• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of E–H mode transition in magnetic-pole-enhanced inductively coupled neon–argon mixture plasma

    2020-06-28 06:14:56ZahidIqbalKHATTAKAbdulWaheedKHANFaiqJANandMuhammadSHAFIQ
    Plasma Science and Technology 2020年6期

    Zahid Iqbal KHATTAK, Abdul Waheed KHAN, Faiq JAN and Muhammad SHAFIQ

    1 Department of Physics, Quaid-i-Azam University, 45320 Islamabad, Pakistan

    2 Department of Physics, Gomal University, 29050 D. I. Khan, Pakistan

    3 Department of Physics, Govt. Post Graduate College Nowshera, 24100 Nowshera, Pakistan

    Abstract In this paper,E–H mode transition in magnetic-pole-enhanced inductively coupled neon–argon mixture plasma is investigated in terms of fundamental plasma parameters as a function of argon fraction (0%–100%), operating pressure (1 Pa, 5 Pa, 10 Pa and 50 Pa), and radio frequency (RF) power (5–100 W). An RF compensated Langmuir probe and optical emission spectroscopy are used for the diagnostics of the plasma under study. Owing to the lower ionization potential and higher collision cross-section of argon, when its fraction in the discharge is increased, the mode transition occurs at lower RF power; i.e. for 0% argon and 1 Pa pressure,the threshold power of the E–H mode transition is 65 W,which reduces to 20 W when the argon fraction is increased.The electron density increases with the argon fraction at a fixed pressure, whereas the temperature decreases with the argon fraction. The relaxation length of the low-energy electrons increases, and decreases for high-energy electrons with argon fraction, due to the Ramseur effect. However, the relaxation length of both groups of electrons decreases with pressure due to reduction in the mean free path. The electron energy probability function (EEPF) profiles are non-Maxwellian in E-mode, attributable to the nonlocal electron kinetics in this mode;however,they evolve to Maxwellian distribution when the discharge transforms to H-mode due to lower electron temperature and higher electron density in H-mode.The tail of the measured EEPFs is found to deplete in both E-and H-modes when the argon fraction in the discharge is increased, because argon has a much lower excitation potential (11.5 eV) than neon (16.6 eV).

    Keywords: Ne–Ar MaPE-ICP, Langmuir probe, OES, electron temperature, electron density,mode transition(Some figures may appear in colour only in the online journal)

    1. Introduction

    A mixture of gas discharges comprising noble gases has been frequently investigated to enhance the efficiency of both lower and higher pressure (atmospheric) discharges in various technological and scientific applications,such as the sterilization of medical instruments[1–3],metallic surface nitriding[4–6]and chemical analysis [7]. Material processing with plasma discharges is usually performed by using a combination of various gases simultaneously. For instance, in the etching process of silicon dioxide,discharges of numerous fluorocarbon gases are used with Ar, Xe or H2contents to improve the etching selectivity to the silicon underlayer [8]. Ne–Xe discharges are used for high lighting intensity and easy breakdown in plasma display panels (PDPs). However, PDPs face a significant challenge in the composition of mixed gases in which neon is present [9]. Another instance of mixture discharge that has been explored is the behavior of plasma parameters such as the electron energy distribution function(EEDF) of a high-energy tail, through accumulation of noble gases by means of a trace rare gas technique [10]. Many researchers have explored the mixing gas effect on plasma parameters. For instance, Monuz et al[11]studied the Ar–Ne discharge at atmospheric pressure in a microwave system, they reported the variation in gas temperature, since this temperature is associated with the energy of the heavy plasma species. Rehman et al [12]investigated plasma parameter variation with neon percentage,radio frequency (RF) power, and the pressure of feed gas. It was reported that,as the neon content in the mixture increases,the electron temperature also grows and the EEDF tail gains height and expands towards higher energy.The features of the H-mode and hybrid mode of Ar–N2mixture discharges in magnetic-pole-enhanced inductively coupled plasma (MaPEICP)is discussed by Jan et al[13]through an RF compensated single Langmuir probe (LP). They reported that, as N2concentration and pressure are increased, the critical power required to sustain H-mode is enhanced,and for pure nitrogen discharge this increase is more prominent at higher pressures.Ma et al [14] analyzed the influence of the addition of noble gases on various parameters of nitrogen discharges. It is reported thatTedepends on the variation of gas composition in N2/Ar and N2/He plasmas.

