• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multifunctional A356 alloy/ PKSAnp composites: Microstructure and mechanical properties

    2020-06-28 03:04:04AigbodionEzema
    Defence Technology 2020年3期

    V.S. Aigbodion, I.C. Ezema

    Department of Metallurgical and Materials Engineering, University of Nigeria, Nsukka, Nigeria

    Keywords:PKSAnp A356 alloy Microstructure Electrical and mechanical properties

    ABSTRACT Mechanical properties and microstructure of multifunctional composites produced with palm kernel shell ash nanoparticle (PKSAnp)-A356 alloy composites was studied. The composites were produced using Double layer feeding stir casting method (DLF-SCM) by adding 1 wt%-4 wt.% PKSAnp. The microstructure, density, electrical and mechanical properties were determined. The results shows that there was a uniform distribution of the PKSAnp in A356 alloy. The mismatch at the interface between the PKSAnp and A356 alloy was 4.26%. Improvement of 30.47%, 41.91%, 49.52%, 40.90% and 65.09% were obtained for hardness values, tensile, yield strength, %elongation and impact energy at 4 wt% PKASnp.The work has established that the developed composites can be used for multifunctional applications where combination of toughness and strength is vital.

    1. Introduction

    Multifunctional metal matrix composites have unique properties that made them to be used in several areas of applications such as transpiration,building,aviation,defense and biomedical etc.[1].The achievements of these unique properties, for example, the combination of toughness, strength and hardness which are difficult to be obtained from cast composites as results of excess reaction product [2].

    Effort has been made by researcher,to improve the properties of multifunctional metal matrix composites either by the modification of casting method or by used of nanoparticles as reinforcement[3].Hamedan and Mohammad[4]reported on the effect of processing parameter on the mechanical properties and microstructure of A356 alloy reinforced with 1 wt% SiC nanocomposites. They observed that stirring rate and stirring temperature affect the properties and structure of the composites.Stirring rate of 700 rpm and stirring temperature of 750°C achieved the best properties.Yar et al. [5] reported on the mechanical properties of A356 alloy reinforced with MgO nanoparticles. They observed increases in compressive strength and hardness values. Amirkhanlou et al. [6]reported on the properties of A356/SiCp composites. The authors observed high impact energy and low hardness values compared to the matrix.Prasad et al.[7]reported on the strength and hardness values of A356/Rice husk ash composites using stir casting. They observed higher tensile strength and hardness values of the composites when compared with the matrix.

    A combined novel rheocasting and squeeze casting method was used to improve the interfacial bonding and mechanical properties of A356 alloy and multi-walled carbon nanotubes (MWCNTs) by Abou et al. [8]. The MWCNTs varies from 0.5% to 2.5%. They obtained 49.35% and 281.8% increase in tensile strength and elongation at 1.5% MWCNTs. Brittle fracture surface was obtained at percentage of MWCNTs beyond 1.5%.

    In recent years agro-waste,has become a potential materials for the reinforcement of metal matrix composites for engineering application. These could be attributed to the facts that agro-waste materials are: low cost, ecofriendly and light weight [9]. Many of the agro-waste such as: bean pod [2], eggshells [10], bagasse [11],breadfruit shell[12]and PKS[9]have been used as a reinforcement for aluminium matrix composites (AMCs). The used of agro-waste as reinforcement generates many reaction products and decreased the toughness of the composites.Ajibola and Fakeye[13]studied the properties of Zinc-Aluminium alloy reinforced with silicon carbide and palm kernel shell ash (PKSA). SiC was keep constant and PKSA was varied from 0.2 wt%to 1.0 wt%at interval of 0.2 wt%. They observed increases in tensile strength, hardness values and low impact energy as wt.% PKSA increases in the formulation. In order to expand work in this novel area that motivates the present research.In this study the combine effect of DLFSCM method and nanoparticles will be used to enhance the properties of A356alloy/PKSA for multifunctional applications.

    Nomenclature

    PKSAnp Palm kernel shell ash nanoparticles

    DLF-SCM Double layer feeding stir casting method

    TEM Transmission Electron Microscope

    SEM Scanning Electron Microscope

    XRD X-ray diffractometer

    2. Materials and method

    The palm shell used in the study was obtained in the oil processing mill in Nsukka Nigeria. The shell was cleaned and dried,they were packed in graphite crucible and ashes in a muffle furnace at 900°C to obtained palm kernel shell ash (PKSA). The PKSA was pulverized in high intensity ball milling machine. The fine PKSA particles were treated with 50 g of NaOH in 1 dm3of water.Sol gel method was used in the production of PKSAnp used in the work.

    The elemental composition of the PKSAnp was determined using X-Ray Fluorescence (XRF) analysis. The particles were formed into pellets in a pelletizer with hydraulic press (Carver Inc). The pellets were then sealed into the chamber of the XRF(Amptek Inc)and allowed to run for 1000 s at a voltage of 30 kV,and a current of 50 μA. The resulting spectrum measured the elemental composition of the material.

