• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Flow computations past a triangular boattailed projectile

    2020-06-28 03:03:58ElwwdIrhimElshkRid
    Defence Technology 2020年3期

    E. Elwwd , A. Irhim , A. Elshk , A. Rid

    a Armed Forces Research Center (ARC), Cairo,11765, Egypt

    b Military Technical College (MTC), Cairo,11766, Egypt

    Keywords:Triangular base Boattailed projectile Drag reduction Range extension

    ABSTRACT This paper presents a computational study of the air flow past a triangular boattailed projectile. The study shows that there is a single normal shock wave impinges the projectile at transonic speeds. At supersonic speeds, the formed shock waves are smeared compared to a conical boattailed projectile.Also, there is a reduction of the wake region behind the triangular base and the rear stagnation point is nearer to the projectile base resulting in base drag reduction. Moreover, there is an improvement of the stability of the triangular boattailed projectile since a lower overturning moment is incurred.

    1. Introduction

    Base drag reduction of artillery projectiles is an effective means to extend their ranges since the base drag is an appreciable component of the total drag. Fig. 1 displays applied methods to reduce base drag of artillery projectiles.These methods are divided into two main groups, namely base pressure increase and boattailing.

    The base pressure increase can be obtained by applying active or passive devices. The active devices are the external burning technique and the base bleed unit. The external burning technique is discussed in Refs.[1-4].The concept of base bleed device has been thoroughly discussed in the first international symposium on special topics in chemical propulsion [5]. These devices have the disadvantages of bad accuracy and dispersion of fire due to the variation of their working time. Moreover, they could disadvantageously affect the lethality since they exploit a part of the projectile volume at the expense of its payload. Many researches have been published recently to improve the ballistic performance of projectiles provided with base bleed unit [6-10].

    The passive devices are base and ventilated cavities, multistep vortex suppression and slotted cavities. Projectiles provided with base and ventilated cavities have been experimentally tested in wind tunnel by Viswanath [11-13]. Base cavities achieved a base drag reduction of (10-20) % at subsonic and transonic speeds, but the reduction is much lower at supersonic speeds. In case of ventilated cavities, the total drag reduction is modest because of incurring drag increase due to viscous losses.The multistep vortex suppression device has been firstly proposed by Kidd [14] using different configurations at transonic speeds. Viswanath [15] performed wind tunnel experiments using different multistep configurations at transonic and supersonic speeds. The last passive device is the stream wise slotted cavity which has been numerically tested at transonic and supersonic speeds by Ibrahim and Filippone[16,17]. But, their device has insignificant effect on the total drag due to the increase of viscous losses.

    The second group of base drag reduction includes two types of boattailing. The first type is conical (axisymmetric) configuration which has two unfavorable effects on projectile at transonic speeds[18,19]: i) generation of large Magnus force and ii) formation of normal shock wave over the boattail. The second type is nonaxisymmetric configurations which have been proposed by Agnone et al. [20,21]. These configurations are square, triangular and cruciform. Their study showed that the triangular configuration has better ballistic performance among others. Accordingly,this paper discusses the air flow past a triangular boattailed projectile (TBP) when it is compared with the flow past a conical boattailed projectile (CBP) at upstream Mach number ranges from 0.94 to 2.5.

    Fig.1. Methods of base drag reduction.

    The current study has been carried out using Reynolds Averaged Navier-Stokes (RANS) equations exploiting the computational facilities of Ansys Fluent.The determined drag coefficients have been compared to the results of the experimental work performed by Platou [18]. The shock wave formation, base flow, drag reduction and overturning moment are of main concern in the present study.

    2. Computational work

    The current study has been applied to a projectile of 57 mm caliber. The relative dimensions of the used projectile models in terms of the caliber are shown in Fig. 2. The triangular boattail is formed by cutting three planes with an angle of 7°in the cylindrical part as shown in Fig. 2(b).

    In order to compare the results of computational work with those of experimental work,the current CFD simulations have been performed on TBP model which had been experimentally tested by Platou [18]. This projectile model has no twist and the spinning is imparted to it through its cupper driving band which is engraved into the grooves (rifling) of the weapon barrel.

    2.1. Governing equations

    Fig. 2. Relative dimensions of the projectile models.