    Plasma sources established at various electromagnetic power coupling mechanisms have been introduced for the manufacturing of large-scale semiconductors. Among these,capacitively coupled plasmas (CCPs) as well as very highfrequency CCPs (VHF-CCPs), inductively coupled plasmas(ICPs)and plasmas with a ferrite core have been the leading generation sources investigated [15, 16]. However, the MaPE-ICP is a new and an innovative source, which offers many advantages such as high and uniform density of plasma with great area capability, enhanced power coupling efficiency and a lower electron temperature. This source is therefore potentially more appropriate for material processing[17].The key feature of ICP/MaPE-ICP is its operation in two distinctive (E- and H-) modes, based on external plasma conditions, for instance input power and filling pressure[18–20],and gas composition[21].In recent years,many studies have been performed in the two modes of the ICP/MaPE-ICP, due to the attractive characteristics of the discharge and the underlying physics. Lee [22] performed a comprehensive review of the current knowledge of mode transition and hysteresis of ICPs, their basic understanding,and the application of ICPs in various fields. Gao et al [23]investigated Ar discharges experimentally in ICP configuration and observed a hysteresis loop during the mode transitions from E- to H-mode at several matching conditions. Jing Xu et al [24] investigatedH2-ICP at various pressures and reported the characteristics of the hysteresis loop and mode transition behavior by changing the capacitance of the series capacitor of the matching box. Liu et al

    [25] studied mode transitions (from E to H) by using a hairpin probe and optical emission spectroscopy (OES) in CF4/ Ar -ICP. It was observed thatneand the intensity of emission lines are continuously enhanced during E- to H-mode transition at low pressure, whereas at higher pressure, they jump up discontinuously. Gao et al [26] investigated the variation in electron dynamics ofH2RF-ICP discharges with the help of an intensified charged coupled device (ICCD) and a hairpin probe. It was reported thatne,emission intensity, and applied current jump up intermittently. It was also found that at E–H mode transition points,the external voltage jumps down,whereas a decrease in threshold power for the mode transition happened with an increase of pressure. Gao et al [27] also studied theneand emission intensity of the Ar–ICP discharge during mode transition by employing LP and ICCD.It was reported that in the E-mode,neis low and emission intensity is weak,however,bothneand emission intensity are higher when the discharge switches to H-mode. Lee et al [21] analyzed the mode transition of O2/Ar and N2/Ar ICP at low pressure by employing an LP and OES.It was reported that the threshold power for transition was reduced with pressure and argon content. Lee et al [28] investigated the mode transition with a gas mixing ratio in an ICP ofAr / O2/N2mixture discharges. It was reported that the threshold power for mode transition (from E to H) was lower for a smaller ratio of molecular gases and a high ratio of rare gases.

    The EEDFs are a consequence of the electric field interaction with plasma and resultantly describe the electron kinetics in the discharge. Therefore, the investigation of EEDFs becomes significant, since it provides information on energy transmission mechanisms such as electron heating in the discharge [29, 30]. Bang et al [31] inspected the characteristics of EEDFs with helium proportion in Ar–He ICP discharges. It is reported that when the helium fraction increases, the EEDFs transform from Druyvesteyn-type to a bi-Maxwellian distribution. Han et al [32] examined the characteristics of EEDFs with helium proportion in Ar–He discharges at a constant pressure of 5 mTorr,and observed that the EEDFs transformed from bi-Maxwellian to Maxwellian and finally became a Druyvesteyn-type distribution.

    Even though numerous reports have been published on inert gas discharges, the effects of gas mixing on the threshold power of mode transition, and the evolution of EEPF close to the transition region in the low and high pressure range of rare gases, such as Ne–Ar MaPE-ICP discharges, have not been frequently investigated. The results show interesting behavior in the E-mode and in the transition region of the discharge. The characteristics of the plasma parameters and EEPFs in all the three regions reported are of importance for identifying the working region for applications. Spectroscopic results supported the electrical probe data to a greater extent and showed that an OES investigation is a robust technique to understand discharge behavior. The evolution of EEPFs with argon fraction variation is also included for a better understanding of the three discharge regions.

    Figure 2. Relaxation length of low- and high-energy electrons with argon contents in the mixture at (a) 1 Pa, (b) 5 Pa, and (c) 10 Pa.

    Figure 3.Variation of electron energy relaxation length with pressure for (a) neon discharge and (b) argon discharge.

    Thenevariation versus Ar fraction is shown in figure 6 for various RF powers at constant pressure. An increasing trend of density is observed with Ar fraction.This may be due to the difference in the metastable density of the two gases.The metastable density of Ne atoms seems to be smaller than the Ar atoms, because high-energy electrons are needed to populate the metastable levels of Ne (~16.60 eV), compared to the Ar metastable level (~11.50 eV). So, the Ne atom ionization is less probable from the metastable level and fundamentally, electrons come from the ionization of Ar.When Ar is added to the discharge, however, the relaxation length of high-energy electronsλε,H( ) available in the discharge decreases,as shown in figure 2,and these high-energy electrons encounter inelastic collisions with neutral particles and ionize them. Consequently the electron density increases with Ar fraction. These circumstances produce a partial reduction of the high-energy tail of the EEPFs, which directs to a smaller population of the Ne metastable level, and accordingly electron density increases [11].This may also be explained as follows: whenever a gas of lower ionization energy, for instance Ar, is introduced in a gas of higher ionization energy such as Ne, then the ionization process of neutral Ar atoms enhances owing to the collision of highenergy electrons present in the discharge; as a result electron density increases and electron temperature decreases [8], as shown in figures 6 and 7. The variation ofneandTewith pressure is expressed in figures 8 and 9, at constant Ar fraction and RF power. The decrease in electron temperature can be related to the increase in electron density with pressure.