    The composites were produced using A356 alloy (Al-7%Si-0.3%Mg) and PKSAnp from 1 wt% to 4 wt% with interval of 1 wt%. A double layer feeding-stir casting method (DLF-SCM) was used in the production of the composites. Detailed of the production process is explain elsewhere[2].During the melting process,nitrogen gas was purge into the melting metal inside the crucible to avoid oxidation and reduction of the elements and PKSAnp. Preheated metallic mould was used to cast the composites.The sand was used as a supported for the metallic mould. Fig. 1 shows some photographs of the production process.

    Transmission and scanning electron microscopes of model JOEL JSM 5900 scanning was used to determine the various microstructure and interfacial reactions. A Bruker D8?-? X-ray diffractometer was used to determine the various phases form in the composites. Scherres Eq. (1) was used in the determining the particle size.

    Where λ is the wave length of X-Rays,β is FWHM(full width at half maximum), θ is the diffraction angle and D is particle diameter.Bragg's law was used for the estimate of the interspacing distance(d)(Eq.(2))and the dislocation density(ρ)was calculated from Eq.(3).

    Fig.1. Photographs of the casting process.

    The theoretical density (ρth) of the composite was determined using the rule of mixture. Archimedes' principle was used to determine the experimental density (ρed). The volume fraction of void was then calculated as Eq. [4]:

    Vicker hardness tester(Walter Uhl Ablar Germany)was used to determine the hardness values accordance with ASTM E384. The tensile test was carried out at room temperature using Testometric Machine.The test was conducted accordance with ASTM D 3039.A 10 mm/min was used for the crosshead speed. Avery Denison Charpy impact tester was used to determine the impact energy. A sample of size 75 mm×10 mm×10 mm with 2 mm notch depth and 45°angle was used. The test was conducted accordance with ASTM D256.A DV power ohmmeter with model RM0600 was used to determine the electrical conductivity and resistivity.

    3. Results and discussion

    3.1. Particle size and chemical composition of the PKSAnp

    The average size of the PKSAnp used in the experiment as reinforcing phase was 50 nm,which was measured with a Malvern 215 Zetasizer Nano Series Nano-ZS model instrument (see Fig. 2).

    The XRF chemical composition of the PKSAnp is displayed in Table 1.The XRF analysis confirmed that SiO2andMgOwere found to be major constituents of the ash. SiO2and MgO are known to be among the hard substances [10]. Some other oxides viz:Cr2O3.Fe2O3,K2O,Na2O and MnO were also found to be present in traces.

    Fig. 2. TEM and nano-analyzer of PKSAnp.

    Table 1 XRF analysis of Palm Kernel shell nano-particles.

    3.2. XRD analysis

    XRD was used to determine the various phases formed in the composites. In Fig. 3, it can be seen that the diffraction peaks are similar between the alloy and the composite with some additional smaller peaks presence in the composite. The major phases of the alloy are: α-Al (111, Hexagonal), Al12Mg7(411, Cubic), Mg2Si(200,Cubic). In the composite, the phases presence in the alloy are also presence in the composite with addition of SiO2(101,Hexagonal),Mg2SiO4(311, Cubic), C (103, Hexagonal) and SiC (002, Hexagonal)(see Fig. 3). The presence of: SiC, SiO2, Mg2SiO4in the composites could be attributed to the presence of silica and MgO as the main constituents of the PKSAnp (see Table 1). The formation of brittle reaction products such as Al4C at the interface was not observed.This was achieved because the method used in the production of the composites help to decrease the solidification time and reduced excess reaction products.

    Fig. 3. XRD analysis of the alloy and it composites with PKSAnp.

    The crystal structure and dislocation density were determined by XRD using Eq. (1)-(3) above. The crystal structure of the major phase in the alloy is cubic α-Al (d111): a=4.0494 ?, b=4.0494 ?,c=a=4.0494 ?, α=90°, β=90°and γ=90°with dislocation density of 2.70 g/cm3.The crystal structure of the major phase in the PKSAnp d101(Hexagonal) is a=4.8016 ?, b=4.8016 ?,c=a=5.3177 ?, α=90°, β=90°and γ=120°with dislocation density of 2.82 g/cm3.The mismatch in the interface between α-Al(d111) and PKSAnp (d101) was calculated as:A value of 4.26% was obtained.

    3.3. Microstructure

    Fig. 4 displayed the Backscattered SEM microstructure of the alloy and the composite. It was observed that the metal phase is shows as white phase and the PKSAnp as black phase. In Fig. 4(a),white structure of Al12Mg7and Mg2Si in the matrix of α-Al was observed. The presence of the PKSAnp phases which is black was distributed within the boundaries of the Al12Mg7and Mg2Si phases.However, segregation and agglomeration of the reinforcement normally formed during stir casting was not observed in Fig. 4(b).