    The governing equations are applied to each control volume in the computational domain for fixed cell volume V and incremental surface area dA=of its faces. These equations in the threedimensional Cartesian coordinate system can be written on the following conservation form [22]:

    where

    is the matrix of conservative properties. The components of the inviscid flux vector F are:

    and the components of G are:

    The air is considered as an ideal gas. The dynamic viscosity of the air is modeled using Sutherland's viscosity law with three coefficients.The momentum equation can be written as the following[22]:

    The implicit density base scheme has been used to solve the system of differential equations.A slight modification to the system of Eq. (1) is made by transforming the dependent variable from conserved quantities W to primitive variables Q using the chainrule [22]. Then the system of equations is preconditioned by replacing the Jacobian matrix ?W/?Q with the preconditioning matrix Γ [25,26].

    The second-order upwind scheme has been applied in discretizing the spatial dependent properties in RANS equations.Higher-order accuracy is achieved at the cell faces through a Taylor series expansion of the cell-centered solution about the cell centroid. Thus the face value φf(shuō)is computed using the following expression [22]:

    2.2. Grid generation

    The grid sensitivity study has been carried out using 2-D structured quadrilateral grid (see Fig. 3) of five sizes. Fig. 4 shows the total drag coefficient,at upstream Mach number equal to 0.96,versus the grid size (N) normalized by the size of the used grid(NG=26000 cells) since the increase of number of cells makes insignificant change of the total drag coefficient.

    For CBP,the 3-D full domain structured grid has been generated by rotating the chosen 2-D grid around the projectile axis to get a grid size of 1828800 cells as shown in Fig. 5. The pressure far field boundary is approximately located at a distance equal to five times the projectile length. This distance has been firstly taken from the literature[16].Then an investigation has been carried out to check if it is sufficient distance to set up the far field boundaries.Then,it has been found that the pressure values are of insignificant changes near the far field boundary.

    For TBP,the 3-D full domain structured grid has been generated with grid size of 1867200 cells as shown in Fig.6.The boattail part consists of three flat and three round surfaces which have been divided into sub-surfaces to improve the grid quality as shown in Fig. 7. Thus, the computational domain is comprised of forty six sub-volumes. The value of the wall function y+ < 1 has been checked satisfying the used turbulence model.

    2.3. Boundary conditions

    Fig. 3. Structured 2-D grid around CBP model.

    Fig. 4. Drag coefficient versus normalized number of cells at M=0.96 for CBP model.

    Fig. 5. Three-dimensional grid for CBP.

    Fig. 6. Three-dimensional grid for TBP.

    Fig. 7. Grid generation over the boattail of TBP.

    The adiabatic no-slip condition is considered on the walls of the used models. The pressure far-field is applied to the outer boundaries of the computational domain. The static pressure and temperature for the pressure-far-field boundary are based on the total pressure p0=101325 Pa and temperature T0=330 K used in wind tunnel testing performed by Platou [18]. The static pressure and temperature are calculated from the isentropic flow relations of a perfect gas [27] as follows:

    3. Results and discussions

    3.1. Validation of the computational work

    The wind tunnel measurements of total drag coefficient versus Mach number performed by Platou [18] have been chosen to validate the computational work. Fig. 8 depicts the experimental and computational results of the total drag coefficient versus Mach number for CBP and TBP, respectively. Good agreement is noticed between the computational and the experimental results. Table 1 lists the measured and calculated drag coefficients. It can be noted that the absolute values of the difference between computed and measured values is almost less than 5%. However, at Mach number ranges from 0.94 to 0.98 the difference is relatively large due to the drag divergence which normally occurs when the flying speed approaches the sonic value. The Mach number of drag divergence depends mainly on the geometry of the body.Physically,a formation of supersonic pocket occurs during increasing the flow speed toward sonic speed. The supersonic pocket is enlarged with the speed increase and terminated by a shock wave resulting in flow separation. This separation is the main reason of the drag increase with a high rate.

    Fig. 8. Experimental and computational drag coefficients versus Mach number.

    Table 1 Data of experimental and computational drag coefficients.

    3.2. Shock wave formation

    The shock wave formation is discussed at Mach number M=2.0 as an example of the flow at supersonic speeds, whereas M=0.96 has been chosen as an example of the flow at transonic speeds.For the remaining Mach numbers at both flow regimes (transonic or supersonic), the results of the shock wave formation are of the same qualitative main characteristics.

