• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design of a variable frequency comb reflectometer system for the ASDEX Upgrade tokamak

    2020-06-28 06:14:32HAPPELKASPAREKHENNEQUINFLERHONORandtheASDEXUpgradeTeam
    Plasma Science and Technology 2020年6期

    T HAPPEL, W KASPAREK, P HENNEQUIN, K H?FLER,4, C HONORé and the ASDEX Upgrade Team

    1 Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany

    2 IGVP, Universit?t Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, Germany

    3 Laboratoire de Physique des Plasmas, CNRS, école Polytechnique, Sorbonne Université, F-91120 Palaiseau, France

    4 Physik-Department E28, Technische Universit?t München, James-Franck-Str. 1, 85748 Garching,Germany

    Abstract Comb reflectometers offer the advantage of measuring several radial positions in plasma simultaneously. This allows for the investigation of fast timescales during L-H transitions,I-phases, I-mode bursts, transients during heat wave propagation, etc. A drawback of many present-day systems is that they use a fixed frequency difference between the probing frequencies.Hence,although the central probing frequency can be varied,the probing frequency difference is usually fixed.The new design presented in this work uses an advanced microwave generation and detection scheme, which allows for arbitrary probing frequencies and probing frequency separations.

    Keywords: reflectometry, microwaves, plasma diagnostic, reflectometer, turbulence(Some figures may appear in colour only in the online journal)

    1. Introduction

    A detailed understanding of physics processes in magnetic confinement fusion plasmas is of high importance in order to facilitate predictions for future devices,and possibly for their optimization in terms of efficiency. To obtain such a detailed understanding, detailed measurements of relevant physics quantities are required. Usually, not only good spatial and temporal resolution for a measurement is desired,but also that the measurement can be obtained at various radial locations in the plasmas at the same time. To this end, various diagnostic methods usually employ different lines of sight.

    In the case of fluctuation reflectometry or Doppler backscattering, various radial positions can be probed by using different probing frequencies, since these reflect at different densities (O-mode) and additionally magnetic field strengths (X-mode). For fluctuation reflectometry and Doppler backscattering applications, usually the probing of different radial positions is obtained by using frequency hopping reflectometer systems [1–3]. These systems can change the probing frequency typically within less than a millisecond,which means that radial profiles of plasma parameters can usually obtained within 50–100 ms, depending on the radial resolution and radial coverage chosen.

    A somewhat different concept is based on the launch of several probing frequencies simultaneously into the plasma and their simultaneous detection [4–14]. In this way, the information of several radial positions is obtained at the same time. Several drawbacks have previously prevented these systems from becoming the standard of reflectometer probing techniques, which is still the hopping system. First, the probing frequency difference has so far mostly been constant(excluding [12]). Second, the detection part of such a reflectometer has to be significantly more advanced and complex than for a hopping system. Third, since a comb reflectometer requires the data of various probing frequencies acquired simultaneously,the data acquisition system is also a critical part of a comb reflectometer.

    This paper presents the design of a new comb reflectometer system for the W-band of frequencies (75–110 GHz)to be built for use on the ASDEX Upgrade tokamak (AUG).A variable frequency difference will be implemented,enabling measurements at arbitrary radial separations. Furthermore, the center frequency of the comb can be moved over the whole W-band, resulting in a high flexibility of the system. Two emitter concepts are proposed, one is based on two-tone input into the frequency multiplier,while the other is based on three-tone input.While these concepts will probably yield somewhat less signal-to-noise ratios than the systems based on nonlinear transmission lines [5, 7, 9, 11], they are expected to be significantly more flexible.

    This paper is organized as follows: section 2 introduces the hardware concepts of two-tone (2.1) and three-tone (2.2)input into the multiplier, followed by the detection chain(2.3). In section 3 experimental measurement results are presented from both laboratory and an AUG plasma,followed by a summary in section 4.

    2. Hardware concepts

    Several methods exist for the generation of a comb of frequencies, of which the most common one is probably the usage of a so-called nonlinear transmission line [5, 7, 9, 11].For the methods presented below, the nonlinear behavior of frequency multipliers is exploited. Therefore, the operational concept is briefly summarized.

