• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gas pressure effect on plasma transport in a magnetic-filtered radio-frequency plasma source

    2020-06-28 06:14:32OUDINIALIMTADJINEandBENDIB
    Plasma Science and Technology 2020年6期

    N OUDINI , M M ALIM, R TADJINE and A BENDIB

    1 Laboratoire des Plasmas de Décharges,Centre de Développement des Technologies Avancées,Cité du 20 Aout BP 17 Baba Hassen, 16081 Algiers, Algeria

    2 Laboratoire d’Electronique Quantique,Faculté de Physique,USTHB,El Alia BP 32,Bab Ezzouar 16111,Algiers, Algeria

    Abstract Volume negative ion production relies on a magnetic filter(MF),where the plasma downstream of the MF is characterized by a strip-like pattern that consists of a bright and dense plasma region. In this work, we study, in a radio-frequency plasma source, the effects of operating pressure on this strip. This investigation, conducted using a Langmuir probe, shows that the plasma uniformity might be controlled through the gas pressure. Moreover, the operating pressure determines on which hemi-cylinder (side of magnetic field lines) the strip forms. This side inversion of the high-density plasma hemi-cylinder is due to an inversion of an ambipolar electric field that changes the E×B drift direction.

    Keywords: magnetic filter, radio-frequency plasma source, Langmuir probe, E × B drift,ambipolar electric field(Some figures may appear in colour only in the online journal)

    1. Introduction

    An external magnetic field is used in several low-temperature plasma sources,such as a magnetron[1–3],end-Hall ion source[4–6] and Hall-effect thruster [6–8]. These plasma sources are involved in several applications, such as thin film deposition[9, 10], magnetic enhanced reactive ion etching (MERIE)[11–14] and electric propulsion [15]. Due to magnetic drift,plasma sources involving an external magnetic field generally have a cylindrical configuration with an electric field oriented along the axial direction and a magnetic field oriented along the radial direction,or the opposite.Thus,the E×B drift is closed along the azimuthal direction.These latter sources are generally referred to as closed-drift plasma sources [16]. However, the magnetic drift is, in some sources, obstructed by the source walls.The PEGASES(Plasma propulsion with Electronegative GASES)thruster[17]and ITER-NBI(neutral beam injector for the ITER thermonuclear fusion reactor) [18] are typical examples of obstructed-drift sources. The effect of a magnetic filter(MF) on helicon source operation is also a subject of interest,and it has been demonstrated that the presence of the MF has a significant effect on electron heating upstream of it [19].

    Hagelaar and Oudini [20] investigated, numerically,plasma transport across magnetic field lines in low-temperature plasma sources.Their results show that,due to magnetic drifts,namely E×B drift and diamagnetic drift, i.e. ? (neTe)×B,(where E and B represent electric and magnetic fields,Teis the electron temperature in energy units and neis electron density),the electron transport is enhanced across magnetic field lines at the wall vicinity.As a consequence,the MF is characterized by a current leakage located at the aforesaid region. This observation was confirmed later, numerically by Fubiani et al [21]and,experimentally by Gaboriau et al[22].Although magnetic field gradient effects on electron transport across the MF are reported in several works [20–22], Oudini et al [23] recently demonstrated that the latter gradient,i.e.magnetic mirror force,significantly affects the plasma spatial distribution.Their results show that, at the MF plane, the plasma density decreases with the increase in magnetic field strength [23]. Moreover, Gerst et al[24]observed the formation of strip-like patterns,i.e.bright strip, a few centimeters downstream from the MF plane. They concluded that the axial components of the pressure force and electric field lead to the formation of the observed pattern.

    In this work,we study experimentally the strip formation in a cylindrical radio-frequency inductively coupled plasma (RFICP)plasma source operating with argon.This study relies on the measurement of the azimuthal distribution of plasma properties via a Langmuir probe (LP). Our measurements show that the operating pressure plays an important role in the strip formation.

    2. Experimental setup

    Figure 1 shows,schematically,a description of our experimental setup. This latter involves a cylindrical plasma source. In this source, the dielectric discharge chamber is made up by a borosilicate glass cylinder of which the diameter is 10 cm. An antenna is rolled around the aforesaid cylinder making six turns.A flow of cooled water circulates within this antenna to evacuate heat. Argon gas is injected into the discharge chamber from one end of the cylindrical borosilicate tube. The gas flow rate of injected argon is controlled by means of a needle valve.The gas pressure within the discharge chamber is controlled via a pumping system,as illustrated in figure 1.This system combines the use of a rotary pump and a diffusion pump. The plasma is ignited and sustained by circulating a current within the antenna.To do so a radio-frequency power supply, operating at 13.56 MHz, is connected to the antenna through an L-type matching box. The undesirable propagation of electromagnetic radiation propagation in the laboratory is impeded by the use of a Faraday shield.

