海中采用前幾階經(jīng)驗(yàn)正交函數(shù)表示聲速剖面的可行性。文獻(xiàn)[10]證明了EOF重構(gòu)的聲速剖面具有較高的內(nèi)符合精度,能夠較好地描述實(shí)際聲速剖面,對聲速改正后得到的水深數(shù)據(jù)能夠滿足多波束水深測量的要求。文獻(xiàn)[11]證明了采用經(jīng)驗(yàn)正交函數(shù)表示聲速剖面時(shí),取前6階及以上的經(jīng)驗(yàn)正交函數(shù),就可使利用重構(gòu)聲速剖面進(jìn)行多波束測深時(shí)的有效波束比達(dá)到100%。上述研究成果表明,利用前2~7階經(jīng)驗(yàn)正交函數(shù)可以精確地重構(gòu)聲速剖面,提高多波束測深精度。

      但在多波束測深過程中的聲速剖面誤差修正時(shí),傳統(tǒng)的EOF重構(gòu)聲速剖面測深的階次選取方法沒有考慮聲速淺水和深水的區(qū)別[12-16],尤其是海水性質(zhì)變化劇烈地區(qū)、時(shí)間跨度大的聲速剖面,一般將聲速剖面作為一個(gè)整體進(jìn)行計(jì)算,確定出整體聲速剖面的階次[17-19]。該方法的實(shí)現(xiàn)過程中,經(jīng)驗(yàn)正交函數(shù)的階次較多,因此計(jì)算量大。聲速受溫度、鹽度和壓力的影響,在淺水海水溫度變化劇烈,使得聲速時(shí)空變化顯著,而在深水海水溫度比較穩(wěn)定時(shí),聲速變化平穩(wěn)[1-3]。本文考慮到聲速淺水的復(fù)雜性和深水的平穩(wěn)性,給出了利用分層EOF重構(gòu)聲速剖面測深的階次確定方法。此方法考慮了淺水區(qū)和深水區(qū)的聲速性質(zhì)差異,將聲速剖面分為上層和下層,在滿足多波束水深測量限差的要求下,確定出上層和下層合理的階次,減少了計(jì)算量,提高了測深精度。

      1 聲速剖面分層EOF重構(gòu)原理

      設(shè)有N條已知的聲速剖面,由于實(shí)際條件的限制,每條聲速剖面的采樣點(diǎn)不可能完全在等深度處采樣,所以采用三次樣條插值[20-21]得到等深度處的聲速。將N條聲速剖面內(nèi)插到M個(gè)等深度處的標(biāo)準(zhǔn)層,并將聲速剖面分為上下兩層,上下兩層的分界點(diǎn)深度為Kh,那么N條聲速剖面表示成矩陣形式C為

      式(1)中:Cu、Cd分別表示上層和下層的聲速剖面。右邊項(xiàng)的每一行代表每一條聲速剖面在等深度處的聲速值,每一列表示一條聲速剖面的聲速值。

      求取式(1)中每一行的平均值,得到平均聲速,表示成矩陣的形式為

      聲速剖面相對于平均聲速剖面的差值為ΔC,表示成矩陣的形式為

      式(3)中,ΔCu、ΔCd分別表示上層和下層的聲速剖面與平均聲速剖面的差值。

      定義上層和下層的協(xié)方差矩陣為

      式(4)中,Ru、Rd分別表示上層和下層的協(xié)方差矩陣。

      Ru中的每一個(gè)元素Rij可表示為

      Rd中的每一個(gè)元素Rij可表示為

      對上層和下層的協(xié)方差矩陣求解特征向量:

      式(7)中,λu和Fu分別為Ru的特征值矩陣和特征向量矩陣。λd和Fd分別為Rd的特征值矩陣和特征向量矩陣。λu=diag[λu1λu2…λuK],λd=diag[λd1λd2…λd(M-K)]。特征值均按從大到小排列。Fu=[fu1fu2…fuK],fui為λui所對應(yīng)的特征向量。Fd=[fd1fd2…fd(M-K)],fdj為λdj所對應(yīng)的特征向量。