    It should be noted that real multipliers are significantly more complex than this simple example. For instance, the filtering in the W-band is obtained by building the multiplier such that several undesired harmonics are canceled out internally. Nevertheless, this simple exercise is useful to understanding the mixer output investigated in the following.

    Figure 1.Harmonic generation of a typical frequency multiplier.(a) Diode input signal, (b) its spectrum, (c) diode output, (d) its corresponding spectrum (green), and the filter (red) used to obtain the (e) multiplied signal.

    2.1. Two-tone input to multiplier

    In section 2, a single frequency was used as input into the ×6-multiplier. If two frequencies are used, f1and f2, so-called intermodulation products will be generated on the output,which consist of 6f1, 5f1+f2, 4f1+ 2f2, 3f1+ 3f2, 2f1+ 4f1,f1+5f2, 6f2. This method hasbeenexplored in the context of Doppler backscattering previously on TCV [12].

    In fgiure 2 the result of using two frequencies(f1=14 GHz, f2=16 GHz) as an input into the multiplier is depicted. As before, fgiure 2(a) shows an excerpt from the time trace of the diode input signal, and fgiure 2(b) shows the corresponding spectrum. The beat frequency fb=f2-f1=2 GHz is visible in the growth and the decay of the input signal(blue line)on a 0.5 ns timescale(periodT= 1 (f2-f1)).In the spectrum,two peaks are visible.The output of the diode is again shown in green in figure 2(c).In this case,the nonlinearity creates spikes of somewhat different shape than before.The spectrum of the signal after the diode(figure 2(d))shows again the harmonics and additionally the aforementioned intermodulation products.Specifically, and of importance for this application, there is a comb of frequencies in the W-band region between 6f1=84and 6f2=96 GHz, with the power the strongest in the center, at 90 GHz. This will also be seen in the plasma tests later (cf section 3.3). As above, appropriate bandpass filtering will result in the desired frequency comb in the W-band range of frequencies.This concept has been tested both in the laboratory and

    Figure 6.Test of two-tone input on a plasma in AUG.The spectrogram of a 100 ms time sequence,where different probing frequencies are analyzed by stepping the local oscillator frequency (b). For details, refer to the text.

    In contrast, using a different combination of input frequencies(13.0/14.2 GHz),the spectrum after the×6-multiplier is significantly more peaked, i.e. only three out of the seven desired frequencies are inside a 10 dBc power window. The remaining frequencies are at significantly lower input powers(<-15 dBc),which is probably due to the non-optimized input power levels and non-optimum components involved. If this configuration was used in the experiment,this would mean that the low-power frequencies might be difficult to detect,or at least have insufficient signal-to-noise ratios. However, it should be pointed out that these are first tests,and further optimizations are ongoing in order to improve the resulting spectra.

    In summary, frequency comb generation via two-tone input works, and a test system can be set up comparably easily. However, significant work is required in the optimization of different frequency inputs into the multiplier. It is likely that a lookup table has to be constructed with optimum input power levels for each combination of frequencies foreseen to be used in the final system.

    3.2. Laboratory test of three-tone input

    The method of three-tone input into the×6-multiplier has also been investigated in the laboratory.The DSB mixer used was a Marki?MMIQ-0520L model.For double sideband generation,the LO port and only one of the two in-phase and quadrature ports (with similar results) were used. The first results are shown in figure 5. In this example, fLO=15.2 GHz. In figure 5(a), the intermediate frequency is fIF=4.0 GHz. The resulting frequencies in the W-band have comparable power levels, which will give good signal-to-noise ratios once the system is deployed for operation on AUG. The measurement setup was as presented in section 3.1, so real values are about 3 dBm higher. The central frequency, 91.2 GHz, is somewhat lower than the other comb frequencies. This result is obtained when the multiplier output is adjusted such that the 10 dB power amplifier is in mild saturation.Six frequencies are within 6 dB, which is a good result for a comb reflectometer with variable center frequency and variable frequency separation.In

    figure 5(b), the frequency difference is fIF=6.0 GHz. In this case, only four frequencies lie within 6 dB power and the frequency at 109.2 GHz is at a level that cannot be used for a Doppler backscattering experiment. Still, apart from the frequency at 109.2 GHz, a comb spanning the whole W-band is generated,which is a good confirmation of the results expected from section 2.2.