    TEM was further used to discuss the interface and boundaries,it was observed that the PKSAnp was distributed along the Al-grains and denoted as black and the alloy phase denoted as white. However a relatively fine and homogeneous grain sizes were formed(see Fig. 5). From Fig. 5(a) and 5(b) there is high generation of dislocation density within the interface between the matrix and reinforcement. Dislocation structure at the interface was visible and coherent interface with regular arrangement of PKSAnp was observed.

    3.4. Density

    Fig.6 displayed the results of the density and void space in the composites.

    From Fig. 6, it was obvious that the density of the composites decreased as the wt.% of PKSAnp increases in the formulation. For example, a density of 2.65 g/cm3and 2.47 g/cm3was obtained for the A356 alloy and 4 wt%PKSAnp-A356 composite respectively(see Fig. 6).

    The lower values of the density of the composite could be attributed to the low density of the PKSAnp (1.45 g/cm3) which is lower than the density of pure aluminum which is 2.7 g/cm3. A value of 0.25 was obtained for the void space in the composite with 98.9%densification at 4 wt%PKSAnp.The low value of void and high percentage of densification in this work is attributed to the DLFSCM method used in the production of the composites which help to decrease the void space.

    Fig. 4. (a) Backscattered SEM image of A356 alloy (b) Backscattered SEM image of A356-4 wt%PKSAnp.

    Fig. 5. 5a, b: TEM image of A356alloy with 4 wt%PKSAnp.

    Fig. 6. Variation of density and void space with wt.% PKSAnp.

    3.5. Hardness values

    Fig.7 displayed the results of the hardness values.From Fig.7,it was clearly seen that the hardness values of the A356 alloy improved with increasing in the wt.% PKSAnp. The high hardness values of the composites can be attributed to the presence of hard phase of SiO2(101,Hexagonal), Mg2SiO4(311, Cubic), C (103,Hexagonal)and SiC(002,Hexagonal)in the composites(see Fig.7)and also the mismatch between the A356 alloy and the PKSAnp at the interface generates high dislocation density at the composites(see Fig. 5). Similar observation was observed in the work of [10-12]. A 30.47% improvement of hardness values was obtained at 4 wt% PKSAnp.

    3.6. Tensile properties

    Fig.8(a)displayed the force versus extension plot of the tensile test, while Fig. 8(b) shows the yield and the ultimate tensile strength. From Fig. 8(a), it was seen that the graphs of the A356 alloy and that of the composites were similar. The composites and the master A356 alloy have large area under the force versus extension plot.This large area under the force versus extension plot obtained for the composites is one of the major achievements in this present work. The brittle nature which generally occurred in cast composites, which resulted to the premature failure of the composites after the maximum strength,was not observed.

    From Fig. 8(b), it was seen that both the yield and tensile strength raises as the wt.%PKSAnp increases in the master alloy.For example, the values of 105.0, 135.7, 145.5, 149.8, 157.0 MPa and 185.6, 210.9, 226.3, 235.8, 263.4 MPa were obtained for the yield and tensile strength at 0 wt%, 1 wt%, 2 wt%, 3 wt% and 4 wt%PKSAnp. Improvements of 41.91% and 49.52% were obtained for tensile and yield strength at 4 wt% PKASnp. This general increases in the tensile strength can be attributed to the fine grain size and grain boundary which suffer pining and results to high dislocation density of the composites. The high dislocation density generated in the composites may restrict the free movement of dislocation within the grain boundary and hence increases in the strength of the materials (see Figs. 3 and 5) [13]. The high yield and tensile strength obtained can be attributed to the fact that the high thermal stress generates at the interface is as a results of the large change in the coefficient of thermal expansion between the PKSAnp and A356 alloy [10].

    Fig. 9 shows the fracture surface of the A356 alloy and composites at 4 wt% PKSAnp. The fracture surface shows cup and cap surface which is attributed of a fracture surface of a tough and ductile materials.Deboning and broken down of the PKSAnp at the interface was not observed in this study,this shows a high bonding force between the A356 alloy and PKSAnp. Void nucleation and growth, interfacial DE cohesion resulting from excess interfacial reaction products and fracture of the PKSAnp were not observed in this work.Ductile regions covered the PKSAnp with fine round and non-spherical dimples resulted to high ductile at the interface.

    3.7. Toughness

    The%elongation and impact energy were used to determine the toughness of the composites. Fig.10 displayed the results of the %elongation and impact energy. It can be recalled that the major problem of particles reinforcement is the low toughness of the materials as a results of particle agglomeration and cluster etc.From Fig.10,it can be seen clearly that both%elongation and impact energy increases as the wt.% PKSAnp increases. The improvement in the toughness of the materials can be explained by Eq. (5) [12-13].