    Permanent magnets are used to generate an external magnetic field that plays, in our experiment, the role of an MF. These magnets, rare earth neodymium permanent magnets,are cylindrical with a height and diameter of 1 cm.These magnets, 14 in total, are separated into two groups of seven and placed outside the cylindrical plasma chamber at diametrically opposite positions. The two magnet groups are placed,in diametrically opposite positions,perpendicularly to the plasma source wall. The poles of the aforesaid magnets are placed in a geometrical configuration such that each magnetic field line crosses the 14 used magnets (see figure 1(b)).A gap of 5 cm separates the grounded end of the antenna and the MF plane, i.e. the plan containing the magnets.At 6 cm away from the MF plane,an LP is placed at the radial position 3.5 cm.It is important to mention that the LP is fixed,while the MF is able to be rotated manually in the plane(Oy, Oz). This allows us to investigate different azimuthal positions of the generated magnetic field. The angle formed between the line containing the magnets and Oy axis, i.e. the axis defined by the LP and cylinder symmetry axis, ranges from 0°to 360°.Note that the aforesaid angle is considered in the following as the azimuthal position diagnosed by the probe. The reference of the azimuthal position, i.e. 0°, is chosen arbitrarily and is intercepted by the central magnetic field line of the MF. This means that for the azimuthal position corresponding to 0° the magnetic field lines are oriented mainly parallel or antiparallel to the Oy axis (see figure 1(a)); the same applies to the azimuthal position corresponding to 180°.

    The MF magnetic field strength profile along the plasma source axis (Ox direction) is shown in figure 2. The position x=0 refers to the MF axial position. The magnetic field profile on the plasma source axis is characterized by a maximum value of 230 Gauss and a full width at half maximum of about 10 cm.

    Figure 2. Spatial distribution of the magnetic field intensity, in Gauss, along the source axis.

    The experimental protocol is summarized as follows.The chamber is first pumped-down to a high vacuum. Then, the argon flow rate is injected to ensure an operating pressure that is monitored through a Pirani gauge. Once the pressure is stabilized, the RF generator is turned ON, and the matching network is adapted to limit as much as possible the reflected power. Thereafter, the plasma is sustained for a few minutes before starting the measurements, to get rid of any plasma property deviations that might be induced by temperature increases in the plasma chamber walls or antenna.Finally,the plasma properties are diagnosed through an LP for several MF positions. The used probe has a length and a diameter corresponding to 1 cm and 0.2 mm, respectively. The LP is compensated with respect to 13.56 MHz frequency plasma potential oscillations and its harmonics.

    Figure 1(c) shows a picture of the plasma generated by the described magnetic-filtered radio-frequency discharge operating in air. To better highlight the strip-like formation,the MF is moved to a location that is 12 cm away from the antenna grounded end. This picture shows the asymmetry introduced by the external magnetic field.

    To deduce the plasma properties from the collected current–voltage (IV) characteristics, we fit the collected data.Indeed, assuming that the electron distribution function is Maxwellian,the electron contribution to the probe current,i.e.Ie, is summarized by

    where e is the elementary electric charge, A is the probe tip surface, neis the electron density, kBis the Boltzmann constant, Teis the electron temperature, meis the electron mass, Vpis the plasma potential and Vsis the probe bias.

    Also, we assume that positive ion contribution to the probe current, i.e. I+, corresponds to

    where hr=0.6 is the edge-to-center ratio, Seffis the probe collection area, T+is the positive ion temperature and Miis the positive ion mass.

    To estimate the collection area we use the following formula given in [25].

    Equations(1)–(2)are used to fit the collected data,with a constraint on quasi-neutrality, i.e. we impose n+=ne, to deduce the plasma potential Vp, electron temperature Teand electron density. Numerous techniques devoted to LP data analysis are discussed in [26–29].