    Figure 4. E–H mode transition in ne with RF power for various argon fractions at pressure of (a) 1 Pa, (b) 5 Pa and (c) 10 Pa.

    Figure 5.Variation of TeLP with RF power for different argon fractions at pressure of (a) 1 Pa, (b) 5 Pa and (c) 10 Pa.

    Figure 6.Variation of ne with argon fraction for different RF powers at pressure of (a) 1 Pa, (b) 5 Pa and (c) 10 Pa.

    The Ne emission line585.24 nm,which arises due to the transition of 2p1→1s2(in Paschen’s notation)involves highenergy electrons. Figure 10 describes the variation of Ne emission line (5 85.24 nm) intensity with increase in RF power and Ar fraction at the pressure of 1 and 5 Pa. The emission intensity shows an increasing trend similar to theneas revealed in figure 4, because the ionization/excitation process enhances with the increase of power.The presence of E- and H-modes is also obvious from the intensity graph. In E-mode,the intensity is low,while in H-mode,the intensity is high and continuously increasing with RF power.

    Figure 7.Variation of electron temperature with argon fraction for different RF powers at pressure of (a) 1 Pa, (b) 5 Pa and (c) 10 Pa.

    Figures 11 and 12 describe the measured EEPFs’profile close to the transition region as a function of the Ar fraction for different gas pressures of 1, 5 and 10 Pa. In E-mode, the EEPFs exhibit non-Maxwellian characteristics,however,the EEPFs describe the Maxwellian distribution in H-mode.

    Figure 8.Variation of ne with pressure for different argon fractions at RF power of (a) 20 W and (b) 100 W.

    Figure 11(a) shows that the EEPF profiles of discharge in E-mode are bi-Maxwellian,which is a distinctive property of the nonlocal electron kinetics of plasma at low-pressure[39]. The electron–neutral collision frequency (ν-en) at lower pressure is much smaller than the driving frequency(ωRF) of the source. Generally, nearby the antenna coil,collision-less heating of electrons by the skin layer is dominant. The high-energy electrons penetrate the ambipolar potential barrier and reach the skin layer where further enhancement in their energies takes place and contributes to inelastic collisions. However, low-energy electrons cannot access the sheath layer where the collision-less heating of electrons takes place. Similarly, these electrons cannot contribute in the collisional heating where electrons gain energy from thermalization of electron–neutral collisions.Thus,these electrons absorb a slight quantity of energy from either collisional or collision-less heating and just fluctuate in the barrier of the ambipolar potential [40]. The EEPF transition from bi-Maxwellian to Druyvesteyn distribution in E-mode at a pressure of 5 and 10 Pa takes place as shown in figures 11(b)and(c).At higher pressure,the EEPF transition to Druyvesteyn behavior is owing to the transformation in the heating mechanism of electrons (from stochastic to Ohmic heating). This distribution is mainly due to effective heating of low-energy electrons in the collisional regime [41].

    The EEPFs exhibit Maxwellian distribution in H-mode for all the pressures tested, as shown in figures 12(a)–(c).This may be attributed to the way in which, with RF power and Ar fraction, the density enhances and electron–electron collision frequency increases. As a result, the EEPF profiles become Maxwellian. However, when the Ar fraction increases, the high-energy tail of the EEPF is depleted.This may be due to the increase in the Ar fraction providing large energy relaxation lengthλε,L( ) for low-energy electrons due to Ramsauer effects, as shown in figure 2. The Ar ionization energy(15.7 eV)is less than that of Ne(21.5 eV),therefore, the inelastic collisions of high-energy electrons present in the discharge take place with Ar atoms and ionize them. Consequently, the high-energy tail of EEPFs is depleted whereas the density of low-energy electrons is enhanced.