    Fig. 8. a: Variation of force with extension for the A356/PKSAnp.

    Fig. 9. 9a: Tensile fracture surface of A356 alloy 9b: Tensile fracture surface at 4 wt% PKSAnp.

    Fig.10. Variation of Elongation and impact energy with wt.% PKSAnp.

    Where σf=stress on particle, γ =fracture energy at surface,E=elastic modulus of the particles,C=crack length.The value of C is very vital in the determination of the toughness of the materials.The higher or coarser the values of C and great tendency for weak bonding between the matrix and the particles,because particles are arrange within the particle/matrix interface.In this work there is a very small value of C which enhances the interfacial bonding of the A356 ally/PKSAnp at this interface. This result is in line with the tensile fracture and TEM discussed above. The improvement of 40.9%in%elongation and 65.09%in impact energy were obtained at wt.% PKSAnp.

    3.8. Electrical properties

    The results of the electrical conductivity and resistivity are shows in Fig.11.From Fig.11 it obvious seen that the results of the electrical conductivity is opposite that of electrical resistivity. The electrical conductivity decreased as the wt.%of PKSAnp increases in the formulation, while that of electrical resistivity increases with increases in wt.%PKSAnp.This could be attributed to the facts that the presence of PKSAnp alter the original crystallographic arrangement of the A356 alloy and cause mismatch.This mismatch in the crystallographic arrangement decreased electron mobility of the matrix and led to high electrical resistivity.

    Fig.11. Variation of Electrical conductivity and Resistivity with wt.% PKSAnp.

    4. Conclusions

    Mechanical properties and microstructure of multifunctional composites produced with PKSAnp-A356 alloy composites was studied. Based on the discussion above it can be concluded that:

    1. The mismatch at the interface between the PKSAnp and A356 alloy was 4.26%.

    2. A value of 0.25 was obtained for the void space in the composite with 98.9% densification.

    3. Improvement of 30.47%,41.91%,49.52%,40.9%and 65.09%were obtained for hardness values, tensile, yield strength, % elongation and impact energy at 4 wt% PKASnp.

    4. The work has established that the developed composites can be used for multifunctional applications where combination of toughness and strength is vital.

    Conflicts of interest

    There is no conflict of interest in the course of this work.

    Acknowledgement

    The authors would like to acknowledge Tertiary Education Trust Fund (TETFund) Nigeria for providing financial aid for this project under the project number: TETFUND/DESS/UNI/NSUKKA/2017/RP/VOL.I.