    Fig.9 displays the Mach contours around CBP model at a plane passing through the projectile axis at M=0.96.It can be noted that two normal shock waves are almost impinging the middle of both the cylindrical and boattail parts. Fig. 10 displays three planes passing through TBP.Plane 1 divides the TBP into two symmetrical parts and perpendicular to one of the flat surfaces. Planes 2 and 3 are inclined by angles of 30°and 60°measured from Plane 1 in clockwise direction, respectively.

    Fig. 11 displays the Mach contours over the aforementioned three planes. Unlike the case of CBP model, a single normal shock wave impinges the boattail part of TBP model at a distance less than four times the projectile caliber measured from its nose.This single normal shock wave is relatively smeared, especially at the round surfaces, i.e. Plane 3.

    Figs.12 and 13 display the Mach contours around CBP and TBP models at upstream Mach number M=2.0, respectively. The figures show compression waves behind the base of both projectiles generated on the free shearing layers.These compression waves are collected together to form an oblique shock wave. It can be noted that the shock wave is smearing in case of TBP especially at plane 3 compared with the shock wave formed in case of CBP.

    Fig. 9. Mach contours around CBP at M=0.96.

    Fig.10. Demonstrative planes along TBP.

    It is thought that the three round surfaces make flow relaxation resulting in: i) prevention of the normal shock wave formation on the cylindrical part at transonic speeds, and ii) smearing of the shock waves at supersonic speeds.

    3.3. Base drag

    Fig.14 shows base drag coefficient versus Mach number.Lower base drag coefficient is incurred in case of TBP compared to CBP.The base drag reduction may be reasoned by the base area reduction of TBP which is approximately three quarters its CBP counterpart.

    Fig.15 displays the streamlines past the base of both CBP and TBP at upstream Mach number ranging from 0.94 to 2.5. It is clear that, the wake zone past TBP is always smaller than its CBP counterpart and the streamlines are not symmetric. Diminishing of the wake zone results in a reduction in the vortices behind the base.Therefore base drag reduction and lower level of turbulence are obtained.

    Fig. 16 illustrates the position of the rear stagnation point measured from the projectile base (Xs) normalized by the caliber(D) against the upstream Mach number. In general, the rear stagnation point moves downstream by increasing the free stream subsonic speed.However,it moves nearer to the base by increasing the free stream supersonic speeds,which is in agreement with the results of Ref. [28]. Also, it can be noticed that the rear stagnation point is always closer to the base in case of TBP.

    3.4. Overturning moment

    Fig.11. Mach contours around TBP model at M=0.96.

    Fig.12. Mach contours around CBP at M=2.0.

    The conventional artillery projectiles of ogival boatatiled shapes are usually aerodynamically unstable since the center of pressure of the aerodynamic forces is located in front of the center of gravity.Therefore, the normal force generates an overturning moment about the center of gravity. This moment acts on the projectile causing the angle of attack (AOA) to increase. In this case, the moment is positive;consequently its coefficient CMα is also positive.To resist this overturning moment, a gyroscopic effect acts on the projectile by imparting it a very high spin rate through the rifling of the weapon barrel.

    Fig.13. Mach contours around TBP at M=2.0.

    Fig.14. Base drag coefficient CDb versus Mach number.

    The overturning moment coefficient at AOA of ±3°has been calculated to evaluate the aerodynamic stability of TBP with respect to CBP. The positions of the center of gravity of the projectile models have been obtained through CAD drawings using Solid-Works. Utilizing the results of CFD simulations, the overturning moment coefficients have been calculated about the determined centers of gravity.

    Fig.15. Streamlines past the base of CBP and TBP at plane 1.

    Fig.17 illustrates the overturning moment coefficient CMα versus Mach number.This coefficient has been calculated at AOA equal to 3°in case of CBP.Whereas,in case of TBP,it has been calculated at AOA=±3°.At AOA=-3°,the flow faces the flat surface.However,at AOA=+3°,the flow faces the round surface.Whatever the value of the AOA,CMαis of smaller values in case of TBP compared to the values in case of CBP.Also,CMα is favorable when the flow faces the flat surface of TBP since the distance between the center of pressure and the center of gravity decreases.The decreasing of this distance results from the higher pressure distribution on the flat surface.

    4. Conclusions and recommendations

    The study concludes that the flow over TBP is characterized by smearing of the formed shock waves and decreasing of the wake region behind the base resulting in nearer rear stagnation point.Therefore,a base drag reduction of approximately 5%is obtained at M>1.0 when comparing to CBP.