    3.3. Experimental verification of two-tone input on an AUG plasma

    Figure 7. Spectra obtained from a system based on two-tone input into the multiplier from the AUG tokamak. The center frequencies show the largest power(-60 dB in(c)and(d)).Although the power is significantly lower at 61 and 65 GHz, a Doppler shifted peak is still visible. For details refer to the text.

    A system working in the V-band of frequencies(50–75 GHz)is used to test the reliable operation of two-tone input into the multiplier. Since for the present V-band system [15] a ×4-multiplier is used, a comb with five frequencies is expected following the argument in section 2.1. For the present test,two synthesizers were used to generate the ×4-multiplier input at f1=15.25 GHz and f2=16.25 GHz. After the multiplier,a comb is expected with the frequencies of 61,62,63,64,and 65 GHz.These frequencies are sent to the plasma,and the backscattered wave is analyzed. Since no dedicated system was available to detect a comb of frequencies,the LO frequency was stepped in 1 GHz steps from 60.6–64.6 GHz,and then from 61.4–65.4 GHz. The two different patterns should result in the same backscattered spectra, but with the frequency axis reversed.

    A spectrogram of this setup is shown for a 100 ms time window of AUG discharge#36118, which was in the L-mode during this time window, as shown in figure 6(a). The LO frequency is stepped every 10 ms, which results in the frequency pattern shown in figure 6(b).There is a Doppler shift visible for every probing frequency used. However, the strongest backscattered power is observed for the central frequencies, i.e. 63 and 64 GHz. The backscattered intensity at 62 and 65 GHz is significantly lower, and for 61 GHz, while visible, the backscattered power is very low. This is because the central frequencies are stronger when using a two-tone input than the ones corresponding to the edges of the generated comb spectrum.This is also visible in figure 2, where the peaks at 84 and 96 GHz are smaller than those at 88,90,and 92 GHz.In the test with plasma, this effect is more significant. However, it should be pointed out that the frequency comb in this test was generated with two synthesizers without output power control.It is highly likely that the power distribution among the different probing frequencies can be balanced much better than in figure 6(a).Another observation is that the Doppler shift goes from positive to negative frequencies when the intermediate frequency (IF)is changed from negative (-400 MHz) to positive (+400 MHz),which is to be expected, and a satisfying confirmation of the working principle of the two-tone input system.

    The spectra of the backscattered wave are presented in figure 7 for the comb of five different probing frequencies.The blue spectra have been obtained by using the negative IF,and the orange spectra have been obtained using a positive IF,and have then been flipped. The spectra compare very well.The power drop from the strongest backscattered power(-60 dB in figure 7(d)) to the one with lowest backscattered power (-80 dB in figure 7(a)) is about 20 dB. As mentioned before, this can likely be at least partly avoided by using adequate multiplier input power levels in order to obtain a frequency comb of comparable power.

    This result shows that a comb generation via the two-tone input method is possible, even without any optimizations in terms of ×4-multiplier input power, adaptation of power levels in the detection branch, or any filtering. Hence, the system is now being put forward, and it is expected to be operational in summer 2020 for deployment on AUG.

    4. Summary

    The design of a new comb reflectometer system for AUG has been presented. The system will work in the W-band of frequencies, and the comb will be generated either by two-tone or by three-tone input into a ×6-multiplier. The detection system is based on a two-step downconversion, which will provide the intermediate frequencies to be fed into standard IQ detectors. First laboratory tests and tests on an AUG plasma have shown the reliability of the concept.

    The advantages of the presented concepts are that it can work at arbitrary frequencies and arbitrary frequency separations. Only the frequency separation between any two neighboring frequencies has to be the same. This will allow studies of the perpendicular velocity and its shear at various radial positions in the plasma simultaneously, radial propagation of events or the radial correlation measurement and its dynamic behavior.