    We would like to mention that equations (1)–(3) completely neglect the effect of the magnetic field on the probe current.This could be justified as follows.The magnetic field strength in the investigated region, i.e. 6 cm away from the MF plane, drops to ~80 Gauss. For this magnetic field strength, and for the measured electron temperatures, i.e.about 5 eV (see figure 6), the Larmor radius is about 1 mm that is five times larger than the LP radius. We would like to recall that Laframboise and Rubinstein[30]demonstrated that the magnetic field slightly affects the probe current when the probe radius is narrower than the Larmor radius, unless the magnetic field lines are strictly parallel to the probe tip (see

    Figure 3. Azimuthal distribution of the ion saturation current, for a 100 W discharge, measured 6 cm away from the MF position at a radial position r=3.5 cm, for a pressure of 30 mTorr.

    [30]). We would like to mention that the magnetic field, in view of our experimental configuration (see figure 1), intercepts the LP tip obliquely.

    We would like to mention that we studied, in [23], the plasma properties at the MF filter location. In the aforesaid work, our findings showed that plasma properties are significantly affected by the magnetic field gradient in the vicinity of the magnets used to generate the MF.For instance,due to the magnetic mirror force, plasma density decreases with the increase (tightening) in magnetic field strength (lines).

    3. Results and discussion

    Figure 3 shows the measured probe current for a bias of-20 V as a function of the azimuthal position for a probe located 6 cm away from the MF plane, and at a radical position corresponding to 3.5 cm for an operating pressure of 30 mTorr and a discharge of 100 W. In view of the probe bias,we consider that the measured current corresponds to the ion saturation current. Figure 3 shows that the ion saturation current is greater for the hemi-cylinder defined by the azimuthal position [180°, 360°] than what is measured for the azimuthal position between [0°, 180°]. This result is in good agreement with the observation made by Gerst et al [24].Indeed, Gerst et al [24] observed the formation of strip-like patterns, i.e. a bright strip characterized by high plasma density, a few centimeters downstream from the MF plane.According to Gerst et al [24] the formation of the aforesaid pattern is due to the presence of forces pulling and/or pushing electrons in a preferential direction towards the plasma source wall.As a consequence of these forces,the spatial distribution of the plasma density is not axisymmetric and,therefore,one hemi-cylinder is denser than the other.

    We would like to emphasize that the ion saturation current azimuthal profile is not affected at all by the magnetic field,since the ion Larmor radius is infinitely greater than the probe radius [30].

    Figure 4.Azimuthal distribution of plasma density, for a 100 W discharge, measured 6 cm away from the MF position at a radial position r=3.5 cm, for different pressures.

    Figure 4 shows the azimuthal distribution of plasma density,for a 100 W discharge,measured 6 cm away from the MF at a radial position corresponding to 3.5 cm for different pressures: (i) 5 mTorr, (ii) 10 mTorr and (iii) 30 mTorr. The plasma density,averaged over the azimuthal position,is about 1.5×1015m-3for a pressure of 5 mTorr, and increases to about 2.2×1015m-3for pressures of 10 mTorr and 30 mTorr. The density profiles are characterized by a significant gradient along the azimuthal direction. This gradient is attributed, according to the literature [20, 21, 24], to a combination of E×B and diamagnetic drifts that push the plasma towards the plasma source’s walls. However, we notice that for 5 mTorr, the plasma density at the hemicylinder defined by the azimuthal position between 0° and 180°is greater than the second hemi-cylinder.In contrast,for 30 mTorr we observe the opposite, i.e. the plasma density at the azimuthal position between 0° and 180° is smaller than what is measured at the azimuthal position between 180°and 360°. While for 10 mTorr, the plasma density profile is more or less flat and symmetric, in comparison to the other pressures.

    We would like to mention that the spatial distribution of plasma density might be affected by the local production of electron–ion pairs through gas ionization.Indeed,the electron temperature in the diagnosed region, for the investigated experimental conditions,is about 5 to 8 eV.Therefore,a nonmarginal part of the electron has enough energy to ionize the gas. Furthermore, when electrons are magnetized, i.e. when the electron Larmor radius is much smaller than the plasma source diameter and the electron mean free path, the electron trajectory wraps around magnetic field lines allowing the electron to travel, within the magnetized region, a distance that is much greater than the dimension of this latter region.This allows ionization to be a non-marginal process within the MF, even if the magnetized region is smaller than the ionization mean free path.

    Figure 6. Azimuthal distribution of the electron temperature measured, for a 100 W discharge, 6 cm away from the MF position at a radial position r=3.5 cm, for different pressures.