    Fig.16. Normalized position of rear stagnation point versus Mach number.

    Fig.17. Overturning moment coefficient versus Mach number.

    Also,the study concludes that TBP has better performance from stability point of view. This is reasoned by moving the center of pressure toward the center of gravity resulting in decreasing of the overturning moment.

    All the results of the current study have been determined when the value of TBP flat surfaces inclination angle is of 7°.Therefore,it is recommended to carry out a parametric study investigating the ballistic performance of TBP when changing this inclination angle.

    成人特级黄色片久久久久久久| 亚洲va在线va天堂va国产| 国产成人福利小说| 男女边吃奶边做爰视频| 最近视频中文字幕2019在线8| 国产精品自产拍在线观看55亚洲| 超碰av人人做人人爽久久| 久久久精品欧美日韩精品| 色吧在线观看| 国产av不卡久久| 男女边吃奶边做爰视频| 国产伦人伦偷精品视频| 俺也久久电影网| 久久九九热精品免费| 噜噜噜噜噜久久久久久91| 久久久久久大精品| 精品人妻熟女av久视频| 精品久久久久久久人妻蜜臀av| 日本-黄色视频高清免费观看| 欧美bdsm另类| 亚洲五月天丁香| 99热这里只有精品一区| 亚洲专区国产一区二区| 久久精品国产亚洲av香蕉五月| 最近中文字幕高清免费大全6 | 51国产日韩欧美| 亚洲精品456在线播放app | 性高湖久久久久久久久免费观看| 国产欧美亚洲国产| 日本-黄色视频高清免费观看| 日产精品乱码卡一卡2卡三| 亚洲美女视频黄频| 97超视频在线观看视频| 国产亚洲91精品色在线| 丰满乱子伦码专区| 黄色怎么调成土黄色| 欧美成人一区二区免费高清观看| 一区二区三区免费毛片| 中文字幕人妻熟人妻熟丝袜美| 一个人看的www免费观看视频| 久久精品久久久久久噜噜老黄| 国产综合精华液| 韩国高清视频一区二区三区| www.av在线官网国产| av免费观看日本| 精品少妇久久久久久888优播| 超碰97精品在线观看| 伦精品一区二区三区| 国产精品偷伦视频观看了| 国产视频首页在线观看| 国产乱来视频区| 成人一区二区视频在线观看| 这个男人来自地球电影免费观看 | 少妇人妻久久综合中文| 日韩av免费高清视频| 国产精品爽爽va在线观看网站| 在线观看免费高清a一片| 黄色视频在线播放观看不卡| 另类亚洲欧美激情| 在线观看av片永久免费下载| 美女xxoo啪啪120秒动态图| 丝袜脚勾引网站| 精品人妻一区二区三区麻豆| 国产视频内射| 美女高潮的动态| 欧美高清性xxxxhd video| 国产成人精品一,二区| 国产探花极品一区二区| 国产精品一区二区性色av| 搡女人真爽免费视频火全软件| 九色成人免费人妻av| 夫妻午夜视频| 青青草视频在线视频观看| 亚洲成人手机| 久久精品夜色国产| 蜜桃久久精品国产亚洲av| 日韩在线高清观看一区二区三区| 久久精品国产亚洲av涩爱| 在线播放无遮挡| 国产av一区二区精品久久 | 