    5. Conclusions

    In this article, E–H mode transition and the evolution of EEPFs close to the transition region (E- and H-modes) are reported in a mixture of Ne–Ar plasma for numerous RF powers, gas pressures and Ar fractions. Various plasma parameters such as electron density,electron temperature,and emission intensity variation have been studied by using an RF compensated single Langmuir probe and OES. It is observed that, at fixed pressure and Ar fraction, the electron density grows while the electron temperature shrinks with RF power.It is also perceived that the mode transition power is reduced with the increase of Ar fraction in the mixture because RF power coupling efficiency increases with increase in electron density. It is found that electron density of pure Ne is 1.13 × 108cm-3, which increases with Ar fraction and reaches up to1.35 × 1012cm-3in pure Ar discharge, while the electron temperature of pure Ne is 8.14 eV which decreases to0.57 eV in pure Ar at a fixed RF power and gas pressure. It is also found that the intensity of Ne585.24 nm emission line increases with RF power at a constant pressure.However, the intensity in H-mode is greater than E-mode,which is in good agreement with the theoretical concept of E–H mode.The behavior of electron energy relaxation length(λε) is also studied with variation of Ar fraction in the discharge and gas pressure. For low-energy electrons,λε,Lincreases,while for high–energy electrons,λε,Hdecreases with Ar fraction.However,the relaxation length of both the groups of electrons decreases with pressure. The evolution of the measured EEPFs with Ar fraction is also included for a better understanding of the three discharge regions. It is observed that, at fixed RF power and pressure, the EEPFs exhibit non-Maxwellian characteristics in E-mode with Ar fraction, while in H-mode(close to the transition region)Maxwellian behavior is observed. However, in both modes, the tails of EEPFs are depleted when the Ar fraction in the discharge is increased,because it provides a large mean free path for low-energy electrons to gain energy, and the excitation/ionization process is enhanced.Consequently,the density of low-energy electrons is increased, whereas the density of high-energy electrons is depleted. Spectroscopic results are found to be in good agreement with the electrical probe analysis to a significant extent,showing that OES can be employed to assist the probe results and understand the discharge behavior more clearly.

    Figure 9. Variation of with pressure for various argon fractions at RF power of (a) 20 W and (b) 100 W.

    Figure 10.Emission intensity variation of 585.24 nm line with RF power for various argon fractions at a pressure of (a) 1 Pa and (b) 5 Pa.

    Figure 11.Evolution of EEPF in E-mode of discharge with argon fraction at a fixed RF power of 10 W and pressure of(a)1 Pa,(b)5 Pa and(c) 10 Pa.

    Figure 12.Evolution of EEPF in H-mode of discharge with argon fraction at a fixed RF power and pressure of(a)1 Pa,(b)5 Pa and(c)10 Pa.

    Acknowledgments

    This work is partially supported by Quaid-i-Azam University URF for the year 2019–2020 and Higher Education Commission (HEC) P. No. 820 for Plasma Physics Gomal University (D I Khan).

