• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise, minimum mean square variance criterion and least mean square adaptive filter

    2020-06-28 03:02:24YuxingLiLongWang
    Defence Technology 2020年3期

    Yu-xing Li , Long Wang

    a Faculty of Information Technology and Equipment Engineering, Xián University of Technology, Xián 710048, Shaanxi, China

    b School of Marine Science and Technology, Northwestern Polytechnical University, Xián 710072, Shaanxi, China

    Keywords:Underwater acoustic signal Noise reduction Empirical mode decomposition (EMD)Ensemble EMD (EEMD)Complete EEMD with adaptive noise(CEEMDAN)Minimum mean square variance criterion(MMSVC)Least mean square adaptive filter (LMSAF)Ship-radiated noise

    ABSTRACT Underwater acoustic signal processing is one of the research hotspots in underwater acoustics. Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing. Owing to the complexity of marine environment and the particularity of underwater acoustic channel, noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), minimum mean square variance criterion (MMSVC) and least mean square adaptive filter (LMSAF). This noise reduction technique, named CEEMDAN-MMSVC-LMSAF, has three main advantages: (i) as an improved algorithm of empirical mode decomposition (EMD) and ensemble EMD (EEMD), CEEMDAN can better suppress mode mixing, and can avoid selecting the number of decomposition in variational mode decomposition(VMD); (ii)MMSVC can identify noisy intrinsic mode function (IMF), and can avoid selecting thresholds of different permutation entropies; (iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of decomposition number and basis function for wavelet noise reduction. Firstly, CEEMDAN decomposes the original signal into IMFs, which can be divided into noisy IMFs and real IMFs. Then, MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs. Finally, both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained. Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value. CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection, feature extraction,classification and recognition of underwater acoustic signals.

    1. Introduction

    With the development of science and technology, people pay more and more attention to the utilization, exploitation and protection of the oceans. Due to the complexity of the marine environment and the continuous innovation of underwater target noise reduction technique, the detection, feature extraction and recognition of underwater acoustic signals by modern sonar systems are facing severe challenges [1-3]. With the continuous optimization of stealth technology and quiet submarines, the radiated noise of submarines is decreasing year by year, which makes the identification of submarines more and more difficult.Therefore,there is an urgent need to carry out research on underwater acoustic signal processing methods and their applications, especially on noise reduction of underwater acoustic signals, so as to lay a foundation for further research on detection, feature extraction, classification and recognition of underwater acoustic signals [4].

    Underwater acoustic signals have typical non-linear, non-Gaussian and non-stationary characteristics. Traditional signal analysis and processing techniques are based on Fourier analysis,which cannot express the time-frequency local performance of the signal. Wavelet transform can multi-scale refine the signal by calculating of flex and transition,which solves the problem that the size of Fourier transform window cannot change with frequency.However, wavelet transform is still based on Fourier analysis, and limited by the selection of wavelet basis function and decomposition layer.For underwater acoustic signal processing,we hope that we can not only get the frequency information of the signal,but also get the law of the frequency changing with time. As an empirical signal analysis method, empirical mode decomposition (EMD)overcomes the limitation of Fourier transform fundamentally and can theoretically decompose any signal into IMFs [5-7]. Some experts have put forward improved EMD algorithms to solve mode mixing of EMD. Among them, the more universal and effective algorithms are ensemble EMD(EEMD)[8,9]and complete EEMD with adaptive noise (CEEMDAN) [10,11].

    Noise reduction techniques using EMD, improved EMD algorithms and variational mode decomposition (VMD) have been applied in many fields [12-14]. In Ref. [15], a noise reduction technique for high-g micro-electromechanical system accelerometer were proposed based on EMD, continuous mean square error criterion and wavelet threshold,which can remove 96%of the noise in the original signal. In Ref. [16], a two-stage noise reduction scheme for electrocardiogram signals were proposed based on grey spectral noise estimation,EMD and EEMD,the results show that the proposed noise reduction scheme is superior to the traditional noise reduction methods using EMD and EEMD.In Ref.[17],a noise reduction technique for acoustic-based system were proposed based on EMD and improved fruit fly optimization algorithm(IFFOA), IFFOA was used to determine the threshold of IMF, the validity of the noise reduction technique was verified by simulation and actual acoustic-based diagnosis system. In Ref. [18], a hybrid noise reduction method for the gear transmission system were proposed, time-frequency peak filtering with different window lengths was used to filter noisy IMF according to the permutation entropy of IMF by CEEMDAN,the noise reduction results show that the proposed method was superior to the other methods. In Refs. [19,20], VMD was used to decompose mold level signal and fiber bragg grating deformation spectrum signal, the noisy IMFs were denoised by wavelet denoising to obtain the denoised signals.The results show that the two proposed denoising methods have better effect than traditional ones.