    Acknowledgments

    This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 and 2019–2020 under grant agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

    亚洲精品一卡2卡三卡4卡5卡 | 只有这里有精品99| 久久久久久亚洲精品国产蜜桃av| 欧美97在线视频| 美女脱内裤让男人舔精品视频| 99热全是精品| 午夜福利,免费看| 亚洲 国产 在线| 极品人妻少妇av视频| 国产深夜福利视频在线观看| 中文字幕高清在线视频| 纵有疾风起免费观看全集完整版| 丰满饥渴人妻一区二区三| √禁漫天堂资源中文www| 亚洲国产精品成人久久小说| cao死你这个sao货| 久久99热这里只频精品6学生| 在线观看一区二区三区激情| 性高湖久久久久久久久免费观看| 人妻人人澡人人爽人人| 国产一卡二卡三卡精品| 在线天堂中文资源库| 欧美精品啪啪一区二区三区 | 人人妻人人澡人人爽人人夜夜| 少妇的丰满在线观看| 十八禁高潮呻吟视频| 精品久久蜜臀av无| 亚洲图色成人| 日韩大片免费观看网站| 99国产精品免费福利视频| 成人国产一区最新在线观看 | 18禁观看日本| 手机成人av网站| 亚洲情色 制服丝袜| √禁漫天堂资源中文www| a级毛片在线看网站| 日本欧美国产在线视频| 国产黄频视频在线观看| 午夜福利,免费看| 精品卡一卡二卡四卡免费| bbb黄色大片| 另类精品久久| 亚洲av男天堂| 夫妻性生交免费视频一级片| 水蜜桃什么品种好| 久久久久久久精品精品| 日韩熟女老妇一区二区性免费视频| 2021少妇久久久久久久久久久| 岛国毛片在线播放| 麻豆乱淫一区二区| 国产成人免费观看mmmm| 亚洲av欧美aⅴ国产| 国产一区有黄有色的免费视频| 最黄视频免费看| 国产av精品麻豆| 成年人免费黄色播放视频| 波多野结衣av一区二区av| 国产精品一区二区免费欧美 | a级毛片黄视频| 最近最新中文字幕大全免费视频 | 香蕉丝袜av| 亚洲第一av免费看| 2021少妇久久久久久久久久久| 女人精品久久久久毛片| 18禁国产床啪视频网站| 欧美日韩av久久| 一区在线观看完整版| 免费少妇av软件| 在线观看www视频免费| 国产黄色视频一区二区在线观看| 亚洲五月婷婷丁香| 一本大道久久a久久精品| 真人做人爱边吃奶动态| 久久精品aⅴ一区二区三区四区| 中文字幕最新亚洲高清| 日韩制服丝袜自拍偷拍| 高清欧美精品videossex| 色精品久久人妻99蜜桃| 黑丝袜美女国产一区| 成人国产av品久久久| 婷婷色av中文字幕| 又大又爽又粗| 亚洲欧洲精品一区二区精品久久久| 久久 成人 亚洲| 精品少妇内射三级| videosex国产| 蜜桃在线观看..| av一本久久久久| 午夜老司机福利片| 久久久国产一区二区| 亚洲欧美一区二区三区久久| 一本一本久久a久久精品综合妖精| 亚洲情色 制服丝袜| 性高湖久久久久久久久免费观看| 各种免费的搞黄视频| 午夜免费观看性视频| 久久国产精品人妻蜜桃| 欧美激情极品国产一区二区三区| 99九九在线精品视频| 天天添夜夜摸| 在线观看免费高清a一片| 欧美激情高清一区二区三区| 国产男人的电影天堂91| 欧美日韩av久久| 天堂中文最新版在线下载| 啦啦啦啦在线视频资源| 久久久欧美国产精品| 成年人免费黄色播放视频| 国产免费视频播放在线视频| 国产三级黄色录像| 在线观看免费高清a一片| 