    老熟妇仑乱视频hdxx| 男人舔女人的私密视频| 久9热在线精品视频| 午夜福利在线免费观看网站| 精品人妻一区二区三区麻豆| 成年人午夜在线观看视频| 岛国在线观看网站| 亚洲欧美一区二区三区久久| av国产精品久久久久影院| 亚洲国产av新网站| 99久久精品国产亚洲精品| 免费高清在线观看视频在线观看| 久久亚洲国产成人精品v| 免费在线观看影片大全网站| 一区二区三区激情视频| 欧美精品啪啪一区二区三区 | 精品国产乱子伦一区二区三区 | 国内毛片毛片毛片毛片毛片| av视频免费观看在线观看| 婷婷色av中文字幕| 午夜激情久久久久久久| 精品一区二区三区av网在线观看 | 色视频在线一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 极品少妇高潮喷水抽搐| 好男人电影高清在线观看| 成人国产一区最新在线观看| 亚洲精品中文字幕在线视频| 成年人黄色毛片网站| 色精品久久人妻99蜜桃| 51午夜福利影视在线观看| 最近中文字幕2019免费版| 免费高清在线观看日韩| 国产在线一区二区三区精| 欧美日韩一级在线毛片| 久久久国产欧美日韩av| 最新在线观看一区二区三区| 黄色视频不卡| 97在线人人人人妻| 精品国产乱码久久久久久男人| 午夜视频精品福利| 免费日韩欧美在线观看| 成人影院久久| 一进一出抽搐动态| 免费人妻精品一区二区三区视频| 狠狠婷婷综合久久久久久88av| 丝瓜视频免费看黄片| 女人精品久久久久毛片| 水蜜桃什么品种好| 啦啦啦 在线观看视频| 两个人免费观看高清视频| 在线观看一区二区三区激情| 久久久久久久大尺度免费视频| 午夜两性在线视频| 秋霞在线观看毛片| 午夜激情av网站| 亚洲欧美清纯卡通| netflix在线观看网站| 亚洲色图综合在线观看| 国产av精品麻豆| 女人被躁到高潮嗷嗷叫费观| 十八禁人妻一区二区| 亚洲国产精品999| 欧美性长视频在线观看| 亚洲欧美日韩高清在线视频 | 国产成人精品久久二区二区免费| 99精品久久久久人妻精品| a级毛片在线看网站| 日韩三级视频一区二区三区| 19禁男女啪啪无遮挡网站| 亚洲精品美女久久久久99蜜臀| 成年动漫av网址| 日韩视频在线欧美| 日韩电影二区| 91字幕亚洲| 9热在线视频观看99| 成人国语在线视频| 午夜老司机福利片| av福利片在线| 国产精品成人在线| 久久性视频一级片| 汤姆久久久久久久影院中文字幕| 大型av网站在线播放| 欧美激情 高清一区二区三区| videos熟女内射| 成年人午夜在线观看视频| 国产精品 国内视频| 男女无遮挡免费网站观看| 丝袜在线中文字幕| 欧美另类亚洲清纯唯美| 波多野结衣一区麻豆| 人成视频在线观看免费观看| 国产伦理片在线播放av一区| 搡老岳熟女国产| 亚洲国产成人一精品久久久| 秋霞在线观看毛片| www日本在线高清视频| netflix在线观看网站| 99久久综合免费| 精品少妇内射三级| 亚洲专区字幕在线| 亚洲成人手机| 亚洲精品国产一区二区精华液| 波多野结衣一区麻豆| 黄色视频不卡| 丝袜美足系列| 国产精品一区二区免费欧美 | 女性被躁到高潮视频| 99国产精品99久久久久| 久久久久视频综合| 欧美精品一区二区免费开放| 久久人妻熟女aⅴ| 亚洲成人国产一区在线观看| 午夜免费成人在线视频| 久久人人爽人人片av| 国产免费一区二区三区四区乱码| 欧美国产精品一级二级三级| 国产成人一区二区三区免费视频网站| 亚洲精华国产精华精| 欧美激情高清一区二区三区| 国产在线视频一区二区| 欧美日本中文国产一区发布| 美女高潮到喷水免费观看| 成年人免费黄色播放视频| 在线亚洲精品国产二区图片欧美| 精品亚洲成国产av| 少妇被粗大的猛进出69影院| av视频免费观看在线观看| 国产又色又爽无遮挡免| 18禁国产床啪视频网站| 天天躁夜夜躁狠狠躁躁| 国产精品麻豆人妻色哟哟久久| 男女无遮挡免费网站观看| 久久狼人影院| 男人添女人高潮全过程视频| 欧美av亚洲av综合av国产av| 日韩欧美一区视频在线观看| 国产一区有黄有色的免费视频| 热re99久久精品国产66热6| 少妇 在线观看| 窝窝影院91人妻| 热re99久久国产66热| 欧美精品啪啪一区二区三区 | 欧美精品高潮呻吟av久久| 久热这里只有精品99| 国内毛片毛片毛片毛片毛片| 最近最新中文字幕大全免费视频| 波多野结衣一区麻豆| 9色porny在线观看| 欧美人与性动交α欧美软件| 老司机靠b影院| 亚洲成人国产一区在线观看| 大陆偷拍与自拍| 日韩有码中文字幕| svipshipincom国产片| 亚洲精品国产av成人精品| 