    Wavelet denoising is an effective denoising technique, which includes three basic steps:(i)wavelet transform of noisy signal;(ii)wavelet coefficients thresholding;(iii)inverse wavelet transform to obtain the denoised signal.However,it is difficult to choose the best wavelet basis function,decomposition level and thresholding rule.Least mean square adaptive filter is also an effective denoising technique [21]. The criterion of LMSAF is to minimize the mean square error, that is, to minimize the square of mathematical expectations of the difference between the expected signal and the actual output of the filter, and to modify the tap-weight vector according to this criterion. It has the characteristics of low computational complexity, strong stability and wide range of applications. However, the noise reduction effect is limited by only using LMSAF.

    In recent years, some underwater acoustic signal noise reduction techniques have been proposed based on different kinds of mode decomposition algorithms.CEEMDAN and VMD[22-24]are applied to decompose underwater acoustic signals into IMFs; correlation coefficient [25], mutual information [26] and different kinds of permutation entropies[27]are used to identify noisy IMFs;wavelet threshold denoising is usually applied to process noisy IMFs [28]. However, the above noise reduction techniques have some limitations: (i) VMD requires pre-set decomposition quantities and balancing parameter; (ii) a threshold needs to be set to identify noisy IMFs by using correlation coefficient, mutual information and different kinds of permutation entropies; (iii) wavelet threshold denoising also needs to choose the appropriate decomposition level and basis function.

    In order to overcome the above-mentioned difficulty, a novel noise reduction technique for underwater acoustic signals is proposed in this study by taking advantage of CEEMDAN, minimum mean square variance criterion (MMSVC) and least mean square adaptive filter (LMSAF). Firstly, difficulties in parameter selection can be overcome by using CEEMDAN. Secondly, using threshold to identify noisy IMFs is avoided by MMSVC. Thirdly, threshold selections for noisy IMFs denoising are solved by using LMSAF.Lastly,the proposed denoising technique presents better performance than other similar techniques.

    The structure of this paper is organized as follows: Section 2 is the basic theories of CEEMDAN,MMSVC and LMSAF;the proposed noise reduction technique is presented in Section 3;Section 4 and 5 give the simulation and actual experiments, Section 6 is the conclusion.

    2. Basic theories

    2.1. CEEMDAN

    In this paper, we use the advantages of CEEMDAN with better decomposition performance and without preset parameters to process underwater acoustic signals.The purpose of CEEMDAN is to decompose underwater acoustic signals into IMFs with different oscillation modes one by one [10]. Therefore, the decomposition process of CEEMDAN consists of three steps.

    Step 1: Obtain the first IMF.

    (1) The mixed signal xi(t) can be expressed as:

    where x(t) and Ni(t) are underwater acoustic signal and the i-th standard Gaussian white noise sequences.represented as:

    (2) Decompose all xi(t) into ci1(t) and resi(t) as follows:

    where ci1(t)and resi(t)are the first IMF and residual item by EMD. EMD algorithm can be referred to in Ref. [29].

    (3) Calculate the mean of ci1(t):

    where C1(t) is the first IMF of x(t), named IMF1.

    Step 2: Obtain the other IMFs.

    (1) Calculate the residual item Res1(t):

    (2) Decompose all Ni(t) as follows:

    (4) Construct xnew1(t) and decompose it by EMD as follows:

    (5) Calculate the mean of cRes1Ni1(t)to obtain the C2(t)of x(t)and its residual item Res2(t) as follows:

    (6) The other IMFs can be obtained according to the following formulas:

    Step 3.The original signal x(t) can be expressed as:

    where N and Res(t)represent the number of Cj(t)and the residual item of x(t).

    2.2. MMSVC

    MMSVC is used to identify noisy IMFs by CEEMDAN in this paper. The specific steps of MMSVC are summarized as follows:

    (1) Define New(n) as the residual signal of removing the first n

    IMFs from original signal.

    where x(t)and Ci(t)represent the original signal and the i-th IMF of x(t) by CEEMDAN.

    (2) Mean square variance of New(n) and New(n+1) can be expressed as:

    where N and cn+1(ti)represent the length of original signal and the(n+1)-th IMF of x(t) by CEEMDAN.

    Fig.1. The schematic diagram of LMSAF.

    (3) Mean square variances of two adjacent IMFs are calculated and minimum mean square variance is obtained.

    MMSVC takes minimum mean square variance as critical point.When mean square variance of New(n)and New(n+1)is reaches its minimum value, the first n-1 IMFs are regarded as noisy IMFs[30].

    2.3. LMSAF

    LMSAF has the advantages of stable performance, simple structure and easy implementation. Its basic principle is noise cancellation for the noisy signal and the reference noise signal,so as to eliminate the noise in the noisy signal [31]. Reference noise signal is correlated with noisy signal, but not with real signal in LMSAF.

    Fig. 1 is the schematic diagram of LMSAF. Input of LMSAF includes noisy signal s+n1 and reference noise signal n2,n1 and n2 are correlated,and the correlation between noise and real signal is small, the output y of LMSAF can be expressed as:

    where n′is the estimation of n2 through LMSAF. The specific processes of LMSAF are as follows:

    (1) Initialize the number of taps of filter M, step factor μ, tapweight vector W(0).