      上層取前i階,下層取前j階的分層EOF函數(shù)重構(gòu)系數(shù)矩陣Aij為

      式(8)中,Aui為上層取前i階的分層EOF函數(shù)重構(gòu)系數(shù),Adj為下層取前j階的分層EOF函數(shù)重構(gòu)系數(shù)。Fui為Fu前i列,F(xiàn)dj為Fd前j列。

      測區(qū)內(nèi)任意一條聲速剖面可以用上層前i階和下層前j階分層EOF函數(shù)表示為

      式(9)中,Cl為第l條聲速剖面,l=1,2,…,N。

      2 分層EOF重構(gòu)聲速剖面測深的階次確定步驟

      本文給出了分層EOF重構(gòu)聲速剖面測深的階次確定方法。算法流程見圖1,方法詳細(xì)步驟如下:

      (1) 從中國Argo實(shí)時(shí)資料中心獲取溫度、鹽度、壓力數(shù)據(jù)[19],進(jìn)行預(yù)處理,采用WD Wilson聲速經(jīng)驗(yàn)公式[1],根據(jù)剖面的溫度、鹽度和壓力計(jì)算聲速剖面,利用三次樣條插值將聲速剖面內(nèi)插到垂直標(biāo)準(zhǔn)層。

      (2) 確定聲速剖面上下層的深度界限。計(jì)算每一深度聲速剖面的均方根誤差,將每一深度與其相鄰深度的均方根誤差的平均值作為其均方根誤差均值,設(shè)置閾值。深度由深到淺,判斷每一深度的均方根誤差均值與閾值的大小,當(dāng)均方根誤差均值大于等于閾值時(shí),所對應(yīng)的深度即為聲速剖面上下層的深度界限。

      (3) 設(shè)置初始上層、下層的階次和水深值H,根據(jù)分層EOF重構(gòu)聲速剖面。

      (4) 預(yù)設(shè)初始入射角,讀取實(shí)測聲速剖面,根據(jù)常梯度聲線跟蹤法(以層內(nèi)聲速變化為常梯度,并采用分層計(jì)算和逐層追加的方法對聲線彎曲進(jìn)行補(bǔ)償)[2]計(jì)算聲波的傳播時(shí)間T,并作為重構(gòu)聲速剖面的參考時(shí)間,結(jié)合重構(gòu)聲速剖面,計(jì)算利用重構(gòu)聲速剖面的波束水深值H′[10],傳播時(shí)間T為

      式(10)中:N表示實(shí)測聲速剖面的層數(shù);θi和θi+1分別表示實(shí)測聲速剖面第i層和第i+1層的入射角;gi表示實(shí)測聲速剖面第i層的梯度;Ci和Ci+1分別表示實(shí)測聲速剖面第i層和第i+1層的聲速;Δzi表示第i層的深度差。重構(gòu)聲速剖面第i層的聲波傳播時(shí)間ti為

      圖1 確定聲速剖面EOF重構(gòu)的分層階次的算法流程圖Fig.1 Flow chart of determining the orders of layered EOF reconstruction of sound velocity profile

      式(12)中,M表示使等式成立的ti的個(gè)數(shù)。

      深度誤差σ為

      (5) 統(tǒng)計(jì)符合0.25%水深限差要求的波束數(shù),判斷全部聲速剖面的有效波束比是否達(dá)到100%。如果是,則確定出合理的上層和下層階次,實(shí)驗(yàn)結(jié)束。反之,則繼續(xù)以下步驟。

      (6) 利用常梯度聲線跟蹤法計(jì)算實(shí)際聲速剖面上層和下層的聲波傳播時(shí)間T1和T2,結(jié)合重構(gòu)分層聲速剖面,計(jì)算各個(gè)波束上層和下層的水深值H1和H2。T1、T2、H1和H2的計(jì)算公式與步驟(4)中類似。

