董佳易 李琛琛 張焓
摘要:貓傳染性腹膜炎(Feline Infectious Peritonitis,F(xiàn)IP)是一種由病毒引起的嚴(yán)重的全身性疾病,死亡率較高。FIP的研究歷史并不長(zhǎng),直到20世紀(jì)50年代才出現(xiàn)臨床報(bào)道,因此對(duì)其發(fā)病機(jī)制的認(rèn)識(shí)仍然停留在非?;A(chǔ)的水平。近些年來(lái),針對(duì)FIP的研究出現(xiàn)了可喜的進(jìn)展,總結(jié)了FIP的免疫致病機(jī)制,為該病的預(yù)防、診斷及治療提供參考。
關(guān)鍵詞:貓傳染性腹膜炎(Feline Infectious Peritonitis,F(xiàn)IP);致病機(jī)制;免疫應(yīng)答;免疫調(diào)節(jié)
中圖分類(lèi)號(hào):S858.293? ? ? ? 文獻(xiàn)標(biāo)識(shí)碼:A? ? ? ? 文章編號(hào):1007-273X(2020)04-0013-03
貓傳染性腹膜炎(Feline Infectious Peritonitis,F(xiàn)IP)是由貓?bào)w內(nèi)攜帶的貓冠狀病毒(Feline coronavirus,F(xiàn)CoV)發(fā)生變異而引起的一種全身多系統(tǒng)綜合征,致死率高,嚴(yán)重影響家貓的生存率[1]。FIP有兩個(gè)發(fā)病高峰,分別是6月齡至2歲以及大于10歲。FCoV屬于冠狀病毒(Coronavirus,CoV)科,CoV是已知具有最大量遺傳物質(zhì)的RNA病毒,常發(fā)生病毒之間重組,導(dǎo)致較高的病毒變異率。FCoV可按照生物類(lèi)型分為兩種:一種是普遍存在的引起自限性腹瀉的貓腸道冠狀病毒(Feline enteric coronavirus,F(xiàn)ECV),另一種是引起貓致死性疾病的貓傳染性腹膜炎病毒(Feline infectious peritonitis virus,F(xiàn)IPV)[2],包括Ⅰ、Ⅱ兩種血清型,它們都可以發(fā)生變異而引起FIP[3]。FECV廣泛存在于野外及家養(yǎng)環(huán)境中的貓?bào)w內(nèi),其持續(xù)性感染一般無(wú)害,但在大約5%~12%的貓?bào)w內(nèi)病毒發(fā)生了基因突變[4,5],從根本上改變了其致病性,轉(zhuǎn)變?yōu)橹旅腇IPV。FECV到FIPV轉(zhuǎn)化過(guò)程中,F(xiàn)ECV的ORF 3c、ORF 7b和spike蛋白基因發(fā)生突變[6,7]。這些突變導(dǎo)致病毒更容易進(jìn)入巨噬細(xì)胞內(nèi),而不是之前寄生的腸道上皮細(xì)胞內(nèi)[5,8]。FIPV通過(guò)與巨噬細(xì)胞相關(guān)的病毒血癥傳播到器官和組織,隨后在漿膜、網(wǎng)膜、胸膜、腦膜和葡萄膜束的內(nèi)皮小靜脈播散,引起異常的免疫應(yīng)答,繼而漸進(jìn)性地引起全身炎癥反應(yīng)[9]。因此,研究FIP發(fā)病過(guò)程中的免疫致病機(jī)制,對(duì)FIP的科學(xué)研究和臨床診治具有重要意義。
1? 不同類(lèi)型FIP的免疫致病機(jī)制
根據(jù)后期臨床癥狀不同,F(xiàn)IP主要分為滲出性(Effusive)即濕性FIP以及非滲出性(Non-effusive)即干性FIP,但亦有少數(shù)患貓同時(shí)表現(xiàn)出兩類(lèi)癥狀。
濕性FIP是由于患貓的細(xì)胞免疫反應(yīng)較弱,抗FIPV抗體大量產(chǎn)生,從而導(dǎo)致免疫復(fù)合物的沉積所致。濕性FIP伴有的胸腔、腹腔、心包、陰囊等處積液是體液免疫系統(tǒng)過(guò)度反應(yīng)的表現(xiàn)。在濕性FIP中,血液淋巴細(xì)胞減少與疾病的發(fā)展和預(yù)后存在顯著相關(guān)性[10]。
干性FIP往往不伴有腹水,病變主要侵及眼、中樞神經(jīng)、腎和肝等組織器官,并在這些部位形成肉芽腫;還有一種特殊的形式,在皮膚形成無(wú)痛的結(jié)節(jié)。干性FIP中病毒的大量復(fù)制導(dǎo)致機(jī)體免疫系統(tǒng)在各部位作出過(guò)激反應(yīng),并形成肉芽腫[11],在這些肉芽腫中存在大量巨噬細(xì)胞,并能在巨噬細(xì)胞中檢測(cè)到FIPV抗原,且周?chē)橛写罅扛缓鞍踪|(zhì)的水腫液、少量的淋巴細(xì)胞、中性粒細(xì)胞和漿細(xì)胞[2,12]。
2? FIP的免疫應(yīng)答機(jī)制