    欧美日韩一级在线毛片| 极品少妇高潮喷水抽搐| 热99国产精品久久久久久7| 亚洲国产最新在线播放| 国产精品久久久久成人av| 欧美 亚洲 国产 日韩一| 又黄又粗又硬又大视频| 国产免费一区二区三区四区乱码| 久久国产亚洲av麻豆专区| 热re99久久国产66热| 精品一区在线观看国产| 在线av久久热| 国产一区亚洲一区在线观看| 夫妻午夜视频| 中文字幕色久视频| 色综合欧美亚洲国产小说| 久久久久久亚洲精品国产蜜桃av| 爱豆传媒免费全集在线观看| 狂野欧美激情性xxxx| 色婷婷av一区二区三区视频| 日韩大片免费观看网站| 狂野欧美激情性xxxx| 一边亲一边摸免费视频| 夫妻午夜视频| 亚洲av电影在线观看一区二区三区| 日韩人妻精品一区2区三区| 大片电影免费在线观看免费| 久久 成人 亚洲| 亚洲欧美激情在线| 搡老岳熟女国产| 黄片播放在线免费| 黄色片一级片一级黄色片| 最新在线观看一区二区三区 | 99国产精品一区二区三区| 下体分泌物呈黄色| 欧美成人午夜精品| 妹子高潮喷水视频| 伊人久久大香线蕉亚洲五| 欧美av亚洲av综合av国产av| 久热这里只有精品99| 久久av网站| 久久鲁丝午夜福利片| 欧美日韩综合久久久久久| 老鸭窝网址在线观看| a级毛片在线看网站| 国产黄频视频在线观看| 欧美日韩视频精品一区| 欧美日韩一级在线毛片| 女人精品久久久久毛片| 2018国产大陆天天弄谢| 久久久久久久久免费视频了| 欧美大码av| 久久精品久久精品一区二区三区| 日日摸夜夜添夜夜爱| 婷婷色综合www| 下体分泌物呈黄色| 国产无遮挡羞羞视频在线观看| 久久久久久免费高清国产稀缺| 午夜福利视频在线观看免费| 80岁老熟妇乱子伦牲交| 19禁男女啪啪无遮挡网站| 久久中文字幕一级| 久久天躁狠狠躁夜夜2o2o | 一级a爱视频在线免费观看| 亚洲精品第二区| 亚洲专区中文字幕在线| 天天影视国产精品| 赤兔流量卡办理| 亚洲国产精品999| 美女高潮到喷水免费观看| 成在线人永久免费视频| 永久免费av网站大全| 国产成人影院久久av| 最黄视频免费看| 久久久久视频综合| 亚洲国产精品一区三区| 天天躁日日躁夜夜躁夜夜| 国产精品99久久99久久久不卡| 啦啦啦啦在线视频资源| 国产野战对白在线观看| 欧美精品高潮呻吟av久久| 两个人免费观看高清视频| 精品人妻熟女毛片av久久网站| 国产av精品麻豆| 免费看十八禁软件| 操出白浆在线播放| 婷婷丁香在线五月| 精品第一国产精品| 亚洲中文日韩欧美视频| 在现免费观看毛片| 在线观看www视频免费| 亚洲图色成人| 一区福利在线观看| 久久精品国产亚洲av涩爱| 久久人妻福利社区极品人妻图片 | 97人妻天天添夜夜摸| 黄色 视频免费看| www.自偷自拍.com| 美女中出高潮动态图| 精品视频人人做人人爽| 亚洲国产精品999| 成人亚洲精品一区在线观看| 中文字幕人妻丝袜制服| 欧美日韩成人在线一区二区| 久久九九热精品免费| 国产极品粉嫩免费观看在线| 一级毛片 在线播放| 婷婷丁香在线五月| 亚洲欧美日韩高清在线视频 | 满18在线观看网站| 国产成人影院久久av| 十分钟在线观看高清视频www| 亚洲精品国产色婷婷电影| 亚洲av片天天在线观看| 国产精品久久久久久精品电影小说| 国产野战对白在线观看| 日韩精品免费视频一区二区三区| 九草在线视频观看| 精品福利永久在线观看| 久久性视频一级片| 国产成人欧美在线观看 | 99久久99久久久精品蜜桃| 777久久人妻少妇嫩草av网站| 妹子高潮喷水视频| 国产成人系列免费观看| 熟女av电影| 国产免费现黄频在线看| 成年美女黄网站色视频大全免费| 麻豆国产av国片精品| 高清av免费在线| 99国产精品99久久久久| 亚洲一区中文字幕在线| 久久久久久人人人人人| 国产精品麻豆人妻色哟哟久久| 1024香蕉在线观看| 欧美xxⅹ黑人| 桃花免费在线播放| 亚洲 欧美一区二区三区| 男人爽女人下面视频在线观看| 极品少妇高潮喷水抽搐| 女性生殖器流出的白浆| 91国产中文字幕| 9色porny在线观看| 午夜激情av网站| 每晚都被弄得嗷嗷叫到高潮| 精品亚洲成国产av| 亚洲第一青青草原| 男女下面插进去视频免费观看| 国产国语露脸激情在线看| svipshipincom国产片| 国语对白做爰xxxⅹ性视频网站| 日韩中文字幕欧美一区二区 | 成年人黄色毛片网站| 国产男女内射视频| 精品卡一卡二卡四卡免费| 国产精品国产三级国产专区5o| 免费少妇av软件| av线在线观看网站| 波多野结衣av一区二区av| 午夜免费男女啪啪视频观看| 人人妻人人澡人人爽人人夜夜| 日韩一本色道免费dvd| 最新在线观看一区二区三区 | 老汉色∧v一级毛片| 久久国产精品男人的天堂亚洲| 亚洲,欧美精品.