    (2) Calculate the estimated output of the current filter n′.

    where WT(n) represents the current tap-weight vector.

    (3) Calculate estimation error e(n).

    where e(n) is equal to y.

    (4) Update tap-weight vector W(n + 1).

    Fig. 2. The flow chart of CEEMDAN-MMSVC-LMSAF.

    (5) Repeat steps (2), (3) and (4) until complete output is obtained.

    3. Noise reduction technique for underwater acoustic signals

    This paper puts forward a novel noise reduction technique for underwater acoustic signals based on CEEMDAN, MMSVC and LMSAF, named CEEMDAN-MMSVC-LMSAF. The flow chart of CEEMDAN-MMSVC-LMSAF is shown in Fig. 2. The experimental steps are as follows:

    (1) Underwater acoustic signals are decomposed into a set of IMFs by CEEMDAN.

    (2) Calculate mean square variances of two adjacent IMFs, and identify noisy IMFs and real IMFs according to MMSVC.

    (3) LMSAF is carried out on noisy IMFs,denoised noisy IMFs are obtained.

    (4) Reconstruct denoised noisy IMFs and real IMFs, denoised underwater acoustic signals can be obtained.

    4. Noise reduction of simulation signals

    4.1. CEEMDAN of simulation signals

    We apply CEEMDAN-MMSVC-LMSAF to noisy bumps signal.Fig.3 is bump signal and noisy bump signal with 5 dB.The sampling frequency and the number of sampling point are 1 KHz and 4096,respectively. CEEMDAN result of noisy bumps signal is shown in Fig.4.As shown in Figs.3 and 4,bump signal is submerged in noise,and the CEEMDAN result is arranged in descending order of frequency.

    Fig. 3. Bumps and noisy bumps signals.

    Fig. 4. CEEMDAN result of noisy bumps signal.

    Table 1 Mean square variances of two adjacent IMFs.

    4.2. Identification of noisy IMFs

    We calculate mean square variances of two adjacent IMFs and get the results in Table 1. As shown in Table 1, M(5) is minimum mean square variance. Therefore, we can know that the first five IMFs and the last five IMFs are noisy IMFs and real IMFs according to MMSVC, respectively.

    4.3. Noise reduction of noisy IMFs and reconstruction

    Fig. 5. Noise reduction results of noisy signals.

    Table 2 Results of different noise reduction techniques (a) Bump (b) Block (c) Doppler (d) Heavysine.

    Fig. 6. Normalized time-domain waveforms for the four ships.

    We use LMSAF to process the first five IMFs,five denoised noisy IMFs are obtained. Then, noise reduction result of noisy bumps signal can be obtained by reconstructing denoised noisy IMFs and real IMFs. Three noise reduction experiments are conducted on doppler signal, blocks signal and heavysine signal, which can be obtained by the MATLAB software.Noise reduction results of noisy signals with 5 dB are shown in Fig. 5. As shown in Fig. 5, after comparing with clear signals, most of noise components are removed,the denoised signals are close to the original ones.

    4.4. Comparison of noise reduction techniques

    To prove the validity of CEEMDAN-MMSVC-LMSAF,experiments of different noise reduction techniques for different signals under different input signal-to-noise ratios (SNRs) are added. Results of different noise reduction techniques are shown in Table 2. Simulation signals are bump, block, doppler and heavysine. Input SNRs are -10 dB, -5 dB, 0 dB and 5 dB. Noise reduction techniques include EMD combined with MMSVC (EMD-MMSVC), CEEMDAN combined with MMSVC (CEEMDAN-MMSVC), CEEMDAN-MMSVCLMSAF and LMSAF.

    As shown in Table 2, maximum SNRs and minimum RMSEs under different input SNRs are marked in bold.The noise reduction techniques based CEEMDAN are better than EMD-MMSVC and LMSAF, CEEMDAN-MMSVC-LMSAF has lower root mean square error(RMSE)and higher SNR than the other three noise reduction techniques.

    5. Noise reduction of underwater acoustic signals

    5.1. CEEMDAN of underwater acoustic signals

    To further prove the effectiveness of CEEMDAN-MMSVC-LMSAF for underwater acoustic signals, CEEMDAN-MMSVC-LMSAF is carried out on ship-A, ship-B, ship-C and ship-D. Four types of ships have different degrees of ocean background noise, which received by hydrophones, including biological noise, seismic noise, rain noise and man-made noise. The sampling frequency and the number of sampling point are 44.1 KHz and 2048, respectively.Normalized time-domain waveforms for the four ships are shown in Fig. 6. As shown in Fig. 6, there are different degrees of ocean background noise in four types of ship signals, which pollute the original ship signals.CEEMDAN results of the four ships are shown in Fig.7.As shown in Fig.7,each ship signal is decomposed and the IMFs are arranged in descending order of frequency.

    Fig. 7. CEEMDAN results of the four ships.

    Fig. 7. (continued).