當(dāng)前普遍認(rèn)為,針對(duì)FIP的免疫應(yīng)答主要是由細(xì)胞介導(dǎo)的,在此過(guò)程中,細(xì)胞免疫參與了對(duì)病毒的抗感染免疫應(yīng)答及對(duì)體液免疫的調(diào)節(jié)。同時(shí),宿主免疫系統(tǒng)對(duì)感染細(xì)胞的應(yīng)答異常,也是導(dǎo)致繼發(fā)病理?yè)p傷的重要因素。
2.1? T細(xì)胞介導(dǎo)的致病機(jī)制
T細(xì)胞在細(xì)胞免疫反應(yīng)中扮演著重要的角色。發(fā)生FIPV感染后,機(jī)體針對(duì)FIPV的抗感染免疫應(yīng)答主要是由T細(xì)胞介導(dǎo)的[13]。相對(duì)成年貓,由于幼齡貓的T細(xì)胞免疫機(jī)制尚未完善,F(xiàn)IPV的感染更易發(fā)展。T細(xì)胞介導(dǎo)的免疫應(yīng)答在FIPV初次感染中的作用機(jī)制尚不清楚,但其在晚期抗病毒T細(xì)胞應(yīng)答的恢復(fù)可表現(xiàn)出對(duì)病程發(fā)展的控制或?qū)膊〉牡挚沽?。此外,在初次感染中存活的貓,在二次受到FIPV感染后的多個(gè)時(shí)期內(nèi)均表現(xiàn)出抗病毒T細(xì)胞免疫應(yīng)答[14]。FIPV感染后常發(fā)生CD4+T細(xì)胞減少,引起細(xì)胞介導(dǎo)的免疫抑制[15],細(xì)胞介導(dǎo)免疫的缺陷促進(jìn)了過(guò)度的體液免疫應(yīng)答。
2.2? B細(xì)胞介導(dǎo)的致病機(jī)制
B細(xì)胞由骨髓中淋巴樣干細(xì)胞分化發(fā)育而來(lái),通過(guò)產(chǎn)生抗體發(fā)揮特異性體液免疫功能,起到抗感染的重要作用。FIPV的感染能刺激B細(xì)胞成熟。一項(xiàng)研究表明,F(xiàn)IP患貓的外周血表面免疫球蛋白陽(yáng)性細(xì)胞的比率(sIg+)與CD21+細(xì)胞的比例顯著高于正常水平,并強(qiáng)烈表達(dá)編碼B淋巴細(xì)胞誘導(dǎo)成熟蛋白1(Blimp-1)的mRNA[16]。
通常認(rèn)為,F(xiàn)IP病程中產(chǎn)生的病理性積液是由于T細(xì)胞和B細(xì)胞免疫反應(yīng)的不平衡引起的。濕性FIP患貓發(fā)生強(qiáng)烈的體液免疫應(yīng)答,但T細(xì)胞介導(dǎo)的細(xì)胞免疫未能增強(qiáng)[17]。另一方面,F(xiàn)IPV感染后,抗體的產(chǎn)生增強(qiáng)了巨噬細(xì)胞對(duì)FIPV的吸收和復(fù)制,使疾病進(jìn)一步發(fā)展,并導(dǎo)致Ⅲ型過(guò)敏性(抗體介導(dǎo)或arthus型)血管炎[18],這與干性FIP病程中化膿性肉芽腫周?chē)乃[液和炎性細(xì)胞浸潤(rùn)有關(guān),在疾病晚期免疫系統(tǒng)崩潰時(shí),干性FIP會(huì)發(fā)展為濕性。
針對(duì)FIPV感染的體液免疫還存在有抗體依賴(lài)性增強(qiáng)(Antibody dependent enhancement,ADE)作用,即抗FIPV抗體與病原結(jié)合后,通過(guò)其Fc段與某些表面表達(dá)FcR的細(xì)胞結(jié)合從而介導(dǎo)病毒進(jìn)入這些細(xì)胞,增強(qiáng)了FIPV的感染性[2]。ADE作用導(dǎo)致了FIP的預(yù)防和生物制品治療開(kāi)發(fā)的困難。
2.3? 巨噬細(xì)胞介導(dǎo)的致病機(jī)制
巨噬細(xì)胞是機(jī)體固有免疫系統(tǒng)的重要組成部分,由定居和游走兩類(lèi)細(xì)胞組成,具有很強(qiáng)的變形運(yùn)動(dòng)和吞噬殺傷、清除病原體等抗原性異物的能力。FIP的大部分病理過(guò)程與巨噬細(xì)胞對(duì)病毒感染的反應(yīng)以及宿主免疫系統(tǒng)對(duì)感染細(xì)胞的應(yīng)答有關(guān)[15]。
有研究認(rèn)為,F(xiàn)ECV突變的方式導(dǎo)致它們失去對(duì)腸細(xì)胞的趨向性,轉(zhuǎn)化為對(duì)巨噬細(xì)胞具有趨向性的FIPV,該病毒可以在巨噬細(xì)胞中復(fù)制,從而導(dǎo)致FIP發(fā)生發(fā)展[19-21]。這些突變涉及對(duì)突變體的積極選擇,使這些突變體越來(lái)越適合在巨噬細(xì)胞中復(fù)制,最終的靶細(xì)胞是一群獨(dú)特的單核巨噬細(xì)胞前體,它們對(duì)漿膜、網(wǎng)膜、胸膜、腦膜的小靜脈內(nèi)皮有特定的親和力[22,23]。