    4. Conclusion

    In this work, electron transport across an MF is investigated experimentally in a radio-frequency plasma source.This study is conducted by analyzing the plasma properties, i.e. electron density and temperature and plasma potential,using a cylindrical LP.The azimuthal profile of the plasma density shows an important gradient due to the formation of a strip-like pattern.This pattern manifests by a hemi-cylinder that is clearly denser than the other one. This unbalance between plasma densities measured at the two hemi-cylinders is due to magnetic drift. Therefore, plasma density uniformity is strongly affected by the operating pressure,since the magnitude of the ambipolar electric field can be controlled through the operating pressure value. Indeed, the plasma density gradient can be limited by choosing an operating pressure that limits the ambipolar electric field magnitude.Moreover, the operating pressure might be used to control the plasma density uniformity. Both electron temperature and plasma density azimuthal profiles are characterized by hydrodynamic gradients.These gradients may play a significant role in electron transport that has not been quantified in this work.

    ORCID iDs

    N OUDINI https://orcid.org/0000-0003-3065-5254

    最新在线观看一区二区三区| 女性被躁到高潮视频| 老熟妇乱子伦视频在线观看 | 久久久国产欧美日韩av| 19禁男女啪啪无遮挡网站| 色精品久久人妻99蜜桃| 日韩一卡2卡3卡4卡2021年| 国产片内射在线| 午夜日韩欧美国产| 999久久久国产精品视频| 久久毛片免费看一区二区三区| 免费观看人在逋| 女警被强在线播放| 91精品国产国语对白视频| 在线十欧美十亚洲十日本专区| 丝瓜视频免费看黄片| 亚洲久久久国产精品| 大型av网站在线播放| 久久免费观看电影| www.精华液| 中文字幕精品免费在线观看视频| 亚洲国产毛片av蜜桃av| 国产有黄有色有爽视频| 各种免费的搞黄视频| 99久久综合免费| 国产成人欧美| 91精品伊人久久大香线蕉| 精品少妇一区二区三区视频日本电影| 另类亚洲欧美激情| 久久天躁狠狠躁夜夜2o2o| 别揉我奶头~嗯~啊~动态视频 | 亚洲av美国av| 免费看十八禁软件| 亚洲国产精品一区三区| 丝袜在线中文字幕| 女人久久www免费人成看片| 中文欧美无线码| 夫妻午夜视频| 亚洲欧美日韩另类电影网站| 久久亚洲国产成人精品v| 亚洲黑人精品在线| 一级毛片电影观看| 成年人午夜在线观看视频| 日本91视频免费播放| 久久精品人人爽人人爽视色| 精品国产一区二区久久| 丁香六月欧美| 亚洲伊人色综图| 国产精品.