高清黄色对白视频在线免费看 | 国产精品国产三级专区第一集| 亚洲欧洲国产日韩| 国产精品爽爽va在线观看网站| 91精品国产国语对白视频| 欧美日韩国产mv在线观看视频 | 1000部很黄的大片| 亚洲精品视频女| 在线观看av片永久免费下载| 视频区图区小说| 精品久久久久久久久av| 一本一本综合久久| 午夜视频国产福利| 一区在线观看完整版| 免费观看无遮挡的男女| tube8黄色片| 亚洲第一区二区三区不卡| 国产一区亚洲一区在线观看| 久久精品国产亚洲网站| 大香蕉久久网| 大码成人一级视频| 国产亚洲一区二区精品| av天堂中文字幕网| 国产亚洲午夜精品一区二区久久| 亚洲av综合色区一区| 人妻制服诱惑在线中文字幕| 国产成人91sexporn| 99久久精品国产国产毛片| 亚洲第一av免费看| 婷婷色麻豆天堂久久| 欧美日韩视频高清一区二区三区二| 欧美成人精品欧美一级黄| 女性生殖器流出的白浆| 国产男人的电影天堂91| 色视频www国产| 国产一区二区三区综合在线观看 | 国产成人精品一,二区| 国产永久视频网站| 视频中文字幕在线观看| 最近最新中文字幕大全电影3| 男女免费视频国产| 成人18禁高潮啪啪吃奶动态图 | 国产有黄有色有爽视频| 国产精品成人在线| 777米奇影视久久| 91久久精品国产一区二区成人| 久久人人爽人人片av| 亚洲国产毛片av蜜桃av| 十八禁网站网址无遮挡 | 嫩草影院入口| 亚洲av中文字字幕乱码综合| 亚洲天堂av无毛| 国产成人免费无遮挡视频| 高清在线视频一区二区三区| 天堂中文最新版在线下载| 夫妻午夜视频| 久久久久久久久久久丰满| 亚洲电影在线观看av| 一边亲一边摸免费视频| 国产精品久久久久久久久免| 成人毛片60女人毛片免费| 一边亲一边摸免费视频| 女人十人毛片免费观看3o分钟| 国产精品99久久99久久久不卡 | 九草在线视频观看| 亚洲精品日韩av片在线观看| 毛片女人毛片| 国产精品99久久久久久久久| 九九久久精品国产亚洲av麻豆| 国产老妇伦熟女老妇高清| kizo精华| 七月丁香在线播放| 性色av一级| 波野结衣二区三区在线| 午夜激情久久久久久久| 久久久久性生活片| 亚洲成人av在线免费| 国产成人精品婷婷| 久久久久久久大尺度免费视频| 欧美日韩综合久久久久久| 色吧在线观看| 毛片一级片免费看久久久久| 秋霞在线观看毛片| 男女无遮挡免费网站观看| 色综合色国产| 少妇人妻一区二区三区视频| 偷拍熟女少妇极品色| 熟女人妻精品中文字幕| 精品久久久噜噜| 亚洲电影在线观看av| 亚洲伊人久久精品综合| 中国国产av一级| 国产亚洲精品久久久com| 中文字幕人妻熟人妻熟丝袜美| 三级经典国产精品| 观看av在线不卡| 18禁在线播放成人免费| 日韩 亚洲 欧美在线| 尤物成人国产欧美一区二区三区| 老师上课跳d突然被开到最大视频| 观看免费一级毛片| 精品少妇黑人巨大在线播放| 男的添女的下面高潮视频| 一本色道久久久久久精品综合| 好男人视频免费观看在线| 久久人人爽人人片av| 美女中出高潮动态图| 国产精品一区二区三区四区免费观看| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲精华国产精华液的使用体验| 色婷婷av一区二区三区视频| 国产精品一二三区在线看| 大陆偷拍与自拍| 97在线视频观看| 色视频www国产| 99视频精品全部免费 在线| 噜噜噜噜噜久久久久久91| 亚洲av在线观看美女高潮| 国产高潮美女av| 女人十人毛片免费观看3o分钟| 美女中出高潮动态图| 大陆偷拍与自拍| 麻豆国产97在线/欧美| 欧美日韩亚洲高清精品| 亚洲激情五月婷婷啪啪| 免费观看的影片在线观看| 伦精品一区二区三区| 国产精品国产三级国产av玫瑰| 99热全是精品| av福利片在线观看| 日本av手机在线免费观看| 