FIPV和冠狀病毒科的研究支持淋巴細(xì)胞的凋亡是FIP傳播的關(guān)鍵機(jī)制[24-26]。在細(xì)胞凋亡過(guò)程中,腹腔巨噬細(xì)胞相較于未成熟的巨噬細(xì)胞有大的病毒載量,提示巨噬細(xì)胞凋亡在病毒傳播過(guò)程中起著重要作用[27]。
3? FIP的免疫調(diào)節(jié)機(jī)制
FIP病程中,細(xì)胞因子對(duì)免疫應(yīng)答的調(diào)節(jié)作用是一項(xiàng)重要的免疫致病機(jī)制。編碼包括白介素(IL)-1β、IL-6、IL-15,腫瘤壞死因子(TNF)-α、CXCL10、CCL8,干擾素(IFN)-α、IFN-β和IFN-γ等炎癥細(xì)胞因子和趨化因子的基因,在患有FIP的貓?bào)w內(nèi)有較高的表達(dá)水平,與炎癥途徑激活相符[28]。
3.1? IFN的免疫致病機(jī)制
干擾素(IFNs)可以通過(guò)誘導(dǎo)數(shù)百個(gè)干擾素刺激基因(ISGs)的轉(zhuǎn)錄,抑制大部分病毒感染[29]。生活于存在FECV感染環(huán)境的貓的血清IFN-γ濃度總體上要高于生活于存在FIPV感染環(huán)境的貓,但FIP患貓的體腔積液中IFN-γ更高,反映了局部炎癥的產(chǎn)生[30]。這些報(bào)道說(shuō)明感染FECV的貓具有強(qiáng)烈的全身IFN-γ反應(yīng),而患有FIP的貓則在病灶的組織水平上具有強(qiáng)IFN-γ反應(yīng)。實(shí)驗(yàn)環(huán)境下感染FIPV且沒(méi)有發(fā)病的貓的外周血單個(gè)核細(xì)胞暴露于加熱滅活的FIPV后,IFN-γ水平顯著高于死于FIP的貓;CD8+ T細(xì)胞中IFN-γ表達(dá)水平的增加比CD4+ T細(xì)胞中更強(qiáng)[31]。這也進(jìn)一步說(shuō)明細(xì)胞免疫對(duì)抵抗FIP的重要作用。
3.2? TNF-α的免疫致病機(jī)制
FIP病程中,細(xì)胞因子信號(hào)通路也參與了細(xì)胞凋亡過(guò)程[32]。FIPV在巨噬細(xì)胞/單核細(xì)胞中復(fù)制誘導(dǎo)TNF-α產(chǎn)生[33],TNF-α的產(chǎn)生參與并加重了FIP的病理過(guò)程。TNF-α的來(lái)源還包括T淋巴細(xì)胞,有證據(jù)顯示,活化的T細(xì)胞會(huì)產(chǎn)生過(guò)多的TNF-α,可能導(dǎo)致淋巴細(xì)胞的凋亡[34]。FIP病程中控制TNF-α的產(chǎn)生可減輕炎性病理?yè)p傷,目前已有抗fTNF-α抗體(Anti-fTNF-α antibody)可改善試驗(yàn)條件下感染FIPV的SPF貓的FIP癥狀和存活率[33]。
4? 小結(jié)與展望
研究FIP的免疫致病機(jī)制,為疾病的預(yù)防、診斷、治療提供了指導(dǎo)。在FIP病程中,F(xiàn)ECV發(fā)生基因突變轉(zhuǎn)變?yōu)镕IPV并獲得對(duì)巨噬細(xì)胞的趨向性,迅速在體內(nèi)傳播,同時(shí)破壞了機(jī)體的固有免疫應(yīng)答;FIPV的感染使B細(xì)胞介導(dǎo)的適應(yīng)性免疫應(yīng)答過(guò)度反應(yīng),造成免疫性病理?yè)p傷。
了解疾病發(fā)展中涉及的致病和免疫機(jī)制對(duì)于確定FIP的有效治療方法至關(guān)重要。通過(guò)對(duì)T細(xì)胞介導(dǎo)的適應(yīng)性免疫應(yīng)答進(jìn)行進(jìn)一步研究,從細(xì)胞因子水平進(jìn)一步了解免疫調(diào)控機(jī)制,可以找到更有效的診治方法。未來(lái)還需關(guān)注B細(xì)胞對(duì)FIPV的免疫應(yīng)答機(jī)制以控制其造成的病理?yè)p傷,以及ADE對(duì)FIP預(yù)防和藥物治療的影響。
參考文獻(xiàn):
[1] EHMANN R,KRISTEN-BURMANN C,BANK-WOLF B,et al. Reverse genetics for type I feline coronavirus field isolate to study the molecular pathogenesis of feline infectious peritonitis[J].mBio,2018,9(4):e01422-18.
[2] PEDERSEN N C. A review of feline infectious peritonitis virus infection:1963-2008[J].J Feline Med Surg,2009,11:225-258.