    CEEMDAN is the key step of underwater acoustic signal denoising. Ocean background noise is typically found in highfrequency IMFs. The decomposition result directly affects the next steps of denoising.

    5.2. CEEMDAN-MMSVC-LMSAF for underwater acoustic signals

    Firstly,we calculate mean square variances of two adjacent IMFs for the four ships.Then,we can get a result that the first four IMFs are noisy IMFs for the four ships according to MMSVC. Finally,denoised noisy IMFs by LMSAF and real IMFs are reconstructed.Noise reduction results of the four ships by CEEMDAN-MMSVCLMSAF are shown in Fig. 8.

    As shown in Fig. 8, time-domain waveforms of the four ships after CEEMDAN-MMSVC-LMSAF are smoother than before,most of the high-frequency noise is removed.

    5.3. Noise reduction effect

    Fig. 8. Noise reduction results of the four ships by CEEMDAN-MMSVC-LMSAF.

    Chaos theory is an important theory for studying non-linear random signals, and the underwater acoustic signal has chaotic characteristics. Therefore, we can evaluate the noise reduction effect of underwater acoustic signal according to attractor trajectory[32]. The attractor trajectory is the trajectory depicted by the solution of the dynamic equation in the phase diagram.Generally,the attractor trajectory of clear signal is very smooth and regular, and the attractor trajectory of noisy signal is very rough and irregular.The attractor trajectories before and after noise reduction for the four ships are shown in Fig. 9. For better observation, we chose a time lag of 2 to avoid similar values between adjacent amplitudes[26]. n is the sampling point, the abscissa of attractor trajectories represent the amplitudes of x(n), the ordinate represent the amplitudes of x(n+2), and the range of n is from 1 to 2046.

    As shown in Fig. 9, attractor trajectories after CEEMDANMMSVC-LMSAF are more regular and smooth than before. Similar results can be obtained by comparing a large number of denoising results for four types of ships. It can be concluded from the experiments that the proposed CEEMDAN-MMSVC-LMSAF noise reduction technique in this paper can effectively eliminate the noise component.Thus,CEEMDAN-MMSVC-LMSAF noise reduction technique also can lay a good foundation for further engineering application.

    6. Conclusions

    In this paper,a novel noise reduction technique for underwater acoustic signals is proposed based on CEEMDAN, MMSVC and LMSAF. The main advantages of CEEMDAN-MMSVC-LMSAF are as follows:

    (1) CEEMDAN-MMSVC-LMSAF combines the advantages of three popular methods.CEEMDAN has a better performance on suppression of mode mixing, and can avoid selecting parameters of VMD.MMSVC is easier to identify noisy IMFs,and can avoid selecting thresholds of different permutation entropies. LMSAF can avoid the selection of decomposition number and basis function for wavelet noise reduction.

    (2) CEEMDAN-MMSVC-LMSAF has better noise reduction performance than EMD-MMSVC,CEEMDAN-MMSVC and LMSAF for simulation signals, which has the highest SNR and the lowest RMSE under different input SNR, and SNR and RMSE are averagely increased by about 0.5 dB and decreased by about 0.02, respectively.

    (3) CEEMDAN-MMSVC-LMSAF can realize the noise reduction of underwater acoustic signals. The attractor trajectory after noise reduction are more smoother and regular than before,which proves the validity of the proposed noise reduction technique.Moreover,it is beneficial to the further processing of underwater acoustic signals, such as detection, feature extraction, classification and recognition.

    In further studies, we should study an improved CEEMDAN algorithm to further suppress mode mixing. In addition, we should analyze the noise reduction effect of underwater acoustic signal under different sampling rates and samples.

    Fig. 9. The attractor trajectories before and after noise reduction for the four ships.

    Conflicts of interest

    The authors declare no conflict of interest.

    Acknowledgement

    The authors gratefully acknowledge the support of the National Natural Science Foundation of China (No.11574250).