      (7) 自適應(yīng)階次選取。利用實(shí)際聲速剖面上層的水深值減去步驟(6)中所計(jì)算的各個(gè)波束上層的水深值,取絕對值,對它們求平均即可求得波束上層的平均水深誤差,同樣可得波束下層的平均水深誤差。判斷波束上層的平均水深誤差乘以上層深度是否大于波束下層的平均水深誤差乘以下層深度。如果是,則上層的EOF階次加1,反之,則下層的EOF階次加1。然后重復(fù)步驟(4)~(7),直到確定出合理的上層和下層階次。

      3 算例分析

      選用中國Argo資料實(shí)時(shí)中心發(fā)布的《全球Argo浮標(biāo)剖面觀測資料質(zhì)量再控制數(shù)據(jù)集》[22],選取出136°E~139°E、32°N~35°N區(qū)域、2009年的91條剖面數(shù)據(jù),深度為10~150 m,層厚為1 m。分層EOF可能會使重構(gòu)的聲速剖面在分層處存在聲速不連續(xù)的問題,因此本文使上層和下層的聲速剖面有10 m深度的重疊,上下層聲速剖面重構(gòu)后在重疊處取平均值。

      3.1 聲速剖面上下層深度界限的選取

      聲速剖面上下層的深度界限直接影響重構(gòu)聲速剖面上下層的EOF階次??紤]到聲速剖面淺水復(fù)雜性和深水平穩(wěn)性的特征,采用聲速剖面的均方根誤差均值確定聲速剖面上、下層的深度界限。聲速剖面的均方根誤差如圖2所示,閾值為13 m·s-1。

      圖2 聲速剖面的均方根誤差Fig.2 Root mean square error of sound velocity profile

      由圖2可知,深度為10~67 m左右時(shí),聲速剖面的均方根誤差均值起伏較大,變化范圍為13.770~39.908 m·s-1;深度為67~150 m時(shí),聲速剖面的均方根誤差均值變化平穩(wěn),范圍為10.923~12.786 m·s-1。根據(jù)閾值判斷出聲速剖面上下層的深度界限為67 m。

      3.2 EOF各階次的方差貢獻(xiàn)率

      方差貢獻(xiàn)率[23]指每一階經(jīng)驗(yàn)正交函數(shù)包含聲速場信息的百分比。其計(jì)算公式為

      式(16)中,σi表示第i階方差的貢獻(xiàn)率,λi表示協(xié)方差矩陣的特征值(經(jīng)過從大到小排列的第i個(gè)特征值),n表示協(xié)方差矩陣的行號。

      累計(jì)方差貢獻(xiàn)率指前幾階經(jīng)驗(yàn)正交函數(shù)方差貢獻(xiàn)率的和。表1、表2、表3分別為上、下層以及不分層EOF重構(gòu)的前7個(gè)階次的方差貢獻(xiàn)率。

      從表1~3可以得出前6階的累計(jì)方差貢獻(xiàn)率都超過了95%,可見前幾階的EOF函數(shù)包含了測區(qū)內(nèi)聲速場的主要信息,而剩余階次的EOF函數(shù)反映了測區(qū)內(nèi)聲速場的細(xì)微變化。

      對比表1和表2可以得出,對于前7個(gè)階次的EOF函數(shù),分層EOF下層各階次的累計(jì)方差貢獻(xiàn)率高于分層EOF上層相對應(yīng)階次的累計(jì)方差貢獻(xiàn)率。驗(yàn)證了上層聲速的復(fù)雜性和下層聲速的平穩(wěn)性,也說明了下層的聲速剖面可以用更少的階次有效地表示。將表1和表2與表3進(jìn)行對比可以得出,分層EOF各階次的累計(jì)方差貢獻(xiàn)率高于EOF相對應(yīng)階次的累計(jì)方差貢獻(xiàn)率。這是由于分層EOF函數(shù)考慮了淺水和深水的區(qū)別,對不同的層采用不同的階次,使得淺水聲速的復(fù)雜性與深水聲速的平穩(wěn)性不會相互影響。因此從累計(jì)方差貢獻(xiàn)率考慮,使用相同階次的分層EOF重構(gòu)聲速剖面的精度高于EOF重構(gòu)聲速剖面的精度,或者重構(gòu)聲速剖面精度相當(dāng)時(shí),分層EOF的運(yùn)算量小于EOF的運(yùn)算量。