[3] VOGEL L,VAN DER LUBBEN M,TE LINTELO E G,et al. Pathogenic characteristics of persistent feline enteric coronavirus infection in cats[J].Vet Res,2010,41:71.
[4] ADDIE DD,JARRETT O. A study of naturally occurring feline coronavirus infections in kittens[J].Vet Rec,1992,130:133-137.
[5] TEKES G,THIEL H J. Feline coronaviruses:pathogenesis of feline infectious peritonitis[J].Adv Virus Res,2016,96:193-218.
[6] BANK-WOLF B R, STALLKAMP I,WIESE S,et al. Mutations of 3c and spike protein genes correlate with the occurrence of feline infectious peritonitis.[J].Vet Microbiol,2014,173:177-188.
[7] BORSCHENSKY C M,REINACHER M. Mutations in the 3c and 7b genes of feline coronavirus in spontaneously affected FIP cats[J].Res Vet Sci,2014,97:333-340.
[8] PEDERSEN N C,LIU H, SCARLETT J,et al. Feline infectious peritonitis:role of the feline coronavirus 3c gene in intestinal tropism and pathogenicity based upon isolates from resident and adopted shelter cats[J].Virus Res,2012,165:17-28.
9] ADDIE D,BELAK S,BOUCRAUT-BARALON C,et al. Feline infectious peritonitis. ABCD guidelines on prevention and management[J].J? Feline Med Surg,2009,11:594-604.
[10] PEDERSEN N C,ECKSTRAND C,LIU H,et al. Levels of feline infectious peritonitis virus in blood,effusions,and various tissues and the role of lymphopenia in disease outcome following experimental infection[J].Vet Microbiol,2015,175:157-166.
[11] KAPLAN B. In memoriam:Janis Huston Audin,MSc,DVM,1950—2009. Dynamic editor-in-chief of the journal of the American veterinary medical association and strong One health advocate dies[J].Vet Ital,2009,45:463.
[12] WANG H,HIRABAYASHI M,CHAMBERS J K,et al. Immunohistochemical studies on meningoencephalitis in feline infectious peritonitis (FIP)[J].J Vet Med Sci,2018,80:1813-1817.
[13] TAKANO T,MORIOKA H,GOMI K,et al. Screening and identification of T helper 1 and linear immunodominant antibody-binding epitopes in spike 1 domain and membrane protein of feline infectious peritonitis virus[J].Vaccine,2014,32:1834-1840.