国产高清不卡午夜福利| 精品少妇内射三级| 亚洲,欧美,日韩| 如日韩欧美国产精品一区二区三区| 午夜久久久在线观看| 欧美 日韩 精品 国产| 最近最新中文字幕大全免费视频 | 欧美日韩国产mv在线观看视频| 国产精品99久久99久久久不卡| 欧美av亚洲av综合av国产av| 少妇人妻 视频| 黑人欧美特级aaaaaa片| 国产成人一区二区三区免费视频网站 | 亚洲欧洲精品一区二区精品久久久| 国产真人三级小视频在线观看| 黑丝袜美女国产一区| 亚洲人成电影免费在线| 久久 成人 亚洲| 欧美亚洲日本最大视频资源| 国产在线免费精品| 亚洲国产av新网站| 一本综合久久免费| 老熟女久久久| 老司机影院毛片| 少妇人妻久久综合中文| 人妻人人澡人人爽人人| 亚洲国产看品久久| 母亲3免费完整高清在线观看| 一本—道久久a久久精品蜜桃钙片| 国产成人a∨麻豆精品| 午夜精品国产一区二区电影| 岛国毛片在线播放| 极品人妻少妇av视频| 免费在线观看日本一区| 亚洲精品国产av蜜桃| 九草在线视频观看| 欧美人与性动交α欧美精品济南到| 国产精品一区二区免费欧美 | 亚洲精品一二三| 亚洲人成电影观看| 在线观看国产h片| a 毛片基地| 久热这里只有精品99| 国产精品 国内视频| 亚洲欧洲日产国产| 丰满饥渴人妻一区二区三| 蜜桃在线观看..| 青草久久国产| 国产1区2区3区精品| 伊人久久大香线蕉亚洲五| 国产精品九九99| 观看av在线不卡| 在线观看免费高清a一片| 乱人伦中国视频| 国产精品av久久久久免费| 亚洲av男天堂| 亚洲专区国产一区二区| 老汉色av国产亚洲站长工具| 又大又黄又爽视频免费| 黑人猛操日本美女一级片| 麻豆乱淫一区二区| 深夜精品福利| 日韩伦理黄色片| 国产成人av激情在线播放| 亚洲精品中文字幕在线视频| 久久久国产精品麻豆| 少妇人妻 视频| 一本大道久久a久久精品| 欧美在线黄色| 国产黄频视频在线观看| 热re99久久国产66热| videos熟女内射| 国产成人精品久久二区二区91| 熟女少妇亚洲综合色aaa.| 日韩 亚洲 欧美在线| 久久天堂一区二区三区四区| 欧美日韩一级在线毛片| 在现免费观看毛片| 18禁国产床啪视频网站| 黄色片一级片一级黄色片| 久久精品成人免费网站| 精品一品国产午夜福利视频| 国产97色在线日韩免费| 日韩av免费高清视频| 亚洲成人手机| 久久国产精品影院| 十八禁网站网址无遮挡| 菩萨蛮人人尽说江南好唐韦庄| 久久人人爽人人片av| 成人免费观看视频高清| 免费在线观看日本一区| 亚洲第一青青草原| 欧美在线一区亚洲| 日韩大片免费观看网站| 97人妻天天添夜夜摸| 欧美老熟妇乱子伦牲交| 少妇的丰满在线观看| 一级黄片播放器| videosex国产| 亚洲国产精品一区三区| 精品人妻一区二区三区麻豆| 后天国语完整版免费观看| 亚洲中文日韩欧美视频| 国产不卡av网站在线观看| 日韩伦理黄色片| 手机成人av网站| 日韩,欧美,国产一区二区三区| 日本vs欧美在线观看视频| 欧美日韩精品网址| 欧美老熟妇乱子伦牲交| 成人国产av品久久久| 亚洲中文字幕日韩| 精品久久久久久久毛片微露脸 | 久久久久久久精品精品| 午夜免费观看性视频| 又大又黄又爽视频免费| 性色av一级| 国产熟女欧美一区二区| 脱女人内裤的视频| 1024香蕉在线观看| 少妇的丰满在线观看| 欧美亚洲日本最大视频资源| 亚洲精品自拍成人| 看免费av毛片| 午夜激情av网站| 亚洲国产欧美日韩在线播放| 久久久久久久精品精品| 国产老妇伦熟女老妇高清| 女性被躁到高潮视频| 