      表1 上層EOF重構(gòu)的前7個(gè)階次的方差貢獻(xiàn)率Table 1 Variance contribution rate of the first 7 orders for the upper layer of EOF reconstruction

      表2 下層EOF重構(gòu)的前7個(gè)階次的方差貢獻(xiàn)率Table 2 Variance contribution rate of the first 7 orders for the lower layer of EOF reconstruction

      表3 不分層EOF重構(gòu)的前7個(gè)階次的方差貢獻(xiàn)率Table 3 Variance contribution rate of the first 7 orders of unlayerd EOF reconstruction

      3.3 分層EOF重構(gòu)聲速剖面的誤差分析

      采用每個(gè)樣本序列的聲速均方根誤差以及不同深度的聲速均方根誤差進(jìn)行誤差分析,結(jié)果如圖3所示。圖3中分層EOF的上層階次為前5階,下層階次為前2階,EOF使用的階次為前5階。

      從圖3(a)中可以看出,對于所有的樣本序列,分層EOF的聲速均方根誤差總體小于EOF的聲速均方根誤差。分層EOF的聲速均方根誤差平均值為0.909 m·s-1。EOF的聲速均方根誤差平均值為1.940 m·s-1。從圖3(b)中可以看出,對于不同的水深,分層EOF的聲速均方根誤差總體小于EOF的聲速均方根誤差。分層EOF上層的聲速均方根誤差平均值為0.617 m·s-1;分層EOF下層的聲速均方根誤差平均值為1.182 m·s-1。EOF上層的聲速均方根誤差平均值為1.367 m·s-1;EOF下層的聲速均方根誤差平均值為2.092 m·s-1。這說明分層EOF相較于EOF,提高了聲速剖面的重構(gòu)精度。分層EOF的下層階次少于EOF的階次,表明分層EOF降低了聲速剖面重構(gòu)的運(yùn)算量。

      圖3 分層與不分層EOF重構(gòu)的比較Fig.3 Comparison between layered EOF and unlayered EOF reconstructions

      3.4 確定滿足測深改正要求的分層EOF階次

      上述實(shí)驗(yàn)分析說明,分層EOF能夠精確地表示實(shí)測聲速剖面,但對于使用分層EOF重構(gòu)的聲速剖面進(jìn)行聲速修正引起的水深誤差能否滿足測深要求,需要進(jìn)一步分析。美國國家海洋與大氣局規(guī)定[24]:若使用的聲速剖面與實(shí)際聲速剖面對測深修正造成的互差超過0.25%水深視為超限。有效波束比為:滿足水深限差的波束占總波束的百分比[25]。統(tǒng)計(jì)不同分層EOF階次組合下的各種信息,采用自適應(yīng)階次選取確定出滿足測深修正要求的分層EOF階次,結(jié)果如圖4所示。

      為了方便表示,圖4中7/2表示分層EOF上層取前7階、下層取前2階,其余同理。為了從圖4(d)中更好地比較分層EOF和EOF的水深修正最大偏差,將EOF階次與分層EOF的上層階次相對應(yīng),如圖4(d)所示。

      從圖4(a)和圖4(b)可以看出,當(dāng)分層EOF上層取前7階、下層取前2階時(shí),平均有效波束比為100%,有效波束比達(dá)到100%的聲速剖面條數(shù)為91條。雖然第4個(gè)階次組合的平均有效波束比、有效波束比達(dá)到100%的聲速剖面條數(shù)和第5個(gè)階次組合的平均有效波束比相比前幾個(gè)階次組合有所降低。但從圖4(c)可以看出,平均水深誤差一直減小,說明隨著階次增加,整體水深誤差持續(xù)減小,即利用分層EOF重構(gòu)聲速剖面進(jìn)行聲速修正后的水深精度越來越高。從圖4(d)可以得出,隨著階次的增加,分層EOF的水深修正最大偏差呈現(xiàn)總體下降趨勢,并且從EOF前3階次開始,分層EOF的水深修正最大偏差小于EOF的水深修正最大偏差,說明分層EOF相較于EOF,提高了多波束測深修正精度。當(dāng)分層EOF上層取前7階、下層取前2階和EOF整體取前7階時(shí),兩者的水深修正最大偏差都小于0.25%水深改正限差,但分層EOF下層的階次明顯少于EOF的階次,表明分層EOF相較于EOF降低了多波束測深的運(yùn)算量。