    2018国产大陆天天弄谢| 人妻系列 视频| 午夜影院在线不卡| 叶爱在线成人免费视频播放| 一级毛片 在线播放| 我的亚洲天堂| 婷婷色av中文字幕| 欧美老熟妇乱子伦牲交| 男女啪啪激烈高潮av片| 亚洲精品国产一区二区精华液| 一级毛片我不卡| 自线自在国产av| 十八禁网站网址无遮挡| 91国产中文字幕| 国产亚洲午夜精品一区二区久久| 成年人午夜在线观看视频| 国产野战对白在线观看| 欧美日韩一区二区视频在线观看视频在线| 中文字幕色久视频| 一二三四在线观看免费中文在| 99热全是精品| 午夜福利一区二区在线看| 高清黄色对白视频在线免费看| 性少妇av在线| 热re99久久国产66热| 黄色 视频免费看| 国产毛片在线视频| av在线观看视频网站免费| 久久久精品94久久精品| 美女国产高潮福利片在线看| 一区福利在线观看| 2022亚洲国产成人精品| 又粗又硬又长又爽又黄的视频| 中文字幕精品免费在线观看视频| 精品一区二区三卡| 亚洲国产精品一区二区三区在线| 秋霞伦理黄片| 国产福利在线免费观看视频| www.熟女人妻精品国产| 久久精品久久久久久久性| 十八禁高潮呻吟视频| 免费在线观看完整版高清| 亚洲av国产av综合av卡| 亚洲情色 制服丝袜| 免费黄色在线免费观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | freevideosex欧美| 人人澡人人妻人| 最近的中文字幕免费完整| 秋霞伦理黄片| 男的添女的下面高潮视频| 亚洲国产欧美在线一区| 一二三四在线观看免费中文在| 久久久精品免费免费高清| 高清黄色对白视频在线免费看| 可以免费在线观看a视频的电影网站 | 国产一区二区 视频在线| 一边摸一边做爽爽视频免费| 成人亚洲欧美一区二区av| 亚洲欧美成人综合另类久久久| 免费观看无遮挡的男女| 免费黄频网站在线观看国产| 狠狠婷婷综合久久久久久88av| 亚洲美女视频黄频| 亚洲四区av| 国产一区有黄有色的免费视频| 99精国产麻豆久久婷婷| av网站在线播放免费| 五月天丁香电影| 国产xxxxx性猛交| 高清黄色对白视频在线免费看| 久久久国产一区二区| 国产老妇伦熟女老妇高清| 在线观看一区二区三区激情| 母亲3免费完整高清在线观看 | 永久网站在线| 亚洲av福利一区| 国产老妇伦熟女老妇高清| 成年动漫av网址| 国产福利在线免费观看视频| 男女边吃奶边做爰视频| 一级黄片播放器| 久久这里有精品视频免费| a级毛片在线看网站| 国产精品免费大片| 狂野欧美激情性bbbbbb| 亚洲精品美女久久av网站| 99热国产这里只有精品6| 午夜日韩欧美国产| 久久精品国产鲁丝片午夜精品| 久久国产精品大桥未久av| 亚洲av.av天堂| 又黄又粗又硬又大视频| 人妻 亚洲 视频| 老鸭窝网址在线观看| 欧美国产精品一级二级三级| 一级黄片播放器| 国产伦理片在线播放av一区| 少妇被粗大猛烈的视频| 99久久精品国产国产毛片| 欧美在线黄色| 国产精品成人在线| 午夜91福利影院| 老司机影院毛片| 国产极品粉嫩免费观看在线| 超碰成人久久| 熟女av电影| 欧美日韩视频精品一区| 天天躁日日躁夜夜躁夜夜| tube8黄色片| 寂寞人妻少妇视频99o| 国产精品免费大片| 超碰97精品在线观看| 国产在线免费精品| 亚洲av福利一区| 狂野欧美激情性bbbbbb| videosex国产| 多毛熟女@视频| 亚洲三区欧美一区| 夫妻性生交免费视频一级片| 日本猛色少妇xxxxx猛交久久| 少妇 在线观看| 人妻一区二区av| 美女主播在线视频| 亚洲一区中文字幕在线| 国产欧美亚洲国产| 777米奇影视久久| 最近的中文字幕免费完整| 亚洲,欧美,日韩| 久久精品久久久久久噜噜老黄| 久久午夜福利片| 免费黄频网站在线观看国产| 青草久久国产| 国产在视频线精品| 亚洲成av片中文字幕在线观看 | 亚洲三区欧美一区| 在线天堂最新版资源| 欧美精品国产亚洲| 黄色 视频免费看| 亚洲人成77777在线视频| 国产男人的电影天堂91| 在线观看www视频免费| 国产成人精品福利久久| 免费日韩欧美在线观看| 男的添女的下面高潮视频| 黑人欧美特级aaaaaa片| 精品亚洲成a人片在线观看| 久久99一区二区三区| 亚洲精品国产色婷婷电影| 婷婷色av中文字幕| 亚洲一码二码三码区别大吗| 一区二区三区四区激情视频| 亚洲三级黄色毛片| 亚洲精品日本国产第一区| 