| 精品国产乱码久久久久久男人| 日本午夜av视频| 丰满人妻熟妇乱又伦精品不卡| 国产成人免费无遮挡视频| 人人妻人人添人人爽欧美一区卜| 亚洲自偷自拍图片 自拍| 免费在线观看影片大全网站 | 国产一区二区激情短视频 | 欧美xxⅹ黑人| 一区二区av电影网| 丰满人妻熟妇乱又伦精品不卡| 欧美人与性动交α欧美软件| 国产无遮挡羞羞视频在线观看| 成人午夜精彩视频在线观看| 国产精品av久久久久免费| 免费观看a级毛片全部| 日韩av免费高清视频| 99久久综合免费| 国产亚洲一区二区精品| 巨乳人妻的诱惑在线观看| 精品国产一区二区三区久久久樱花| 后天国语完整版免费观看| 黑人猛操日本美女一级片| 老司机深夜福利视频在线观看 | 欧美成人精品欧美一级黄| 国产精品国产av在线观看| 精品国产乱码久久久久久男人| 人人妻人人澡人人看| 黑人欧美特级aaaaaa片| 手机成人av网站| 一个人免费看片子| 性高湖久久久久久久久免费观看| 老鸭窝网址在线观看| 免费不卡黄色视频| 日本av手机在线免费观看| 秋霞在线观看毛片| 男女无遮挡免费网站观看| 丝袜美腿诱惑在线| 99香蕉大伊视频| 久久综合国产亚洲精品| 亚洲欧美日韩另类电影网站| 巨乳人妻的诱惑在线观看| 99精国产麻豆久久婷婷| 美女主播在线视频| 亚洲情色 制服丝袜| 欧美精品亚洲一区二区| 十八禁高潮呻吟视频| 国产精品.久久久| 婷婷色综合大香蕉| 久久热在线av| 久久久久国产精品人妻一区二区| 国产日韩欧美亚洲二区| 十八禁网站网址无遮挡| 国产精品成人在线| 日本猛色少妇xxxxx猛交久久| 亚洲国产最新在线播放| 狠狠精品人妻久久久久久综合| 国产又色又爽无遮挡免| 亚洲一码二码三码区别大吗| 操美女的视频在线观看| 午夜日韩欧美国产| 亚洲av综合色区一区| 久久久精品免费免费高清| 国产成人精品久久久久久| 国产麻豆69| 9色porny在线观看| 下体分泌物呈黄色| 男女无遮挡免费网站观看| 美女脱内裤让男人舔精品视频| 亚洲人成电影免费在线| 国产精品一区二区免费欧美 | 男人爽女人下面视频在线观看| 国产亚洲av片在线观看秒播厂| 五月开心婷婷网| 久久精品久久久久久噜噜老黄| 人人妻人人添人人爽欧美一区卜| 亚洲熟女毛片儿| 久久天堂一区二区三区四区| 美女大奶头黄色视频| av又黄又爽大尺度在线免费看| 午夜福利影视在线免费观看| videos熟女内射| 国产精品av久久久久免费| 亚洲伊人久久精品综合| 色视频在线一区二区三区| 国产精品国产三级国产专区5o| 午夜免费男女啪啪视频观看| 老鸭窝网址在线观看| 欧美少妇被猛烈插入视频| 我要看黄色一级片免费的| 青春草视频在线免费观看| 久久99一区二区三区| 国产激情久久老熟女| 国产精品国产三级国产专区5o| 亚洲人成网站在线观看播放| 成人黄色视频免费在线看| 国产成人av激情在线播放| 一区二区三区激情视频| 国产又色又爽无遮挡免| 十八禁人妻一区二区| 久久国产精品人妻蜜桃| 国产日韩欧美视频二区| 久久av网站| 欧美日韩视频精品一区| 黄色怎么调成土黄色| 国产成人欧美| 大香蕉久久网| 又大又黄又爽视频免费| 久久久久久久精品精品| 国产高清视频在线播放一区 | 亚洲精品一区蜜桃| 90打野战视频偷拍视频| 老司机午夜十八禁免费视频| 精品久久久精品久久久| 新久久久久国产一级毛片| 色94色欧美一区二区| 日韩一卡2卡3卡4卡2021年| 热re99久久国产66热| 国产亚洲av片在线观看秒播厂| 精品免费久久久久久久清纯 | 亚洲情色 制服丝袜| 一级黄片播放器| 男人爽女人下面视频在线观看| 日韩视频在线欧美| 久久99一区二区三区| 婷婷丁香在线五月| 久久久久网色| 国产日韩欧美亚洲二区| 日本a在线网址| 亚洲精品国产一区二区精华液| 2021少妇久久久久久久久久久| 久久狼人影院| 一级片免费观看大全| 国产高清国产精品国产三级| 国产无遮挡羞羞视频在线观看| 久久久国产精品麻豆| 十分钟在线观看高清视频www| 美女国产高潮福利片在线看| 80岁老熟妇乱子伦牲交| 久久99精品国语久久久| 国产成人av激情在线播放| 女人被躁到高潮嗷嗷叫费观| 美女高潮到喷水免费观看| 各种免费的搞黄视频| 老司机影院成人| 另类亚洲欧美激情| 亚洲一区二区三区欧美精品| 天堂8中文在线网| 欧美日韩亚洲高清精品| www.av在线官网国产| 精品一区二区三区四区五区乱码 | 男人舔女人的私密视频| 少妇裸体淫交视频免费看高清 | 日日摸夜夜添夜夜爱| 老熟女久久久| 性色av乱码一区二区三区2| 亚洲国产中文字幕在线视频| 美女国产高潮福利片在线看| 蜜桃在线观看..