久久久| 男人操女人黄网站| 免费一级毛片在线播放高清视频 | 亚洲国产精品999| 国产精品 国内视频| 色综合欧美亚洲国产小说| 一本久久精品| 啦啦啦免费观看视频1| 国内毛片毛片毛片毛片毛片| 免费不卡黄色视频| av不卡在线播放| 少妇粗大呻吟视频| 999久久久精品免费观看国产| 18禁黄网站禁片午夜丰满| 欧美日韩福利视频一区二区| 首页视频小说图片口味搜索| 欧美精品av麻豆av| 国产成人免费无遮挡视频| 一级毛片精品| www日本在线高清视频| 97精品久久久久久久久久精品| 妹子高潮喷水视频| 伊人久久大香线蕉亚洲五| 国产精品麻豆人妻色哟哟久久| 99国产极品粉嫩在线观看| 丝袜喷水一区| h视频一区二区三区| 宅男免费午夜| 美女高潮到喷水免费观看| 亚洲精品美女久久av网站| 亚洲第一青青草原| 黑丝袜美女国产一区| 国产精品一区二区在线观看99| 母亲3免费完整高清在线观看| 天天操日日干夜夜撸| 午夜老司机福利片| 欧美中文综合在线视频| 久久午夜综合久久蜜桃| 色播在线永久视频| 曰老女人黄片| 久久久久国产精品人妻一区二区| 女人被躁到高潮嗷嗷叫费观| 丁香六月天网| 亚洲专区中文字幕在线| 人妻 亚洲 视频| 性高湖久久久久久久久免费观看| 成人免费观看视频高清| 五月开心婷婷网| 久久青草综合色| 黄色毛片三级朝国网站| 91精品国产国语对白视频| 欧美国产精品va在线观看不卡| 国产精品一区二区精品视频观看| 老汉色∧v一级毛片| 久久久久久久国产电影| 久久国产精品男人的天堂亚洲| 欧美黄色片欧美黄色片| 久久久水蜜桃国产精品网| 视频区欧美日本亚洲| 欧美在线一区亚洲| 久久九九热精品免费| 最新的欧美精品一区二区| 女警被强在线播放| 久久久久国产一级毛片高清牌| 成人国语在线视频| 色视频在线一区二区三区| 亚洲欧美日韩高清在线视频 | 久久国产精品人妻蜜桃| 一区二区三区乱码不卡18| 亚洲午夜精品一区,二区,三区| 亚洲三区欧美一区| 国产在线免费精品| 亚洲国产av新网站| 欧美日韩国产mv在线观看视频| 精品人妻1区二区| 黄频高清免费视频| 欧美少妇被猛烈插入视频| 黑人巨大精品欧美一区二区mp4| 久久久精品免费免费高清| 视频在线观看一区二区三区| 久久综合国产亚洲精品| 妹子高潮喷水视频| 欧美激情高清一区二区三区| 欧美另类一区| 每晚都被弄得嗷嗷叫到高潮| 精品国产乱码久久久久久男人| 一级片'在线观看视频| av免费在线观看网站| 热99久久久久精品小说推荐| 最近最新中文字幕大全免费视频| 多毛熟女@视频| 自拍欧美九色日韩亚洲蝌蚪91| 少妇猛男粗大的猛烈进出视频| 好男人电影高清在线观看| 欧美日韩亚洲综合一区二区三区_| 欧美日韩一级在线毛片| 国产精品一区二区免费欧美 | 老司机福利观看| 亚洲欧美日韩另类电影网站| 日韩,欧美,国产一区二区三区| 亚洲色图 男人天堂 中文字幕| 亚洲中文日韩欧美视频| 涩涩av久久男人的天堂| 亚洲av国产av综合av卡| 亚洲中文日韩欧美视频| 国产精品国产av在线观看| 久久99一区二区三区| 亚洲精品国产一区二区精华液| 午夜两性在线视频| 香蕉丝袜av| 法律面前人人平等表现在哪些方面 | 欧美日韩av久久| 人妻一区二区av| 视频在线观看一区二区三区| 多毛熟女@视频| 老司机靠b影院| 午夜福利在线免费观看网站| 国产精品免费大片| 中文字幕制服av| 国产精品一区二区在线观看99| 色综合欧美亚洲国产小说| 亚洲欧美激情在线| 老司机在亚洲福利影院| 天天躁日日躁夜夜躁夜夜| 中国国产av一级| 成人影院久久| 老鸭窝网址在线观看| 久久香蕉激情| 大香蕉久久成人网| 在线观看免费日韩欧美大片| 日韩熟女老妇一区二区性免费视频| 三上悠亚av全集在线观看| 亚洲成人免费av在线播放| 我要看黄色一级片免费的| 美国免费a级毛片| 男人爽女人下面视频在线观看| 热re99久久精品国产66热6| 丝袜在线中文字幕| 亚洲第一av免费看| 蜜桃在线观看..