不卡av一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 黄片小视频在线播放| 一级片免费观看大全| 亚洲情色 制服丝袜| 在线亚洲精品国产二区图片欧美| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品国产色婷婷电影| 在线亚洲精品国产二区图片欧美| 一级片免费观看大全| 亚洲 欧美一区二区三区| 亚洲精品一区蜜桃| 亚洲精品久久久久久婷婷小说| 亚洲色图综合在线观看| h视频一区二区三区| 成人手机av| 亚洲av片天天在线观看| 午夜福利乱码中文字幕| 日本wwww免费看| www日本在线高清视频| 午夜福利一区二区在线看| 精品国产乱码久久久久久男人| 18禁黄网站禁片午夜丰满| xxxhd国产人妻xxx| 两性午夜刺激爽爽歪歪视频在线观看 | 免费在线观看视频国产中文字幕亚洲 | 国产精品影院久久| 欧美激情极品国产一区二区三区| 最新的欧美精品一区二区| 国产男女内射视频| 日韩免费高清中文字幕av| 亚洲全国av大片| 国产男女超爽视频在线观看| 热99re8久久精品国产| 久久热在线av| www日本在线高清视频| 乱人伦中国视频| 青春草视频在线免费观看| 国产欧美亚洲国产| 免费人妻精品一区二区三区视频| 国产97色在线日韩免费| 黑人欧美特级aaaaaa片| 午夜福利视频精品| 一边摸一边做爽爽视频免费| 九色亚洲精品在线播放| 悠悠久久av| 女人高潮潮喷娇喘18禁视频| 叶爱在线成人免费视频播放| 黄色片一级片一级黄色片| 一级毛片精品| 亚洲中文字幕日韩| 男女无遮挡免费网站观看| 亚洲人成77777在线视频| av福利片在线| 50天的宝宝边吃奶边哭怎么回事| 国产一区有黄有色的免费视频| 国产精品成人在线| 欧美日韩精品网址| 亚洲性夜色夜夜综合| 国产高清videossex| 亚洲 国产 在线| 纵有疾风起免费观看全集完整版| 黑人操中国人逼视频| 亚洲视频免费观看视频| 亚洲国产欧美在线一区| 国产精品影院久久| 99精品久久久久人妻精品| 下体分泌物呈黄色| 91av网站免费观看| 精品一区二区三区av网在线观看 | 精品人妻在线不人妻| 最黄视频免费看| 曰老女人黄片| www.av在线官网国产| 一级片'在线观看视频| 悠悠久久av| 人成视频在线观看免费观看| netflix在线观看网站| 亚洲第一青青草原| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产成人一精品久久久| 成人手机av| 五月天丁香电影| 国产精品.久久久| 91大片在线观看| 他把我摸到了高潮在线观看 | 亚洲专区中文字幕在线| 久久久久精品人妻al黑| 啪啪无遮挡十八禁网站| 午夜激情久久久久久久| 日韩 亚洲 欧美在线| 天天躁夜夜躁狠狠躁躁| 青草久久国产| 日韩 亚洲 欧美在线| 国产精品.久久久| 桃花免费在线播放| 国产精品熟女久久久久浪| 精品视频人人做人人爽| 免费高清在线观看视频在线观看| 窝窝影院91人妻| 国产日韩欧美在线精品| 国产成人影院久久av| 久久国产精品人妻蜜桃| 男人舔女人的私密视频| 成在线人永久免费视频| 日本猛色少妇xxxxx猛交久久| 天堂俺去俺来也www色官网| 人人妻人人爽人人添夜夜欢视频| 亚洲人成电影观看| 欧美精品av麻豆av| 老司机影院成人| 国产主播在线观看一区二区| 纵有疾风起免费观看全集完整版| 免费av中文字幕在线| 麻豆国产av国片精品| 天堂8中文在线网| 国产亚洲av高清不卡| 国产精品久久久人人做人人爽| 黑丝袜美女国产一区| 国产男女内射视频| 亚洲成人免费av在线播放| 桃红色精品国产亚洲av| 秋霞在线观看毛片| 69av精品久久久久久 | 亚洲伊人色综图| 国产色视频综合| 亚洲国产精品成人久久小说| 国产免费福利视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲成人国产一区在线观看| 亚洲精品国产色婷婷电影| 国产日韩欧美在线精品| 中文字幕色久视频| 在线观看人妻少妇| 日韩一卡2卡3卡4卡2021年| 999久久久精品免费观看国产| 纵有疾风起免费观看全集完整版| 女人爽到高潮嗷嗷叫在线视频| 精品亚洲成a人片在线观看| 老司机午夜福利在线观看视频 | 亚洲成人国产一区在线观看| 可以免费在线观看a视频的电影网站| 精品少妇一区二区三区视频日本电影| 日韩熟女老妇一区二区性免费视频| 欧美黄色淫秽网站| 欧美国产精品va在线观看不卡| 国产免费av片在线观看野外av| 国产一区二区三区av在线| 