午夜福利一区二区在线看| 成人黄色视频免费在线看| 丰满少妇做爰视频| 久久av网站| 亚洲国产av新网站| 中文乱码字字幕精品一区二区三区| 国产精品国产av在线观看| 亚洲熟女精品中文字幕| 夜夜骑夜夜射夜夜干| 两个人免费观看高清视频| av在线观看视频网站免费| 咕卡用的链子| 欧美变态另类bdsm刘玥| 亚洲综合色惰| 建设人人有责人人尽责人人享有的| 五月开心婷婷网| 少妇的丰满在线观看| 久久人人爽人人片av| 九草在线视频观看| 丰满乱子伦码专区| 日日啪夜夜爽| 在线观看免费日韩欧美大片| 欧美 亚洲 国产 日韩一| 国产午夜精品一二区理论片| 日本vs欧美在线观看视频| 九色亚洲精品在线播放| 久久女婷五月综合色啪小说| 97在线视频观看| 飞空精品影院首页| 精品人妻偷拍中文字幕| 一区二区三区四区激情视频| 精品一区二区三卡| av福利片在线| 人妻少妇偷人精品九色| 波野结衣二区三区在线| 两个人看的免费小视频| 亚洲国产毛片av蜜桃av| 亚洲色图 男人天堂 中文字幕| 婷婷色综合www| 熟女av电影| 亚洲伊人久久精品综合| 国产精品一二三区在线看| 波野结衣二区三区在线| 天堂8中文在线网| av在线app专区| 麻豆av在线久日| 热re99久久国产66热| 久久这里有精品视频免费| 少妇被粗大猛烈的视频| 亚洲一区中文字幕在线| 波野结衣二区三区在线| 国产一区二区 视频在线| 精品人妻一区二区三区麻豆| 亚洲天堂av无毛| 亚洲av免费高清在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲精品第二区| 亚洲经典国产精华液单| 欧美精品av麻豆av| 久久国产精品男人的天堂亚洲| 成人手机av| 一级毛片我不卡| 欧美激情 高清一区二区三区| 桃花免费在线播放| 人妻系列 视频| 国产av精品麻豆| 国产日韩一区二区三区精品不卡| 美女中出高潮动态图| 五月伊人婷婷丁香| 侵犯人妻中文字幕一二三四区| 伦理电影大哥的女人| www.精华液| 熟妇人妻不卡中文字幕| 大香蕉久久成人网| 九色亚洲精品在线播放| 成人亚洲欧美一区二区av| 成人18禁高潮啪啪吃奶动态图| 极品少妇高潮喷水抽搐| 69精品国产乱码久久久| 精品少妇一区二区三区视频日本电影 | 国产精品麻豆人妻色哟哟久久| 一区二区三区精品91| 夜夜骑夜夜射夜夜干| 国产成人一区二区在线| 色哟哟·www| 久久精品国产亚洲av天美| 亚洲av国产av综合av卡| av女优亚洲男人天堂| 久久久国产精品麻豆| 男女国产视频网站| 国产xxxxx性猛交| 国产欧美日韩综合在线一区二区| 麻豆乱淫一区二区| 国产福利在线免费观看视频| 午夜老司机福利剧场| 人妻一区二区av| 欧美精品国产亚洲| 波多野结衣av一区二区av| 免费观看a级毛片全部| a级毛片黄视频| 五月开心婷婷网| 国产亚洲最大av| 精品亚洲成a人片在线观看| 91aial.com中文字幕在线观看| 免费日韩欧美在线观看| 熟女电影av网| 国精品久久久久久国模美| 国产精品国产av在线观看| 最近最新中文字幕免费大全7| 亚洲成人一二三区av| 成人毛片a级毛片在线播放| 少妇猛男粗大的猛烈进出视频| 宅男免费午夜| 一级毛片电影观看| 国产精品久久久av美女十八| 18禁裸乳无遮挡动漫免费视频| 国产精品蜜桃在线观看| 大香蕉久久成人网| 麻豆乱淫一区二区| 亚洲激情五月婷婷啪啪| 日产精品乱码卡一卡2卡三| 中文字幕精品免费在线观看视频| 久久久久久久久久人人人人人人| 少妇猛男粗大的猛烈进出视频| 亚洲国产精品999| 欧美少妇被猛烈插入视频| av在线app专区| 哪个播放器可以免费观看大片| 亚洲国产精品国产精品| 亚洲精品一区蜜桃| 最黄视频免费看| 精品少妇一区二区三区视频日本电影 | 亚洲在久久综合| 国产精品免费大片| 免费人妻精品一区二区三区视频| 国产黄色视频一区二区在线观看| 一级毛片黄色毛片免费观看视频| 亚洲婷婷狠狠爱综合网| 精品酒店卫生间| 黑人欧美特级aaaaaa片| 熟女av电影| 国产精品免费大片| 国产淫语在线视频| 亚洲国产欧美在线一区| 亚洲av在线观看美女高潮| 哪个播放器可以免费观看大片| 少妇熟女欧美另类| 亚洲精品自拍成人| 少妇 在线观看| 美女主播在线视频| 麻豆乱淫一区二区| 最新的欧美精品一区二区| 在现免费观看毛片| av.