| 啪啪无遮挡十八禁网站| 日韩欧美一区二区三区在线观看 | 两人在一起打扑克的视频| 国产黄色免费在线视频| 黄片大片在线免费观看| 男女免费视频国产| 免费女性裸体啪啪无遮挡网站| 满18在线观看网站| 精品福利永久在线观看| 99热国产这里只有精品6| 亚洲avbb在线观看| 看免费av毛片| 高清欧美精品videossex| 人人妻人人澡人人看| 国产精品一区二区免费欧美 | 午夜福利一区二区在线看| 欧美激情高清一区二区三区| 国产精品秋霞免费鲁丝片| 国产1区2区3区精品| 欧美成人午夜精品| 女人被躁到高潮嗷嗷叫费观| 亚洲精品粉嫩美女一区| 国产av又大| 亚洲综合色网址| 国产99久久九九免费精品| 国产高清视频在线播放一区 | 十八禁人妻一区二区| 99久久国产精品久久久| 精品少妇久久久久久888优播| 久久国产精品影院| 国产一卡二卡三卡精品| 亚洲激情五月婷婷啪啪| 亚洲成国产人片在线观看| 91精品国产国语对白视频| 每晚都被弄得嗷嗷叫到高潮| 国产一区二区激情短视频 | 日韩制服丝袜自拍偷拍| 亚洲中文av在线| 最黄视频免费看| 色播在线永久视频| 精品人妻1区二区| 女性生殖器流出的白浆| bbb黄色大片| 9191精品国产免费久久| 国产日韩欧美在线精品| 中国美女看黄片| √禁漫天堂资源中文www| 亚洲熟女毛片儿| 蜜桃在线观看..| 欧美人与性动交α欧美精品济南到| 午夜免费鲁丝| 久久人人97超碰香蕉20202| 色94色欧美一区二区| 日本一区二区免费在线视频| 两个人看的免费小视频| 婷婷色av中文字幕| 捣出白浆h1v1| 汤姆久久久久久久影院中文字幕| 成年女人毛片免费观看观看9 | av天堂在线播放| 少妇裸体淫交视频免费看高清 | 18禁国产床啪视频网站| 男女边摸边吃奶| 国产成人av激情在线播放| 18禁观看日本| 久久久精品免费免费高清| 亚洲精品久久久久久婷婷小说| 午夜久久久在线观看| 国产无遮挡羞羞视频在线观看| 欧美日本中文国产一区发布| 日本一区二区免费在线视频| 一区二区三区四区激情视频| 国产精品久久久久久精品古装| 女人久久www免费人成看片| 夜夜夜夜夜久久久久| 在线观看舔阴道视频| 亚洲国产看品久久| 亚洲精品日韩在线中文字幕| 黄色a级毛片大全视频| 激情视频va一区二区三区| 十八禁网站免费在线| 操出白浆在线播放| av电影中文网址| 亚洲五月色婷婷综合| 亚洲 欧美一区二区三区| 水蜜桃什么品种好| 国产又爽黄色视频| 亚洲欧美精品自产自拍| av又黄又爽大尺度在线免费看| 日日摸夜夜添夜夜添小说| av免费在线观看网站| 精品亚洲成国产av| 亚洲国产日韩一区二区| 亚洲人成电影观看| 久久久久国产一级毛片高清牌| 国产免费视频播放在线视频| 国产成+人综合+亚洲专区| 老司机在亚洲福利影院| 女人被躁到高潮嗷嗷叫费观| 欧美在线黄色| 久热这里只有精品99| 热99久久久久精品小说推荐| 香蕉丝袜av| 亚洲天堂av无毛| 亚洲avbb在线观看| 精品国产国语对白av| 啦啦啦中文免费视频观看日本| 亚洲精品国产一区二区精华液| 久久这里只有精品19| 亚洲精品日韩在线中文字幕| 免费观看av网站的网址| www.av在线官网国产| 蜜桃在线观看..| 午夜影院在线不卡| 黑人巨大精品欧美一区二区蜜桃| 少妇粗大呻吟视频| 麻豆乱淫一区二区| 男人爽女人下面视频在线观看| 人人澡人人妻人| 人妻久久中文字幕网| 免费人妻精品一区二区三区视频| 91麻豆精品激情在线观看国产 | 日韩电影二区| 日韩电影二区| 国产成人精品在线电影| 啪啪无遮挡十八禁网站| 91麻豆av在线| 午夜91福利影院| 亚洲精品中文字幕在线视频| 日韩电影二区| 午夜福利在线观看吧| 香蕉国产在线看| 亚洲天堂av无毛| 色综合欧美亚洲国产小说| 啦啦啦中文免费视频观看日本| 黑人操中国人逼视频| 97精品久久久久久久久久精品| 91成人精品电影| 久久亚洲精品不卡| 精品国产一区二区三区久久久樱花| 免费高清在线观看视频在线观看| 亚洲成国产人片在线观看| 国产成+人综合+亚洲专区| 亚洲第一av免费看| 