中文字幕高清在线视频| 国产av一区二区精品久久| 国产色视频综合| 岛国在线观看网站| 亚洲中文av在线| 国产精品欧美亚洲77777| 黄色 视频免费看| 十八禁网站网址无遮挡| 热99re8久久精品国产| 婷婷丁香在线五月| 亚洲精品国产av蜜桃| 日本a在线网址| 我的亚洲天堂| 欧美精品高潮呻吟av久久| 精品熟女少妇八av免费久了| 久久久久网色| 美女高潮到喷水免费观看| av网站在线播放免费| 久久久久久免费高清国产稀缺| 纵有疾风起免费观看全集完整版| 亚洲国产精品一区三区| 三上悠亚av全集在线观看| 日本a在线网址| 久久青草综合色| 男人添女人高潮全过程视频| 精品国产乱码久久久久久小说| xxxhd国产人妻xxx| 亚洲成人手机| 亚洲伊人色综图| 欧美日韩中文字幕国产精品一区二区三区 | 午夜精品国产一区二区电影| 精品国产乱码久久久久久男人| 熟女少妇亚洲综合色aaa.| 日韩中文字幕欧美一区二区| 国产欧美亚洲国产| 国产人伦9x9x在线观看| 国产欧美日韩一区二区三区在线| 大型av网站在线播放| 91精品国产国语对白视频| 亚洲全国av大片| 亚洲中文av在线| 久久综合国产亚洲精品| tube8黄色片| 久久精品亚洲av国产电影网| 久久青草综合色| 在线观看一区二区三区激情| 国产熟女午夜一区二区三区| 久久精品国产综合久久久| 深夜精品福利| 国产激情久久老熟女| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成电影免费在线| 亚洲成人免费电影在线观看| 久久精品国产亚洲av高清一级| 黄片播放在线免费| 极品少妇高潮喷水抽搐| 亚洲色图 男人天堂 中文字幕| 一级黄色大片毛片| 天堂中文最新版在线下载| 大片免费播放器 马上看| 国产一区二区三区综合在线观看| 老司机福利观看| 丰满少妇做爰视频| 亚洲国产日韩一区二区| 亚洲伊人久久精品综合| 久久国产精品影院| 日韩视频一区二区在线观看| 亚洲情色 制服丝袜| 丰满少妇做爰视频| 少妇 在线观看| 女人被躁到高潮嗷嗷叫费观| 美女中出高潮动态图| 亚洲中文av在线| 亚洲av男天堂| 天天躁日日躁夜夜躁夜夜| 女人爽到高潮嗷嗷叫在线视频| 亚洲全国av大片| 亚洲性夜色夜夜综合| 一级片'在线观看视频| 国产精品国产三级国产专区5o| 99精品欧美一区二区三区四区| 最新的欧美精品一区二区| 欧美另类亚洲清纯唯美| 国产精品99久久99久久久不卡| 国产真人三级小视频在线观看| 91国产中文字幕| 久久精品国产综合久久久| 国产免费av片在线观看野外av| 国产成人一区二区三区免费视频网站| 欧美性长视频在线观看| 老汉色av国产亚洲站长工具| 午夜激情久久久久久久| 亚洲全国av大片| 免费人妻精品一区二区三区视频| 亚洲精品国产色婷婷电影| 国产精品影院久久| 中文欧美无线码| 亚洲av片天天在线观看| 在线永久观看黄色视频| 久久精品久久久久久噜噜老黄| 亚洲中文字幕日韩| 国产伦人伦偷精品视频| 成人影院久久| 啦啦啦啦在线视频资源| 欧美日韩亚洲综合一区二区三区_| 久久久久久亚洲精品国产蜜桃av| 91大片在线观看| 亚洲专区中文字幕在线| 伊人亚洲综合成人网| 欧美日韩亚洲国产一区二区在线观看 | 69av精品久久久久久 | 久久久精品国产亚洲av高清涩受| 亚洲欧美精品综合一区二区三区| 在线天堂中文资源库| 视频区图区小说| 欧美精品亚洲一区二区| 叶爱在线成人免费视频播放| 日本猛色少妇xxxxx猛交久久| 啦啦啦啦在线视频资源| 亚洲精品国产精品久久久不卡| 丰满人妻熟妇乱又伦精品不卡| 亚洲自偷自拍图片 自拍| 亚洲精品国产色婷婷电影| 曰老女人黄片| 亚洲精品第二区| 亚洲国产精品成人久久小说| 色播在线永久视频| 午夜日韩欧美国产| 大片免费播放器 马上看| 一边摸一边抽搐一进一出视频| 91九色精品人成在线观看| 日日夜夜操网爽| 黄色怎么调成土黄色| 中文字幕制服av| 国产免费现黄频在线看| 日本一区二区免费在线视频| 中亚洲国语对白在线视频| 亚洲精品久久久久久婷婷小说| 人成视频在线观看免费观看| 久久久久久久久久久久大奶| a在线观看视频网站| 欧美人与性动交α欧美精品济南到| 欧美黄色淫秽网站| 亚洲精品一卡2卡三卡4卡5卡 | 国产成人一区二区三区免费视频网站| 老汉色∧v一级毛片| 亚洲精品久久久久久婷婷小说| 丝袜脚勾引网站| 精品国产乱码久久久久久男人| 午夜日韩欧美国产| 性高湖久久久久久久久免费观看| 亚洲av电影在线观看一区二区三区| 国产淫语在线视频| 老鸭窝网址在线观看| 成人18禁高潮啪啪吃奶动态图| 国产精品麻豆人妻色哟哟久久| 