      圖4 確定滿足測深修正要求的分層EOF重構(gòu)階次Fig.4 Determination of the orders of layered EOF reconstruction that satisfies the correction requirement of bathemetric sounding

      4 結(jié) 論

      本文針對海水性質(zhì)變化劇烈地區(qū)的聲速剖面,利用分層EOF重構(gòu)聲速剖面,根據(jù)自適應(yīng)階次選取方法,在滿足0.25%水深限差的要求下,研究利用分層EOF重構(gòu)聲速剖面測深的階次選取方法,并與傳統(tǒng)EOF(對水層整體取同一階次)重構(gòu)聲速剖面測深的階次選取方法進(jìn)行比較,得出如下結(jié)論:

      采用前幾階分層EOF重構(gòu)的聲速剖面能夠精確地描述實(shí)際聲速剖面,并且隨階次增加,越來越接近實(shí)際聲速剖面。不同于傳統(tǒng)EOF,分層EOF對不同的層采用不同的階次,使淺水的復(fù)雜性和深水的平穩(wěn)性互不影響。分層EOF重構(gòu)的聲速剖面相比傳統(tǒng)EOF重構(gòu)的聲速剖面,提高了聲速剖面重構(gòu)精度,降低了運(yùn)算量。

      在本文選取的聲速剖面中,利用上層前7階、下層前2階分層EOF重構(gòu)的聲速剖面進(jìn)行測深修正時(shí),滿足多波束的水深測量要求,合理地確定了分層EOF重構(gòu)聲速剖面的上層和下層階次。相比傳統(tǒng)EOF重構(gòu)聲速剖面測深的階次選取方法,考慮了聲速淺水的復(fù)雜性和深水的平穩(wěn)性,分層EOF重構(gòu)聲速剖面測深的階次選取方法提高了多波束測深修正精度,降低了計(jì)算量。由于不同聲速剖面受區(qū)域、時(shí)間、采樣等因素的影響,因此其它算例中的上下層階次可能會與本算例略有不同,但本文所提方法和所得規(guī)律性結(jié)論均具有普適性。本文中聲速剖面上下層深度界限的閾值與上下層的重疊深度是根據(jù)綜合分析實(shí)驗(yàn)中的聲速剖面,結(jié)合經(jīng)驗(yàn)人為選取所得。關(guān)于閾值和重疊深度的確定方法還需進(jìn)一步研究。

      猜你喜歡
      階次聲速下層
      階次分析在驅(qū)動(dòng)橋異響中的應(yīng)用
      基于Vold-Kalman濾波的階次分析系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)*
      基于齒輪階次密度優(yōu)化的變速器降噪研究
      一類多個(gè)下層的雙層規(guī)劃問題
      積雪
      聲速是如何測定的
      陜西橫山羅圪臺村元代壁畫墓發(fā)掘簡報(bào)
      考古與文物(2016年5期)2016-12-21 06:28:48
      跨聲速風(fēng)洞全模顫振試驗(yàn)技術(shù)
      機(jī)翼跨聲速抖振研究進(jìn)展
      有借有還
      辰溪县| 平塘县| 梅河口市| 疏附县| 霍城县| 延吉市| 昌图县| 云霄县| 神农架林区| 调兵山市| 布拖县| 离岛区| 平湖市| 汪清县| 民勤县| 林芝县| 景泰县| 定西市| 左云县| 台南县| 商洛市| 桑日县| 遵义市| 杂多县| 若尔盖县| 万宁市| 青神县| 即墨市| 河间市| 固安县| 柘荣县| 洪江市| 泸水县| 双峰县| 湟中县| 巴中市| 平阴县| 浑源县| 嘉义市| 漳州市| 会宁县|