在线天堂| 91精品国产国语对白视频| 欧美激情 高清一区二区三区| 国产激情久久老熟女| av在线app专区| 视频区图区小说| 婷婷成人精品国产| 亚洲天堂av无毛| 亚洲三区欧美一区| 大香蕉久久成人网| 在线观看www视频免费| 日韩av不卡免费在线播放| 老司机亚洲免费影院| 青草久久国产| 日韩中文字幕欧美一区二区 | 人人妻人人澡人人爽人人夜夜| 一二三四在线观看免费中文在| 亚洲av电影在线进入| 久久97久久精品| 亚洲成av片中文字幕在线观看 | 精品国产一区二区三区四区第35| 日韩中文字幕视频在线看片| 欧美精品高潮呻吟av久久| 搡女人真爽免费视频火全软件| 如何舔出高潮| 99香蕉大伊视频| 性色av一级| 亚洲av中文av极速乱| 国产精品久久久久久精品电影小说| 免费观看av网站的网址| 亚洲精品国产av成人精品| 夫妻性生交免费视频一级片| av女优亚洲男人天堂| 精品国产一区二区三区久久久樱花| 毛片一级片免费看久久久久| 夫妻性生交免费视频一级片| 国产1区2区3区精品| 欧美激情 高清一区二区三区| 激情五月婷婷亚洲| 18+在线观看网站| 亚洲精品国产一区二区精华液| 天天影视国产精品| 中文精品一卡2卡3卡4更新| 国产日韩欧美亚洲二区| 亚洲国产av影院在线观看| 国产欧美日韩一区二区三区在线| 国产欧美日韩综合在线一区二区| 自线自在国产av| 最新中文字幕久久久久| 熟妇人妻不卡中文字幕| 日韩一卡2卡3卡4卡2021年| 黑人巨大精品欧美一区二区蜜桃| 国产精品秋霞免费鲁丝片| 男人舔女人的私密视频| 精品一区二区免费观看| 日本91视频免费播放| 少妇人妻久久综合中文| 新久久久久国产一级毛片| 国产成人91sexporn| 成年av动漫网址| 国产欧美日韩综合在线一区二区| 老熟女久久久| 最近最新中文字幕免费大全7| 丁香六月天网| 成年女人毛片免费观看观看9 | 99久久精品国产国产毛片| 日本免费在线观看一区| 亚洲精品日本国产第一区| 国产成人精品无人区| 色婷婷久久久亚洲欧美| 天天躁夜夜躁狠狠久久av| 国产精品久久久久久精品电影小说| 国产成人精品无人区| 亚洲国产色片| 婷婷色麻豆天堂久久| 在线免费观看不下载黄p国产| 亚洲激情五月婷婷啪啪| 在线观看www视频免费| 亚洲美女黄色视频免费看| 亚洲精品在线美女| 91aial.com中文字幕在线观看| 免费看av在线观看网站| 99香蕉大伊视频| 精品99又大又爽又粗少妇毛片| 久久久久精品久久久久真实原创| www.自偷自拍.com| 99久久中文字幕三级久久日本| tube8黄色片| 大码成人一级视频| 久久精品aⅴ一区二区三区四区 | 巨乳人妻的诱惑在线观看| 国产一区亚洲一区在线观看| 久久婷婷青草| av天堂久久9| 国产成人一区二区在线| 免费观看无遮挡的男女| 欧美日韩综合久久久久久| 国产免费一区二区三区四区乱码| 午夜福利在线观看免费完整高清在| 热99国产精品久久久久久7| 久久国产精品大桥未久av| 久久热在线av| a级片在线免费高清观看视频| 国产日韩一区二区三区精品不卡| 天天影视国产精品| 日韩一卡2卡3卡4卡2021年| 国产在线一区二区三区精| 十分钟在线观看高清视频www| 午夜影院在线不卡| 免费av中文字幕在线| 国产又色又爽无遮挡免| 看免费av毛片| 国产男女超爽视频在线观看| 亚洲av免费高清在线观看| 中文天堂在线官网| 亚洲欧美一区二区三区国产| 日产精品乱码卡一卡2卡三| 亚洲av综合色区一区| 免费观看性生交大片5| 观看美女的网站| 免费大片黄手机在线观看| 亚洲成人手机| 大话2 男鬼变身卡| 少妇人妻精品综合一区二区| 免费观看a级毛片全部| 欧美成人午夜免费资源| 大码成人一级视频| 亚洲精品一二三| 久久99热这里只频精品6学生| 亚洲中文av在线| av电影中文网址| 纵有疾风起免费观看全集完整版| 三级国产精品片| 如日韩欧美国产精品一区二区三区| 国产av精品麻豆| 老司机亚洲免费影院| 午夜日本视频在线| 中文字幕制服av| 日韩一卡2卡3卡4卡2021年| 午夜影院在线不卡| av天堂久久9| 成年人免费黄色播放视频| 91精品伊人久久大香线蕉| av.