国产成人精品一,二区| 日本色播在线视频| 午夜激情福利司机影院| 日本-黄色视频高清免费观看| 少妇裸体淫交视频免费看高清| tube8黄色片| 国产精品无大码| 99久久精品国产国产毛片| 国产探花极品一区二区| 男女国产视频网站| 夜夜爽夜夜爽视频| 亚洲怡红院男人天堂| 少妇熟女欧美另类| 熟女电影av网| 免费观看无遮挡的男女| 国产毛片在线视频| 久久人人爽人人爽人人片va| 午夜精品国产一区二区电影| 久久99蜜桃精品久久| 2021少妇久久久久久久久久久| 十八禁网站网址无遮挡 | 国产 精品1| 国产黄片美女视频| 18禁在线播放成人免费| 欧美一级a爱片免费观看看| 欧美日韩精品成人综合77777| 六月丁香七月| 直男gayav资源| 夫妻性生交免费视频一级片| 各种免费的搞黄视频| 亚洲精品国产av成人精品| 免费黄网站久久成人精品| 亚洲欧美日韩东京热| 久久精品国产自在天天线| 99九九线精品视频在线观看视频| 免费看av在线观看网站| 精品酒店卫生间| 亚洲av男天堂| 国内精品宾馆在线| 亚洲丝袜综合中文字幕| 精品国产乱码久久久久久小说| 亚洲人与动物交配视频| 成人亚洲欧美一区二区av| 最近最新中文字幕免费大全7| 国产免费视频播放在线视频| 91精品国产九色| 日本黄色日本黄色录像| av国产免费在线观看| 天天躁日日操中文字幕| 在线观看人妻少妇| 国产精品一区二区性色av| 免费av中文字幕在线| 一级av片app| 精品酒店卫生间| 亚洲怡红院男人天堂| 91精品伊人久久大香线蕉| 久久精品国产a三级三级三级| 美女脱内裤让男人舔精品视频| 亚洲精品乱久久久久久| 免费观看的影片在线观看| 免费黄频网站在线观看国产| 人人妻人人澡人人爽人人夜夜| 麻豆国产97在线/欧美| 国产亚洲一区二区精品| 97超碰精品成人国产| 街头女战士在线观看网站| 激情 狠狠 欧美| 男人狂女人下面高潮的视频| 亚洲精品自拍成人| 日韩免费高清中文字幕av| 人妻制服诱惑在线中文字幕| 偷拍熟女少妇极品色| 黄色欧美视频在线观看| 中文欧美无线码| 日韩成人av中文字幕在线观看| 久久精品久久久久久久性| 亚洲精品一二三| 边亲边吃奶的免费视频| 搡老乐熟女国产| 国产精品久久久久久精品古装| 国产成人一区二区在线| 亚洲精品乱码久久久久久按摩| 视频中文字幕在线观看| 老师上课跳d突然被开到最大视频| 美女脱内裤让男人舔精品视频| 最近最新中文字幕免费大全7| 久久久久网色| 麻豆成人av视频| 看非洲黑人一级黄片| 男男h啪啪无遮挡| 精品亚洲成a人片在线观看 | 深爱激情五月婷婷| 成年免费大片在线观看| 欧美激情极品国产一区二区三区 | 日韩国内少妇激情av| 有码 亚洲区| 国产精品蜜桃在线观看| 久久人妻熟女aⅴ| 各种免费的搞黄视频| 国产亚洲一区二区精品| 少妇高潮的动态图| 成人18禁高潮啪啪吃奶动态图 | 99视频精品全部免费 在线| 日本vs欧美在线观看视频 | 免费大片黄手机在线观看| 伦理电影免费视频| 精品亚洲成a人片在线观看 | 亚洲av免费高清在线观看| 国产 一区 欧美 日韩| av在线观看视频网站免费| 一区二区三区免费毛片| 国产高清不卡午夜福利| 18禁在线无遮挡免费观看视频| 国产成人freesex在线| 一级片'在线观看视频| av黄色大香蕉| 日本午夜av视频| 丝袜脚勾引网站| 成人高潮视频无遮挡免费网站| 日韩大片免费观看网站| 王馨瑶露胸无遮挡在线观看| videos熟女内射| 边亲边吃奶的免费视频| 高清不卡的av网站| 男人添女人高潮全过程视频| 久久99精品国语久久久| 成人影院久久| 亚洲精品乱码久久久v下载方式| 男女免费视频国产| 天堂8中文在线网| 亚洲不卡免费看| 欧美精品人与动牲交sv欧美| 亚洲欧洲日产国产| 男女边摸边吃奶| 天堂8中文在线网| 国产高清三级在线| 18禁裸乳无遮挡动漫免费视频| 香蕉精品网在线| 午夜福利高清视频| 99久久综合免费| 国产亚洲av片在线观看秒播厂| 亚洲精品自拍成人| 一区二区三区乱码不卡18| 蜜桃在线观看..