我要看黄色一级片免费的| 久久久国产一区二区| 色婷婷久久久亚洲欧美| 欧美成人精品欧美一级黄| 国产成人一区二区在线| 国产一卡二卡三卡精品| 你懂的网址亚洲精品在线观看| 欧美亚洲 丝袜 人妻 在线| 久久ye,这里只有精品| 9191精品国产免费久久| 韩国精品一区二区三区| 国产伦人伦偷精品视频| svipshipincom国产片| 啦啦啦啦在线视频资源| 波野结衣二区三区在线| 18在线观看网站| 欧美中文综合在线视频| 国产视频首页在线观看| 人人澡人人妻人| 啦啦啦在线免费观看视频4| 一级片'在线观看视频| 午夜免费鲁丝| 国产黄色视频一区二区在线观看| 99久久99久久久精品蜜桃| 色婷婷久久久亚洲欧美| 午夜日韩欧美国产| 免费在线观看日本一区| 成人影院久久| 久久久精品区二区三区| 亚洲国产日韩一区二区| 欧美精品一区二区免费开放| 中文字幕av电影在线播放| 国产精品一二三区在线看| 另类亚洲欧美激情| 1024视频免费在线观看| 丝袜人妻中文字幕| 久久久国产精品麻豆| 欧美日韩亚洲国产一区二区在线观看 | 久久99精品国语久久久| 午夜免费鲁丝| 国产高清视频在线播放一区 | 午夜福利在线免费观看网站| 人人妻人人澡人人看| 高潮久久久久久久久久久不卡| 777久久人妻少妇嫩草av网站| 成年av动漫网址| 国产精品香港三级国产av潘金莲 | 国产1区2区3区精品| 欧美 日韩 精品 国产| 美女高潮到喷水免费观看| 亚洲欧美成人综合另类久久久| xxxhd国产人妻xxx| 久久精品久久久久久久性| 国产91精品成人一区二区三区 | 久久国产精品影院| 久久精品aⅴ一区二区三区四区| 亚洲一码二码三码区别大吗| 久久ye,这里只有精品| 悠悠久久av| 最近最新中文字幕大全免费视频 | 国产精品.久久久| av又黄又爽大尺度在线免费看| 成人国产一区最新在线观看 | 亚洲少妇的诱惑av| 又大又黄又爽视频免费| 18禁观看日本| 黄色片一级片一级黄色片| 热re99久久精品国产66热6| 欧美97在线视频| 人人妻人人澡人人看| 国产精品久久久久久精品古装| 男的添女的下面高潮视频| 大片免费播放器 马上看| 精品亚洲成国产av| 成人国产av品久久久| 日韩免费高清中文字幕av| 日韩熟女老妇一区二区性免费视频| 亚洲国产看品久久| 欧美日韩亚洲国产一区二区在线观看 | 精品人妻熟女毛片av久久网站| svipshipincom国产片| 欧美97在线视频| 亚洲成国产人片在线观看| 午夜精品国产一区二区电影| av福利片在线| 亚洲精品国产区一区二| 两性夫妻黄色片| 国产精品免费视频内射| 1024视频免费在线观看| 亚洲精品第二区| 男女下面插进去视频免费观看| 中文字幕精品免费在线观看视频| 国产av精品麻豆| 丝袜美足系列| 深夜精品福利| 婷婷色综合www| 日本91视频免费播放| 麻豆av在线久日| 国产老妇伦熟女老妇高清| 国产亚洲精品久久久久5区| 男男h啪啪无遮挡| 亚洲,欧美,日韩| 久久影院123| 午夜福利乱码中文字幕| 日本猛色少妇xxxxx猛交久久| 国产免费又黄又爽又色| 久久久国产一区二区| 搡老岳熟女国产| 国产成人欧美在线观看 | 一边亲一边摸免费视频| 国产主播在线观看一区二区 | 91麻豆精品激情在线观看国产 | 啦啦啦中文免费视频观看日本| 久久久欧美国产精品| 欧美另类一区| 国产淫语在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看人妻少妇| 99久久精品国产亚洲精品| 国产高清视频在线播放一区 | 老司机午夜十八禁免费视频| 18禁观看日本| 国产麻豆69| 午夜精品国产一区二区电影| 久久这里只有精品19| 纯流量卡能插随身wifi吗| 免费高清在线观看视频在线观看| 啦啦啦啦在线视频资源| 高清黄色对白视频在线免费看| 一区二区三区四区激情视频| 一个人免费看片子| 亚洲成av片中文字幕在线观看| 19禁男女啪啪无遮挡网站| 久热这里只有精品99| 日本wwww免费看| 午夜两性在线视频| 日韩熟女老妇一区二区性免费视频| 激情五月婷婷亚洲| 欧美 日韩 精品 国产| 久久精品成人免费网站| a级毛片黄视频| 国产精品.久久久| 色综合欧美亚洲国产小说| 亚洲专区中文字幕在线| 又大又爽又粗| 水蜜桃什么品种好| 精品国产一区二区三区久久久樱花| 国产精品免费大片| av天堂在线播放| 免费高清在线观看视频在线观看| 亚洲自偷自拍图片 自拍| 捣出白浆h1v1| 中文字幕最新亚洲高清| avwww免费| 久久久国产一区二区| 亚洲第一av免费看| 久久久精品国产亚洲av高清涩受| 国产精品国产三级国产专区5o| 国产福利在线免费观看视频| 久久 成人 亚洲| 亚洲成人免费av在线播放| 国产成人一区二区三区免费视频网站 | bbb黄色大片| 啦啦啦中文免费视频观看日本| 高清视频免费观看一区二区| 国产精品三级大全| 免费黄频网站在线观看国产| 黄色片一级片一级黄色片| 国产亚洲一区二区精品| 男女之事视频高清在线观看 | 欧美在线黄色| 七月丁香在线播放| 妹子高潮喷水视频| 男女下面插进去视频免费观看| 天天躁日日躁夜夜躁夜夜| 日韩熟女老妇一区二区性免费视频| 青春草亚洲视频在线观看| 久久狼人影院| 国产97色在线日韩免费| 午夜免费成人在线视频| 麻豆国产av国片精品| 国产精品免费视频内射| 久久99一区二区三区| 天天躁日日躁夜夜躁夜夜| 国产高清不卡午夜福利| 免费一级毛片在线播放高清视频 | 久久这里只有精品19| 韩国高清视频一区二区三区| 日韩av不卡免费在线播放| av电影中文网址| 国产一区二区激情短视频 | 午夜91福利影院| 90打野战视频偷拍视频| 青青草视频在线视频观看| 麻豆乱淫一区二区| 交换朋友夫妻互换小说| 亚洲自偷自拍图片 自拍| 成人亚洲欧美一区二区av| 91老司机精品| 欧美变态另类bdsm刘玥| 少妇的丰满在线观看| 久久久久久人人人人人| 亚洲国产欧美一区二区综合| 99久久99久久久精品蜜桃| 亚洲国产精品999| 成人三级做爰电影| 晚上一个人看的免费电影| 免费高清在线观看日韩| 国产视频首页在线观看| 久久亚洲精品不卡| 99香蕉大伊视频| 黄网站色视频无遮挡免费观看| 亚洲黑人精品在线| 欧美 亚洲 国产 日韩一| 亚洲第一青青草原| 搡老乐熟女国产| 久久久久久久大尺度免费视频| 国产精品九九99| av在线播放精品| 亚洲九九香蕉| av网站免费在线观看视频| 搡老乐熟女国产| 国产亚洲精品第一综合不卡| 国产精品国产三级专区第一集| 在现免费观看毛片| 人人妻人人爽人人添夜夜欢视频| 一级毛片 在线播放| 秋霞在线观看毛片| 国产精品九九99| 国产视频首页在线观看| 亚洲精品国产av蜜桃| 一级毛片黄色毛片免费观看视频| 熟女少妇亚洲综合色aaa.