[14] MUSTAFFA-KAMAL F,LIU H,PEDERSEN N C,et al. Characterization of antiviral T cell responses during primary and secondary challenge of laboratory cats with feline infectious peritonitis virus (FIPV)[J].BMC Vet Res,2019,15:165.
[15] KIPAR A,MELI M L. Feline infectious peritonitis:Still an enigma?[J].Vet Pathol,2014,51:505-526.
[16] TAKANO T,AZUMA N,HASHIDA Y,et al. B-cell activation in cats with feline infectious peritonitis (FIP) by FIP-virus-induced B-cell differentiation/survival factors[J].Arch Virol, 2009,154:27-35.
[17] OLSEN C W. A review of feline infectious peritonitis virus:molecular biology,immunopathogenesis,clinical aspects,and vaccination[J].Vet Microbiol,1993,36:1-37.
[18] PEDERSEN N C,LIU H,DODD K A,et al. Significance of coronavirus mutants in feces and diseased tissues of cats suffering from feline infectious peritonitis[J].Viruses,2009,1:166-184.
[19] ST JOHN S E,THERKELSEN M D,NYALAPATLA P R,et al. X-ray structure and inhibition of the feline infectious peritonitis virus 3C-like protease:Structural implications for drug design[J].Bioorg Med Chem Lett,2015,25:5072-5077.
[20] DEDEURWAERDER A,DESMARETS L M,OLYSLAEGERS D A,et al. The role of accessory proteins in the replication of feline infectious peritonitis virus in peripheral blood monocytes[J].Vet Microbiol,2013,162:447-455.
[21] CHANG H W,EGBERINK H F,HALPIN R,et al. Spike protein fusion peptide and feline coronavirus virulence[J].Emerg Infect Dis,2012,18:1089-1095.
[22] SHIRATO K,CHANG H W,ROTTIER P J M. Differential susceptibility of macrophages to serotype II feline coronaviruses correlates with differences in the viral spike protein[J].Virus Res,2018,255:14-23.
[23] PEDERSEN N C. An update on feline infectious peritonitis:virology and immunopathogenesis[J].Vet J,2014,201:123-132.
[24] LIU L,WEI Q,LIN Q,et al. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection[J].JCI Insight,2019,4.
[25] AMARASINGHE A,ABDUL-CADER M S,ALMATROUK Z,et al. Induction of innate host responses characterized by production of interleukin (IL)-1beta and recruitment of macrophages to the respiratory tract of chickens following infection with infectious bronchitis virus (IBV)[J].Vet Microbiol,2018,215:1-10.
[26] CHANNAPPANAVAR R,PERLMAN S. Pathogenic human coronavirus infections:causes and consequences of cytokine storm and immunopathology.[J].Semin immunopatho,2017,39:529-539.
[27] WATANABE R,ECKSTRAND C,LIU H,et al. Characterization of peritoneal cells from cats with experimentally-induced feline infectious peritonitis (FIP) using RNA-seq[J].Vet Res,2018,49:81.
[28] MALBON A J,MELI M L,BARKER E N,et al. Inflammatory mediators in the mesenteric lymph nodes,site of a possible intermediate phase in the immune response to feline coronavirus and the pathogenesis of feline infectious peritonitis?[J].J Comp Pathol,2019,166:69-86.
[29] LIU Y,LIU X,KANG H,et al. Identification of feline interferon regulatory factor 1 as an efficient antiviral factor against the replication of feline calicivirus and other feline viruses[J].Biomed Res Int,2018,2739830.
[30] GIORDANO A,PALTRINIERI S. Interferon-gamma in the serum and effusions of cats with feline coronavirus infection[J].Vet J,2009,180:396-398.
[31] SATOH R, KAKU A,SATOMURA M,et al. Development of monoclonal antibodies (MAbs) to feline interferon (fIFN)-gamma as tools to evaluate cellular immune responses to feline infectious peritonitis virus (FIPV)[J].J Feline Med Surg,2011,13:427-435.
[32] SHUID A N,SAFI N,HAGHANI A,et al. Apoptosis transcriptional mechanism of feline infectious peritonitis virus infected cells[J].Apoptosis,2015,20:1457-1470.
[33] DOKI T,TAKANO T,KAWAGOE K,et al. Therapeutic effect of anti-feline TNF-alpha monoclonal antibody for feline infectious peritonitis[J].Res Vet Sci,2016,104:17-23.
[34] DEAN G A,OLIVRY T,STANTON C,et al. In vivo cytokine response to experimental feline infectious peritonitis virus infection[J].Vet Microbiol,2003,97:1-12.