| 夫妻午夜视频| 欧美日本视频| 一级二级三级毛片免费看| 国产精品国产av在线观看| 一级毛片电影观看| 新久久久久国产一级毛片| av在线观看视频网站免费| 激情五月婷婷亚洲| 精品人妻熟女av久视频| 性高湖久久久久久久久免费观看| 精华霜和精华液先用哪个| av国产久精品久网站免费入址| 成人综合一区亚洲| 黄片无遮挡物在线观看| 免费观看的影片在线观看| 国产毛片在线视频| 国产成人91sexporn| 日韩 亚洲 欧美在线| 成人亚洲欧美一区二区av| 在线观看美女被高潮喷水网站| 日韩视频在线欧美| 色婷婷av一区二区三区视频| 人妻系列 视频| 亚洲成人av在线免费| 天堂8中文在线网| 亚洲国产毛片av蜜桃av| 亚洲真实伦在线观看| 亚洲av免费高清在线观看| 看免费成人av毛片| 精品一区在线观看国产| 国产成人一区二区在线| 久久 成人 亚洲| 国产成人freesex在线| 国产国拍精品亚洲av在线观看| 欧美成人精品欧美一级黄| 亚洲欧美精品自产自拍| 色视频在线一区二区三区| 男人添女人高潮全过程视频| 日日撸夜夜添| 青春草视频在线免费观看| 国产成人精品婷婷| 久久久久久久久久久丰满| 汤姆久久久久久久影院中文字幕| 久久精品久久精品一区二区三区| 亚洲国产毛片av蜜桃av| 久久久久精品久久久久真实原创| 国产精品一区www在线观看| 最近中文字幕2019免费版| 我要看日韩黄色一级片| 亚洲av在线观看美女高潮| 欧美日韩视频精品一区| 亚洲欧美一区二区三区国产| www.av在线官网国产| 91久久精品国产一区二区三区| 国产深夜福利视频在线观看| 亚洲精品久久久久久婷婷小说| 欧美zozozo另类| 蜜桃在线观看..| 最近最新中文字幕免费大全7| 国产亚洲一区二区精品| 欧美精品人与动牲交sv欧美| av女优亚洲男人天堂| av天堂中文字幕网| 一级毛片久久久久久久久女| 国产亚洲av片在线观看秒播厂| 天堂中文最新版在线下载| 久久久久久久精品精品| 国产淫语在线视频| 26uuu在线亚洲综合色| 久久久久国产精品人妻一区二区| 亚洲电影在线观看av| 女性被躁到高潮视频| 国产永久视频网站| 国产精品伦人一区二区| 26uuu在线亚洲综合色| 高清毛片免费看| 少妇人妻一区二区三区视频| 韩国av在线不卡| 三级国产精品欧美在线观看| 一区二区三区四区激情视频| 国产av一区二区精品久久 | 免费大片18禁| 日韩电影二区| 国产精品av视频在线免费观看| 啦啦啦啦在线视频资源| 久久精品人妻少妇| videossex国产| 少妇的逼水好多| 日本猛色少妇xxxxx猛交久久| 免费人成在线观看视频色| 国产精品一及| 欧美高清性xxxxhd video| 午夜日本视频在线| 欧美日韩国产mv在线观看视频 | 久久ye,这里只有精品| 一级毛片aaaaaa免费看小| 精华霜和精华液先用哪个| 亚洲欧美成人精品一区二区| 在线观看一区二区三区| 色婷婷久久久亚洲欧美| 国产男女超爽视频在线观看| 国产在视频线精品| 免费观看在线日韩| 最近手机中文字幕大全| 久久女婷五月综合色啪小说| 午夜免费鲁丝| 久久毛片免费看一区二区三区| 亚洲精品色激情综合| 久久久久久久久久久丰满| 深夜a级毛片| 少妇人妻精品综合一区二区| 亚洲av日韩在线播放| 国产亚洲精品久久久com| av天堂中文字幕网| 啦啦啦视频在线资源免费观看| 中国美白少妇内射xxxbb| 日韩av免费高清视频| 国产色爽女视频免费观看| 久久99热这里只有精品18| 久热久热在线精品观看| 我的女老师完整版在线观看| 一个人免费看片子| 18禁裸乳无遮挡动漫免费视频| 久久精品国产鲁丝片午夜精品| 