• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    二維鎳配位聚合物(Ni-CP)和Ag@Ni-CP肖特基結(jié)的制備及其光催化降解陽離子染料

    2023-10-19 11:47:14馬志虎任宜霞王智香張美麗王記江
    關(guān)鍵詞:肖特基延安大學(xué)化工學(xué)院

    馬志虎 任宜霞 王智香 張美麗 王記江

    (陜西省化學(xué)反應(yīng)工程重點(diǎn)實(shí)驗(yàn)室,新能源新功能材料實(shí)驗(yàn)室,延安大學(xué)化學(xué)與化工學(xué)院,延安 716000)

    Metal-organic coordination polymers (M-CPs)have attracted wide attention from researchers due to their regulatory structural features and wide application prospects,such as photocatalytic degradation,fluorescent probes,electronic materials,gas adsorption and storage,and chemical sensing[1-3].With the development of industry,especially the dyeing and printing of the textile industry,more than 8000 organic dyes have been used to form the basis of environmental pollution.In recent years,more and more attention has been paid to contaminant-degraded materials[4-7].It has been found that semiconductors play an important role in environmental treatment.As a new type of semiconductor,M-CPs are favored for their large specific surface area,adjustable structure,highly ordered porosity,and uniform metal sites[8-11].The photocatalytic activity of semiconductors depends largely on three factors:adsorption behavior,photo-response region,and separation efficiency of electron-hole pairs[12-14].So it is very important to study the three factors.Because M-CPs have larger porosity and specific surface area,but the separation efficiency of electron and hole and the oxidation efficiency of photo-generated carriers are not particularly remarkable,the semiconductor and metal can form a Schottky barrier at the interface by doping non-metal or transition metal[15-19].Under the excitation of light,the efficiency of charge carrier separation and transition can be enhanced leading to the decrease of carrier recombination rate and the improvement of photocatalysis performance.Using precious metals such as silver,platinum,gold,and palladium as electron acceptors,the photoinduced hole/electron pair separation facilitates the interfacial charge transfer process[14,20-21].In general,AgNO3is commonly used as an electronic collector for semiconductor materials,enabling photoelectrons to jump from the n-type M-CPs conduction band (CB),which in turn returns to the Ag[22-24].Because of its Schottky barrier,the separation efficiency of electrons and holes is increased,and the oxidative nature of the holes can either directly degrade the dye or produce ·OH to degrade the dye,the design of a composite Ag@M-CP structure is exciting,thus facilitating interface electron transfer,reducing the composition of carriers on the semiconductor surface and improving the photocatalytic efficiency of M-CPs[25-31].

    In this study,a new Ni-CP and its monodisperse silver nanoparticles loaded product Ag@Ni-CP were prepared by a simple photoreduction method.With methylene blue (MB),basic fuchsin (BF),and rhodamine B (RhB) as the target pollutants,the photocatalytic degradation of three dyes was carried out.In addition,the relationship between the photocatalytic activity and morphology,band structure,and silver content was also discussed.The results show that Ag@Ni-CP has good photocatalytic activity,high stability,and easy recovery.

    1 Experimental

    1.1 Materials and methods

    All chemicals were purchased for direct use without further purification.Scanning electron microscopy(SEM) and energy dispersive spectroscopy (EDS) were performed by the German ZEISS Sigma 300 instrument.X-ray photoelectron spectroscopy (XPS) was carried out with a Thermo Scientific K-Alpha+instrument.Thermal stability was measured on a Hitachi TG/DTA7200 thermogravimetric analyzer.The fluorescence spectrum was determined by an F-7100 fluorescence spectrophotometer at room temperature.UV absorption was studied by a Shimadzu UV-2550 spectrophotometer.Powder X-ray diffraction (PXRD) patterns were obtained using an XRD - 7000 Advance X-ray powder diffractometer,working voltage: 40 kV,working current: 40 mA,source of radiation: CuKα,wavelength: 0.154 nm.Scan range: 5°-60°.The photocatalytic degradation experiments were carried out using an XP A-7 photocatalytic reactor.Mott-Schottky measurements were carried out at a CHI660E Electrochemical station.FTIR was carried out with a Thermo Scientific Nicolet iS50.