在线天堂| 日韩 亚洲 欧美在线| 91aial.com中文字幕在线观看| 成年av动漫网址| 国产精品亚洲av一区麻豆 | 亚洲 欧美一区二区三区| 免费高清在线观看日韩| 美女国产高潮福利片在线看| 成人手机av| 亚洲美女搞黄在线观看| 可以免费在线观看a视频的电影网站 | 午夜免费鲁丝| 99精国产麻豆久久婷婷| 九色亚洲精品在线播放| 日本午夜av视频| 精品亚洲乱码少妇综合久久| 免费久久久久久久精品成人欧美视频| 亚洲,欧美,日韩| 大片免费播放器 马上看| 精品国产超薄肉色丝袜足j| 丝袜人妻中文字幕| 九九爱精品视频在线观看| av又黄又爽大尺度在线免费看| 欧美变态另类bdsm刘玥| 啦啦啦视频在线资源免费观看| 熟女电影av网| 一级黄片播放器| 26uuu在线亚洲综合色| 91成人精品电影| 欧美国产精品一级二级三级| 黄色配什么色好看| 又黄又粗又硬又大视频| 超色免费av| 日韩制服丝袜自拍偷拍| 国产男女内射视频| 久久精品国产亚洲av涩爱| 午夜老司机福利剧场| 日韩人妻精品一区2区三区| 精品国产超薄肉色丝袜足j| 精品一区二区免费观看| 人妻 亚洲 视频| 国产av国产精品国产| 黄频高清免费视频| 性色av一级| 日本vs欧美在线观看视频| 久热这里只有精品99| 天美传媒精品一区二区| 黄频高清免费视频| 九草在线视频观看| 超碰成人久久| 一区二区三区精品91| 亚洲伊人色综图| 国产亚洲午夜精品一区二区久久| 九草在线视频观看| a级毛片黄视频| 亚洲熟女精品中文字幕| 国产精品麻豆人妻色哟哟久久| 成人18禁高潮啪啪吃奶动态图| 亚洲av电影在线进入| 黄色视频在线播放观看不卡| 欧美bdsm另类| 男人添女人高潮全过程视频| 日本av手机在线免费观看| 叶爱在线成人免费视频播放| 97精品久久久久久久久久精品| av在线播放精品| 亚洲欧美一区二区三区黑人 | 久久久久久伊人网av| 午夜免费观看性视频| 中文字幕av电影在线播放| 国产福利在线免费观看视频| 欧美 日韩 精品 国产| 在线观看三级黄色| 精品少妇黑人巨大在线播放| 春色校园在线视频观看| 国产黄频视频在线观看| 国产亚洲av片在线观看秒播厂| 久久午夜综合久久蜜桃| 人体艺术视频欧美日本| 国产精品国产三级国产专区5o| 搡女人真爽免费视频火全软件| 久久这里有精品视频免费| 日日摸夜夜添夜夜爱| 中文天堂在线官网| 久久人人97超碰香蕉20202| 一边亲一边摸免费视频| 日韩,欧美,国产一区二区三区| 老司机影院成人| 制服诱惑二区| 精品一区二区三卡| 日日摸夜夜添夜夜爱| 欧美精品人与动牲交sv欧美| 男人舔女人的私密视频| 欧美少妇被猛烈插入视频| 波野结衣二区三区在线| 一级黄片播放器| 亚洲av男天堂| 黄片小视频在线播放| 性色avwww在线观看| 在线观看免费日韩欧美大片| 少妇精品久久久久久久| 国产综合精华液| 国产免费福利视频在线观看| 女人被躁到高潮嗷嗷叫费观| 国产男人的电影天堂91| 黄色一级大片看看| 97人妻天天添夜夜摸| 一区二区av电影网| 1024香蕉在线观看| 夜夜骑夜夜射夜夜干| 国产 一区精品| 国产成人精品一,二区| 如何舔出高潮| 国产亚洲午夜精品一区二区久久| 午夜福利在线免费观看网站| 一边摸一边做爽爽视频免费| 91aial.com中文字幕在线观看| 国产又爽黄色视频| 啦啦啦视频在线资源免费观看| a级毛片在线看网站| 伊人久久国产一区二区| 人人澡人人妻人| 高清黄色对白视频在线免费看| 狠狠精品人妻久久久久久综合| 丰满乱子伦码专区| 国产有黄有色有爽视频| 亚洲国产欧美日韩在线播放| 亚洲欧洲日产国产| 99精国产麻豆久久婷婷| 成人二区视频| 国产一区亚洲一区在线观看| 国产一区二区激情短视频 | 国产欧美日韩综合在线一区二区| 国产av一区二区精品久久| 大片免费播放器 马上看| 一区二区三区精品91| 国产免费又黄又爽又色| 久久 成人 亚洲| freevideosex欧美| 亚洲欧美色中文字幕在线| 日日摸夜夜添夜夜爱| 亚洲av中文av极速乱| 少妇精品久久久久久久| 日日摸夜夜添夜夜爱| 婷婷色麻豆天堂久久| 亚洲国产毛片av蜜桃av| 国产1区2区3区精品| 国产精品国产三级专区第一集| 在线观看一区二区三区激情| 国产免费视频播放在线视频| 汤姆久久久久久久影院中文字幕| 欧美精品高潮呻吟av久久| 中文字幕av电影在线播放| 这个男人来自地球电影免费观看 | 亚洲欧美一区二区三区黑人 | 国产激情久久老熟女| 大陆偷拍与自拍| 国产精品久久久久久久久免| 夫妻午夜视频| 国产精品av久久久久免费| 欧美 日韩 精品 国产| 91久久精品国产一区二区三区| 熟女电影av网| 午夜精品国产一区二区电影| 中文字幕制服av|