久久久久国内视频| 国产男女内射视频| 老司机深夜福利视频在线观看 | 十八禁人妻一区二区| 男女国产视频网站| 女人爽到高潮嗷嗷叫在线视频| 天天躁夜夜躁狠狠躁躁| 久久精品人人爽人人爽视色| 日本撒尿小便嘘嘘汇集6| 国产日韩一区二区三区精品不卡| 国产精品1区2区在线观看. | 中国美女看黄片| 老司机午夜福利在线观看视频 | 国产精品亚洲av一区麻豆| 欧美日韩精品网址| 国产一卡二卡三卡精品| 女警被强在线播放| 国产在视频线精品| 久久精品国产a三级三级三级| 亚洲欧洲精品一区二区精品久久久| 欧美中文综合在线视频| 欧美日韩精品网址| 欧美变态另类bdsm刘玥| 久久久久国内视频| 国产亚洲午夜精品一区二区久久| 午夜激情av网站| 亚洲视频免费观看视频| 亚洲精品美女久久久久99蜜臀| 亚洲激情五月婷婷啪啪| 老司机福利观看| 成年人午夜在线观看视频| tube8黄色片| cao死你这个sao货| 国产精品欧美亚洲77777| 久久国产精品人妻蜜桃| 在线亚洲精品国产二区图片欧美| 成年美女黄网站色视频大全免费| 日本猛色少妇xxxxx猛交久久| 国产精品一二三区在线看| av有码第一页| 免费高清在线观看视频在线观看| 国产成人免费无遮挡视频| 天天影视国产精品| tocl精华| 大片免费播放器 马上看| 精品人妻一区二区三区麻豆| cao死你这个sao货| 久久99热这里只频精品6学生| 久久人人97超碰香蕉20202| 成年美女黄网站色视频大全免费| 亚洲国产精品一区三区| 少妇粗大呻吟视频| 久久人妻福利社区极品人妻图片| 久久久久精品国产欧美久久久 | 国产精品久久久久久精品电影小说| 丁香六月天网| 狠狠狠狠99中文字幕| 亚洲欧洲日产国产| 国产精品99久久99久久久不卡| 久久毛片免费看一区二区三区| 日本av免费视频播放| 精品卡一卡二卡四卡免费| 国产在线观看jvid| 国产黄频视频在线观看| 91九色精品人成在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av日韩在线播放| 国产精品免费大片| www日本在线高清视频| 国产日韩欧美在线精品| 亚洲av国产av综合av卡| 精品一区二区三区av网在线观看 | 大陆偷拍与自拍| 亚洲人成电影免费在线| 成年人午夜在线观看视频| av视频免费观看在线观看| 如日韩欧美国产精品一区二区三区| 一级毛片女人18水好多| 午夜视频精品福利| 91av网站免费观看| 黑人猛操日本美女一级片| 丁香六月欧美| 日韩 亚洲 欧美在线| 欧美黑人欧美精品刺激| 一区二区av电影网| 97精品久久久久久久久久精品| 欧美黑人欧美精品刺激| 精品国产一区二区久久| 欧美 亚洲 国产 日韩一| 日韩 欧美 亚洲 中文字幕| 丝袜人妻中文字幕| xxxhd国产人妻xxx| av线在线观看网站| 最近中文字幕2019免费版| 日韩中文字幕视频在线看片| 亚洲精品一卡2卡三卡4卡5卡 | 男女免费视频国产| 成人影院久久| 国产成人欧美| 亚洲av电影在线进入| 国产片内射在线| 999久久久国产精品视频| 亚洲欧美精品自产自拍| 中文字幕av电影在线播放| 女人高潮潮喷娇喘18禁视频| 国产有黄有色有爽视频| 各种免费的搞黄视频| 国产一级毛片在线| 肉色欧美久久久久久久蜜桃| 一级片'在线观看视频| 国产亚洲av高清不卡| 十八禁网站网址无遮挡| 夜夜夜夜夜久久久久| 国产精品1区2区在线观看. | 大陆偷拍与自拍| 亚洲avbb在线观看| 国产成人欧美| 91av网站免费观看| 亚洲欧洲精品一区二区精品久久久| 在线亚洲精品国产二区图片欧美| 亚洲av成人一区二区三| 亚洲成人免费电影在线观看| 亚洲av电影在线进入| 国产人伦9x9x在线观看| 精品亚洲乱码少妇综合久久| 亚洲精华国产精华精| 色播在线永久视频| 另类亚洲欧美激情| 美女主播在线视频| 99国产精品一区二区三区| 十八禁网站免费在线| 久久久久国产一级毛片高清牌| 一区二区三区激情视频| 最近中文字幕2019免费版| 欧美大码av| 97在线人人人人妻| 麻豆国产av国片精品| 欧美精品啪啪一区二区三区 | 