最新中文字幕久久久久| 欧美精品亚洲一区二区| 国产免费一级a男人的天堂| 午夜老司机福利剧场| 精品酒店卫生间| 一级二级三级毛片免费看| 国产欧美日韩精品一区二区| 深爱激情五月婷婷| 精品国产露脸久久av麻豆| 狂野欧美白嫩少妇大欣赏| 黄片wwwwww| 亚洲第一av免费看| 视频中文字幕在线观看| 免费观看av网站的网址| 国产69精品久久久久777片| 亚洲伊人久久精品综合| 99热这里只有精品一区| 精品国产乱码久久久久久小说| 国产精品蜜桃在线观看| 国产精品福利在线免费观看| 三级国产精品片| 国产精品国产三级专区第一集| 麻豆乱淫一区二区| 久久99蜜桃精品久久| 成年免费大片在线观看| 边亲边吃奶的免费视频| 一本一本综合久久| 你懂的网址亚洲精品在线观看| 欧美xxxx黑人xx丫x性爽| 91午夜精品亚洲一区二区三区| 嫩草影院入口| 国产成人精品福利久久| 综合色丁香网| 99re6热这里在线精品视频| 黄色怎么调成土黄色| 小蜜桃在线观看免费完整版高清| 亚洲欧洲日产国产| 亚洲三级黄色毛片| 七月丁香在线播放| 国产 一区 欧美 日韩| 精品一区二区免费观看| 亚洲国产精品国产精品| 美女国产视频在线观看| 久久精品国产亚洲av天美| 亚洲精品日韩av片在线观看| 蜜桃亚洲精品一区二区三区| 只有这里有精品99| 干丝袜人妻中文字幕| 亚洲av国产av综合av卡| 特大巨黑吊av在线直播| 高清日韩中文字幕在线| 精品久久久噜噜| 精品久久国产蜜桃| 国产在线男女| 欧美国产精品一级二级三级 | 久久久久久人妻| 亚洲综合色惰| 高清在线视频一区二区三区| 日韩大片免费观看网站| 中文在线观看免费www的网站| 精品久久久久久久久亚洲| 成年av动漫网址| 色哟哟·www| 女人久久www免费人成看片| 国产 精品1| 亚洲美女视频黄频| 亚洲精华国产精华液的使用体验| 国语对白做爰xxxⅹ性视频网站| 久久久久久九九精品二区国产| 熟妇人妻不卡中文字幕| 伦理电影免费视频| 熟女电影av网| 国产精品伦人一区二区| 一边亲一边摸免费视频| 成人亚洲精品一区在线观看 | 寂寞人妻少妇视频99o| 国产精品蜜桃在线观看| 亚洲国产欧美人成| 大陆偷拍与自拍| 美女高潮的动态| 国产精品人妻久久久影院| 亚洲国产日韩一区二区| 国产美女午夜福利| 色婷婷av一区二区三区视频| 91狼人影院| 男人和女人高潮做爰伦理| 久久精品国产自在天天线| 日韩欧美一区视频在线观看 | 久久久久久久大尺度免费视频| 少妇人妻 视频| 久久精品国产鲁丝片午夜精品| 99热网站在线观看| 国产一区有黄有色的免费视频| 午夜激情久久久久久久| 免费看不卡的av| 国精品久久久久久国模美| 男的添女的下面高潮视频| 亚洲av在线观看美女高潮| 99九九线精品视频在线观看视频| av天堂中文字幕网| 国产精品99久久99久久久不卡 | 久久青草综合色| 欧美区成人在线视频| 国产精品久久久久久精品电影小说 | 九草在线视频观看| 99久久精品国产国产毛片| 欧美日韩精品成人综合77777| 成人午夜精彩视频在线观看| 一区二区三区乱码不卡18| 一区在线观看完整版| 久久久精品免费免费高清| 亚洲综合精品二区| 最黄视频免费看| 国产精品国产av在线观看| 亚洲婷婷狠狠爱综合网| 国产永久视频网站| 亚洲av不卡在线观看| 中国三级夫妇交换| 蜜桃在线观看..| 国精品久久久久久国模美| 国产av码专区亚洲av| 熟女人妻精品中文字幕| 精品人妻视频免费看| av黄色大香蕉| 搡老乐熟女国产| 你懂的网址亚洲精品在线观看| 亚洲精品成人av观看孕妇| 欧美日韩精品成人综合77777| 乱码一卡2卡4卡精品| 日本猛色少妇xxxxx猛交久久| 中国美白少妇内射xxxbb| 久久韩国三级中文字幕| 亚洲av日韩在线播放| 一级黄片播放器| 亚洲精品乱久久久久久| 成人免费观看视频高清|