| 日韩大码丰满熟妇| 50天的宝宝边吃奶边哭怎么回事| 中文字幕亚洲精品专区| 国产一区二区激情短视频 | 人人妻人人澡人人看| 亚洲成人手机| 国产真人三级小视频在线观看| 美女大奶头黄色视频| 人人澡人人妻人| 伊人久久大香线蕉亚洲五| 99精国产麻豆久久婷婷| 男女边吃奶边做爰视频| 激情视频va一区二区三区| videosex国产| 一本色道久久久久久精品综合| 9热在线视频观看99| 国产成人一区二区在线| 人人妻人人澡人人看| 无限看片的www在线观看| 美女中出高潮动态图| 两性夫妻黄色片| xxxhd国产人妻xxx| 国产精品麻豆人妻色哟哟久久| 欧美精品人与动牲交sv欧美| 亚洲av电影在线观看一区二区三区| 欧美日韩亚洲高清精品| 香蕉丝袜av| 日韩av免费高清视频| 亚洲中文字幕日韩| 亚洲中文av在线| 精品欧美一区二区三区在线| 国产精品免费视频内射| 女人久久www免费人成看片| 成人国语在线视频| 97精品久久久久久久久久精品| 亚洲精品美女久久久久99蜜臀 | 飞空精品影院首页| 视频区欧美日本亚洲| 中文精品一卡2卡3卡4更新| 啦啦啦啦在线视频资源| 国产免费现黄频在线看| 国产精品亚洲av一区麻豆| 亚洲欧美日韩另类电影网站| 黄色视频不卡| 中文精品一卡2卡3卡4更新| 热re99久久精品国产66热6| 国产精品一区二区在线观看99| 又粗又硬又长又爽又黄的视频| 婷婷色av中文字幕| 香蕉丝袜av| 久久久精品94久久精品| 少妇粗大呻吟视频| 肉色欧美久久久久久久蜜桃| 精品一区在线观看国产| 久久久久久久大尺度免费视频| 欧美xxⅹ黑人| 午夜免费鲁丝| 日本91视频免费播放| 免费人妻精品一区二区三区视频| 王馨瑶露胸无遮挡在线观看| 午夜福利乱码中文字幕| 日本一区二区免费在线视频| 一边摸一边抽搐一进一出视频| 精品少妇黑人巨大在线播放| 首页视频小说图片口味搜索 | 满18在线观看网站| 我的亚洲天堂| 日韩视频在线欧美| 69精品国产乱码久久久| 成年人午夜在线观看视频| 十八禁网站网址无遮挡| 亚洲成国产人片在线观看| 国产亚洲一区二区精品| 国产伦人伦偷精品视频| 青青草视频在线视频观看| 日本91视频免费播放| 亚洲一区二区三区欧美精品| 亚洲欧美一区二区三区久久| 1024香蕉在线观看| 国产成人欧美在线观看 | 精品人妻在线不人妻| 亚洲伊人久久精品综合| 国产精品久久久久成人av| 亚洲,欧美精品.| 国产成人av教育| 亚洲精品第二区| 男女下面插进去视频免费观看| 大片免费播放器 马上看| 18禁国产床啪视频网站| 日韩av免费高清视频| 亚洲 国产 在线| 又大又爽又粗| 又黄又粗又硬又大视频| 精品少妇黑人巨大在线播放| av网站在线播放免费| 女人被躁到高潮嗷嗷叫费观| 99国产精品一区二区蜜桃av | 亚洲一区中文字幕在线| 免费黄频网站在线观看国产| 亚洲国产欧美一区二区综合| 亚洲中文日韩欧美视频| 亚洲精品一二三| 亚洲成国产人片在线观看| 亚洲国产欧美日韩在线播放| 精品福利永久在线观看| 热re99久久国产66热| 国产欧美日韩一区二区三 | 一级片免费观看大全| 色播在线永久视频| 亚洲精品一二三| 可以免费在线观看a视频的电影网站| 国产高清视频在线播放一区 | 汤姆久久久久久久影院中文字幕| 精品久久久精品久久久| 国产欧美日韩精品亚洲av| 欧美中文综合在线视频| 亚洲精品国产av蜜桃| 男女边摸边吃奶| 国产99久久九九免费精品| 久热爱精品视频在线9| 亚洲九九香蕉| 校园人妻丝袜中文字幕| 日韩精品免费视频一区二区三区| 国产欧美日韩综合在线一区二区| 国产精品一区二区精品视频观看| 成在线人永久免费视频| 久久热在线av| 国产真人三级小视频在线观看| 亚洲伊人久久精品综合| 国产亚洲一区二区精品| 亚洲av欧美aⅴ国产| 日韩免费高清中文字幕av| 捣出白浆h1v1| svipshipincom国产片| 午夜影院在线不卡| 国产国语露脸激情在线看| 国产精品国产三级国产专区5o| 国产福利在线免费观看视频| 