国产成人精品久久二区二区91| 欧美久久黑人一区二区| 午夜免费观看性视频| 中文字幕色久视频| 嫩草影视91久久| 欧美成狂野欧美在线观看| 亚洲欧美清纯卡通| 男女午夜视频在线观看| 亚洲人成电影观看| av免费在线观看网站| 免费女性裸体啪啪无遮挡网站| 男男h啪啪无遮挡| 久久av网站| 国产男女内射视频| 纯流量卡能插随身wifi吗| 中亚洲国语对白在线视频| 高清欧美精品videossex| 久久国产精品大桥未久av| 久久久久久久精品精品| 男人添女人高潮全过程视频| 一区二区av电影网| 日韩中文字幕欧美一区二区| 高清黄色对白视频在线免费看| 精品少妇内射三级| 另类亚洲欧美激情| 国产男女内射视频| videos熟女内射| 女警被强在线播放| 三上悠亚av全集在线观看| 免费高清在线观看视频在线观看| 欧美日韩av久久| 免费观看人在逋| 一区二区三区四区激情视频| 男女床上黄色一级片免费看| 成人黄色视频免费在线看| 久久精品亚洲熟妇少妇任你| 女性生殖器流出的白浆| 50天的宝宝边吃奶边哭怎么回事| 考比视频在线观看| 各种免费的搞黄视频| 999久久久国产精品视频| 桃红色精品国产亚洲av| 99热全是精品| 俄罗斯特黄特色一大片| 99九九在线精品视频| 日本精品一区二区三区蜜桃| 欧美少妇被猛烈插入视频| 国产野战对白在线观看| 69精品国产乱码久久久| 成人av一区二区三区在线看 | 色婷婷久久久亚洲欧美| videosex国产| 一级毛片精品| 久久av网站| 日本猛色少妇xxxxx猛交久久| 97在线人人人人妻| 人人妻人人澡人人看| 亚洲欧美精品综合一区二区三区| 国产一区二区激情短视频 | 一区二区日韩欧美中文字幕| 18禁裸乳无遮挡动漫免费视频| 飞空精品影院首页| 91成人精品电影| 51午夜福利影视在线观看| 欧美 亚洲 国产 日韩一| 香蕉丝袜av| 精品国产国语对白av| 在线天堂中文资源库| 人人妻人人添人人爽欧美一区卜| 欧美变态另类bdsm刘玥| 可以免费在线观看a视频的电影网站| 飞空精品影院首页| 在线观看免费日韩欧美大片| 国产精品99久久99久久久不卡| 男女高潮啪啪啪动态图| 亚洲成人免费av在线播放| 国产欧美日韩综合在线一区二区| 另类精品久久| 超色免费av| 久久久久国产精品人妻一区二区| 18在线观看网站| 男人爽女人下面视频在线观看| 国产有黄有色有爽视频| 丝袜美足系列| 欧美激情极品国产一区二区三区| 中国国产av一级| 欧美激情 高清一区二区三区| av天堂久久9| 国产一卡二卡三卡精品| www.熟女人妻精品国产| 少妇被粗大的猛进出69影院| 欧美另类亚洲清纯唯美| 久热这里只有精品99| 熟女少妇亚洲综合色aaa.| 97在线人人人人妻| 日本wwww免费看| 乱人伦中国视频| 老司机午夜十八禁免费视频| 成人国产一区最新在线观看| 操出白浆在线播放| 欧美日韩亚洲高清精品| a在线观看视频网站| 日韩 亚洲 欧美在线| 久久久久久久久久久久大奶| a级毛片黄视频| 母亲3免费完整高清在线观看| 国产视频一区二区在线看| 中国美女看黄片| 国产亚洲一区二区精品| 免费人妻精品一区二区三区视频| 亚洲中文字幕日韩| 欧美日韩视频精品一区| 乱人伦中国视频| 成人三级做爰电影| 久久亚洲精品不卡| 国产日韩一区二区三区精品不卡| 国产精品二区激情视频| 亚洲色图综合在线观看| 日韩熟女老妇一区二区性免费视频| 精品卡一卡二卡四卡免费| 叶爱在线成人免费视频播放| 美国免费a级毛片| 亚洲国产精品一区二区三区在线| 手机成人av网站| 欧美xxⅹ黑人| 一本综合久久免费| 久久人妻熟女aⅴ| 欧美精品啪啪一区二区三区 | 国产欧美日韩综合在线一区二区| 在线亚洲精品国产二区图片欧美| 人人妻人人澡人人看| 午夜福利视频在线观看免费| 国产亚洲欧美精品永久| 宅男免费午夜| 亚洲色图综合在线观看| 亚洲性夜色夜夜综合| 我要看黄色一级片免费的| 亚洲黑人精品在线| 一二三四在线观看免费中文在| 桃红色精品国产亚洲av| 成年av动漫网址| 精品久久久久久电影网| 午夜影院在线不卡| 免费av中文字幕在线| 欧美激情 高清一区二区三区|