午夜福利在线观看吧| 国产精品久久久久成人av| 久久久水蜜桃国产精品网| 少妇的丰满在线观看| 三上悠亚av全集在线观看| 最新的欧美精品一区二区| 欧美日韩av久久| 91av网站免费观看| 亚洲情色 制服丝袜| 欧美在线黄色| 别揉我奶头~嗯~啊~动态视频 | 人成视频在线观看免费观看| 亚洲va日本ⅴa欧美va伊人久久 | 最新在线观看一区二区三区| 麻豆乱淫一区二区| 欧美老熟妇乱子伦牲交| 精品熟女少妇八av免费久了| 无限看片的www在线观看| 99re6热这里在线精品视频| 真人做人爱边吃奶动态| 久久国产精品大桥未久av| 美女国产高潮福利片在线看| 久久中文字幕一级| 夜夜骑夜夜射夜夜干| 免费女性裸体啪啪无遮挡网站| 超碰成人久久| 在线看a的网站| 丝瓜视频免费看黄片| a级毛片在线看网站| 欧美成狂野欧美在线观看| av天堂久久9| av在线老鸭窝| 菩萨蛮人人尽说江南好唐韦庄| 9热在线视频观看99| 午夜免费观看性视频| 一区在线观看完整版| 久久久精品94久久精品| 亚洲avbb在线观看| 亚洲精品一区蜜桃| 久久九九热精品免费| 亚洲五月色婷婷综合| 欧美精品一区二区大全| 久久久精品区二区三区| 日本撒尿小便嘘嘘汇集6| av在线app专区| 亚洲精品国产一区二区精华液| 十八禁网站免费在线| 在线观看舔阴道视频| 欧美精品一区二区大全| 三上悠亚av全集在线观看| 午夜激情久久久久久久| 啦啦啦 在线观看视频| netflix在线观看网站| 啪啪无遮挡十八禁网站| 每晚都被弄得嗷嗷叫到高潮| 老司机福利观看| 深夜精品福利| av电影中文网址| 视频在线观看一区二区三区| 纯流量卡能插随身wifi吗| 日韩中文字幕视频在线看片| 18禁国产床啪视频网站| 精品卡一卡二卡四卡免费| 国产精品久久久久久人妻精品电影 | 精品一区二区三区av网在线观看 | 久久99一区二区三区| 亚洲熟女毛片儿| 日本一区二区免费在线视频| 女人高潮潮喷娇喘18禁视频| 亚洲国产av新网站| 成人av一区二区三区在线看 | 国产有黄有色有爽视频| 两个人免费观看高清视频| 亚洲欧洲日产国产| 久久精品熟女亚洲av麻豆精品| 国产精品亚洲av一区麻豆| 亚洲成人免费av在线播放| 首页视频小说图片口味搜索| www.自偷自拍.com| a在线观看视频网站| 亚洲欧美精品综合一区二区三区| 亚洲国产欧美一区二区综合| 成人特级黄色片久久久久久久| 国内精品久久久久久久电影| 国产高清激情床上av| 亚洲中文日韩欧美视频| 久久精品成人免费网站| 国内少妇人妻偷人精品xxx网站 | 亚洲午夜精品一区,二区,三区| 欧美色视频一区免费| 国产三级在线视频| 日本三级黄在线观看| 欧美午夜高清在线| 亚洲欧美日韩高清在线视频| 欧美日韩中文字幕国产精品一区二区三区| 91大片在线观看| 岛国视频午夜一区免费看| 91老司机精品| 亚洲精品国产精品久久久不卡| 脱女人内裤的视频| 99在线人妻在线中文字幕| 黑人欧美特级aaaaaa片| 丰满人妻一区二区三区视频av | 精品国产美女av久久久久小说| 久久午夜综合久久蜜桃| 亚洲熟妇中文字幕五十中出| 国产成人精品久久二区二区免费| 黄色视频,在线免费观看| 国产精品一区二区三区四区免费观看 | 国产成人欧美在线观看| 五月伊人婷婷丁香| 99热这里只有精品一区 | 亚洲真实伦在线观看| 日本撒尿小便嘘嘘汇集6| 欧美av亚洲av综合av国产av| 欧美极品一区二区三区四区| 日本精品一区二区三区蜜桃| 亚洲av片天天在线观看| 日韩av在线大香蕉| 精品国产超薄肉色丝袜足j| 欧美日韩一级在线毛片| 精品久久久久久,| 国产69精品久久久久777片 | 一二三四社区在线视频社区8| 亚洲av中文字字幕乱码综合| 欧美成人性av电影在线观看| av免费在线观看网站| 欧美色视频一区免费| 男女午夜视频在线观看| 久久草成人影院| 色综合亚洲欧美另类图片| 日本一本二区三区精品| 天天添夜夜摸| 欧美日韩瑟瑟在线播放| 久久久久九九精品影院| 国产精品综合久久久久久久免费| 国产日本99.免费观看| 欧美av亚洲av综合av国产av| 正在播放国产对白刺激| 麻豆国产97在线/欧美 | 久久精品夜夜夜夜夜久久蜜豆 | 黄色成人免费大全| 亚洲国产欧美一区二区综合| 全区人妻精品视频| 后天国语完整版免费观看| 每晚都被弄得嗷嗷叫到高潮| 日本一区二区免费在线视频| 亚洲精品在线观看二区| 国产精品亚洲av一区麻豆| 国产又色又爽无遮挡免费看| 美女扒开内裤让男人捅视频| 一区福利在线观看| 欧洲精品卡2卡3卡4卡5卡区| 在线免费观看的www视频| 脱女人内裤的视频|