| 日韩中文字幕欧美一区二区 | 国产成人欧美在线观看 | 亚洲国产精品国产精品| 又大又爽又粗| 少妇 在线观看| 老鸭窝网址在线观看| 免费日韩欧美在线观看| 久久毛片免费看一区二区三区| 久久ye,这里只有精品| 18禁国产床啪视频网站| 国产激情久久老熟女| 午夜免费成人在线视频| 免费看十八禁软件| 国产在视频线精品| 90打野战视频偷拍视频| 久久热在线av| 成年av动漫网址| 亚洲一码二码三码区别大吗| 男男h啪啪无遮挡| 久久亚洲精品不卡| 欧美黄色淫秽网站| 99热全是精品| 麻豆国产av国片精品| 欧美性长视频在线观看| 99国产精品免费福利视频| 搡老乐熟女国产| 国产一区有黄有色的免费视频| 青草久久国产| 青青草视频在线视频观看| 久久久精品区二区三区| 成在线人永久免费视频| 成人国产av品久久久| 久久毛片免费看一区二区三区| 操出白浆在线播放| 欧美日韩精品网址| 五月开心婷婷网| 精品欧美一区二区三区在线| 婷婷成人精品国产| 美女高潮到喷水免费观看| 国产一区二区 视频在线| 久久亚洲精品不卡| 成人影院久久| 国产伦理片在线播放av一区| 少妇的丰满在线观看| 韩国精品一区二区三区| 日本av免费视频播放| 一区二区三区激情视频| 两性夫妻黄色片| 亚洲精品在线美女| cao死你这个sao货| 97人妻天天添夜夜摸| 久久精品国产亚洲av高清一级| 无限看片的www在线观看| 91精品三级在线观看| 少妇猛男粗大的猛烈进出视频| 人人妻人人爽人人添夜夜欢视频| 午夜久久久在线观看| 亚洲伊人色综图| 嫁个100分男人电影在线观看 | 欧美变态另类bdsm刘玥| 男女高潮啪啪啪动态图| 日韩视频在线欧美| 一级片'在线观看视频| 免费少妇av软件| 一边亲一边摸免费视频| 精品人妻一区二区三区麻豆| 狂野欧美激情性xxxx| 国产亚洲精品第一综合不卡| 精品熟女少妇八av免费久了| 亚洲五月色婷婷综合| 欧美日韩成人在线一区二区| 国产精品一二三区在线看| 男女边摸边吃奶| av不卡在线播放| 国产伦人伦偷精品视频| 精品高清国产在线一区| 久久亚洲国产成人精品v| 黑人猛操日本美女一级片| 一区福利在线观看| 中国国产av一级| 五月开心婷婷网| 亚洲精品日本国产第一区| 亚洲av日韩精品久久久久久密 | 麻豆乱淫一区二区| 国产熟女午夜一区二区三区| 蜜桃国产av成人99| 99热国产这里只有精品6| 久久国产精品影院| 日韩av不卡免费在线播放| 悠悠久久av| 日本一区二区免费在线视频| 狠狠精品人妻久久久久久综合| 亚洲伊人久久精品综合| www.自偷自拍.com| 一区二区av电影网| 欧美精品高潮呻吟av久久| www.精华液| 欧美变态另类bdsm刘玥| av天堂久久9| 成年人免费黄色播放视频| 热re99久久国产66热| 男女之事视频高清在线观看 | 日本欧美视频一区| 国产成人啪精品午夜网站| 亚洲精品一二三| 日日夜夜操网爽| 大陆偷拍与自拍| 手机成人av网站| 婷婷色麻豆天堂久久| 高清欧美精品videossex| 免费观看av网站的网址| 又黄又粗又硬又大视频| 一级,二级,三级黄色视频| 一边摸一边抽搐一进一出视频| 亚洲美女黄色视频免费看| 亚洲av综合色区一区| 国产精品秋霞免费鲁丝片| av在线app专区| 国产精品人妻久久久影院| 免费在线观看完整版高清| 精品少妇内射三级| 久久精品国产亚洲av高清一级| 亚洲欧美一区二区三区国产| 欧美日韩视频精品一区| 999久久久国产精品视频| 黄色片一级片一级黄色片| av欧美777| 脱女人内裤的视频| 九草在线视频观看| 五月天丁香电影| 欧美人与性动交α欧美精品济南到| 日本91视频免费播放| 欧美另类一区| 欧美黄色片欧美黄色片| 一级毛片我不卡| 久久免费观看电影| 少妇 在线观看| 久久精品久久久久久噜噜老黄| 免费少妇av软件| 日日夜夜操网爽| 国产精品一区二区在线观看99| 丰满少妇做爰视频|