精品少妇内射三级| 国产精品二区激情视频| 亚洲欧洲日产国产| 女人高潮潮喷娇喘18禁视频| 男人操女人黄网站| 一级黄片播放器| 满18在线观看网站| 久久精品国产综合久久久| 19禁男女啪啪无遮挡网站| 国产精品一区二区在线不卡| 男女无遮挡免费网站观看| 最新在线观看一区二区三区 | 亚洲国产日韩一区二区| 夫妻午夜视频| 日韩 欧美 亚洲 中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 悠悠久久av| 嫁个100分男人电影在线观看 | 男女之事视频高清在线观看 | 女人高潮潮喷娇喘18禁视频| 精品国产乱码久久久久久小说| 99热全是精品| 亚洲国产欧美一区二区综合| 2021少妇久久久久久久久久久| 午夜福利在线免费观看网站| 校园人妻丝袜中文字幕| 亚洲人成网站在线观看播放| 国产男人的电影天堂91| 97在线人人人人妻| 女警被强在线播放| 美女视频免费永久观看网站| 国产精品国产三级专区第一集| 亚洲国产精品成人久久小说| 免费观看人在逋| 美国免费a级毛片| 久久女婷五月综合色啪小说| 午夜日韩欧美国产| 大香蕉久久网| 亚洲,一卡二卡三卡| 国产一区二区三区综合在线观看| 国产精品一区二区免费欧美 | 啦啦啦 在线观看视频| 丰满迷人的少妇在线观看| 80岁老熟妇乱子伦牲交| 观看av在线不卡| 一区二区三区乱码不卡18| 在线天堂中文资源库| 国产成人欧美在线观看 | 久久久久久久国产电影| 亚洲五月婷婷丁香| 久久国产精品影院| 人成视频在线观看免费观看| 色婷婷久久久亚洲欧美| 成年美女黄网站色视频大全免费| 丰满少妇做爰视频| 国产精品.久久久| 国产免费视频播放在线视频| 久久久久精品人妻al黑| 青青草视频在线视频观看| 久久av网站| 黄片播放在线免费| 免费在线观看完整版高清| 亚洲欧洲精品一区二区精品久久久| 久久精品aⅴ一区二区三区四区| 国产亚洲午夜精品一区二区久久| 在线观看免费视频网站a站| 一边亲一边摸免费视频| 男人添女人高潮全过程视频| 久久久国产一区二区| av欧美777| 久久久久久亚洲精品国产蜜桃av| 精品亚洲成a人片在线观看| 日本vs欧美在线观看视频| 新久久久久国产一级毛片| 国产精品亚洲av一区麻豆| 日本91视频免费播放| 爱豆传媒免费全集在线观看| 国产精品久久久av美女十八| 欧美黄色淫秽网站| 欧美精品高潮呻吟av久久| 久久久久国产一级毛片高清牌| 免费少妇av软件| 午夜激情久久久久久久| h视频一区二区三区| 国产男女内射视频| 亚洲人成网站在线观看播放| 大码成人一级视频| 亚洲成人免费av在线播放| 久久久久久亚洲精品国产蜜桃av| videos熟女内射| 91麻豆av在线| 精品视频人人做人人爽| 欧美少妇被猛烈插入视频| 黄片小视频在线播放| 91老司机精品| 国产在线视频一区二区| 黄色毛片三级朝国网站| 波野结衣二区三区在线| 国语对白做爰xxxⅹ性视频网站| 丝袜美腿诱惑在线| 日本欧美国产在线视频| 交换朋友夫妻互换小说| 国产精品免费视频内射| 麻豆av在线久日| 丰满饥渴人妻一区二区三| 中文欧美无线码| 欧美 日韩 精品 国产| 亚洲av成人精品一二三区| 亚洲伊人色综图| 免费不卡黄色视频| 国产欧美日韩一区二区三 | 一区二区三区精品91| 超碰97精品在线观看| 99精品久久久久人妻精品| 日本五十路高清| 亚洲国产欧美在线一区| 日韩欧美一区视频在线观看| 伦理电影免费视频| 欧美黑人欧美精品刺激| 黄色毛片三级朝国网站| 色网站视频免费| 超碰成人久久| 国产精品久久久久久人妻精品电影 | 99国产精品99久久久久| 99国产综合亚洲精品| 女性被躁到高潮视频| 色精品久久人妻99蜜桃| 麻豆乱淫一区二区| 日本色播在线视频| 黑人巨大精品欧美一区二区蜜桃| 一级毛片 在线播放| 日韩视频在线欧美| svipshipincom国产片| 国产欧美日韩一区二区三 | 大码成人一级视频| 80岁老熟妇乱子伦牲交| 男女国产视频网站| 老汉色av国产亚洲站长工具| 精品卡一卡二卡四卡免费| 精品久久久久久久毛片微露脸 | 精品国产乱码久久久久久男人| 男女国产视频网站| 少妇精品久久久久久久| 免费在线观看黄色视频的| 亚洲五月色婷婷综合| 狠狠婷婷综合久久久久久88av| 校园人妻丝袜中文字幕| 久久精品熟女亚洲av麻豆精品| 国产国语露脸激情在线看| 日韩制服丝袜自拍偷拍| 女警被强在线播放| 波多野结衣av一区二区av|