    1.2 Synthesis of [Ni(DDB)0.5(2,2′-bipy)(H2O)]·H2O(Ni-CP)

    A mixture of Ni(Ac)2·4H2O (0.024 g),H4DDB(0.022 g),and 2,2′-bipy (0.032 g) was added into a mixed solvent of 2 mL water,and 0.5 mL isopropanol,then stirred for 30 min at room temperature and placed in a Teflon-lined autoclave (25 mL) for 72 h at 160 ℃.After filtration and drying in the air,some green block crystals were obtained (Yield: 44% based on Ni).Elemental analysis Calcd.for C21H17N2NiO7(% ): C 53.89,H 3.66,N 5.99.Found(%): C 53.67,H 3.38,N 5.72.IR (KBr,cm-1): 3 667(w),3 597(w),3 390(s),1 611(s),1 493(s),1 441(s),1 352(s),1 199(s),975(s),763(s).

    1.3 Synthesis of Ag@Ni-CP

    Ag@Ni-CP was prepared by the photo-reduction method.By magnetic stirring,the powder of Ni-CP was distributed in the water,and the right amount of AgNO3was added to obtain a suspension.Then the suspension was irradiated for 3 h using a 500 W xenon arc lamp at ambient temperature,and light below 450 nm was cut off using a cut-off filter.The Ag@Ni-CP powder was washed with water to remove NO3-and dried in a vacuum at 60 ℃for 12 h and in the air for 2 h.To study the effect of silver content on the photocatalytic activity of Ni-CP,the content of silver added during photoreduction was 10%-150% based on the molar amount of Ni-CP (Fig.S1,Supporting information).When the reference percentage of Ag reached 60%,the optimal degradation rate was achieved,so we selected Ag60%@Ni-CP as the aim Ag-loaded product,named Ag@Ni-CP.The other two representatives (Ag30%@Ni-CP and Ag40%@Ni-CP)were used for comparison.

    1.4 Crystal structure determination

    Single crystals with suitable sizes of Ni-CP were synthesized hydrothermally and selected.Single crystal diffraction data were performed on a Bruker SMART APEX CCD diffractometer equipped with graphite monochromatic MoKαradiation (λ=0.071 073 nm).All data were corrected for LP factors and empirical absorption,and these structures were solved by the direct method of SHELXS,and the non-hydrogen atomic coordinates and each anisotropic temperature factor were refined by the full matrix least squares methodF2.The hydrogen atoms were set at the calculation position and the crystal structure was plotted with Diamond 3.1 software.The crystallographic information of Ni-CP is provided in Table 1.The selected bond lengths and angles are listed in Table S1.

    Table 1 Crystallographic data of Ni-CP

    CCDC:2201522,Ni-CP.

    1.5 Photocatalytic experiments of Ni - CP and Ag@Ni-CP

    The photocatalytic experiment was carried out in the photocatalytic reactor,using a xenon lamp (500 W)as the light source,and the organic pollutants were MB,BF,and RhB,and then the xenon lamp of the photocatalytic reactor was turned on,rotated,and stirred.After an interval of 30 min,centrifugation was carried out in the centrifuge for 5 min,and the upper solution was put into the UV-Vis spectrometer to determine and analyze MB (λ=664 nm),BF (λ=543 nm),RhB (λ=554 nm) concentrations.The measurements were repeated until the pollutant degradation rate reached close to 100%.

    2 Results and discussion

    2.1 Crystal structure of Ni-CP

    Single crystal X-ray diffraction analysis exhibits Ni-CP possesses a 2D wavy brick-wall network.The central nickel ion is situated in a six-coordinated octahedral geometry encircled by three oxygen atoms(O1A,O3,and O4) from two DDB4-ligands,two nitrogen atoms (N1 and N2) from one chelated 2,2′-bipy molecule,and one coordinated water molecule (O5),in which O5 and N2 atoms act as the axis atoms,and the other four atoms form the plane of the quadrilateral(Fig.1a).The V-type meta-carboxylate from one benzene ring of DDB4-ligands inμ2-bridged and chelated mode link the adjacent Ni2+ions into the 1D wavy chain (Fig.1b).By theμ4coordination mode (Fig.S1),the DDB4-ligands connect the 1D wavy chains to the 2D wavy brick-wall network(Fig.1c).

    Fig.1 (a)Coordination environment of Ni2+ion in Ni-CP;(b)1D wavy chain;(c)2D network structure

    Then the H-bonds among water molecules and the carboxyl oxygen atoms (O5…O2:0.273 3 nm,O5…O7:0.272 0 nm,O7…O2: 0.295 4 nm,O7…O4: 0.278 0 nm)andπ-stacking interactions between the near 2,2′-bipy molecules (the face-to-face distance is 0.353 3 nm)build 3D supramolecular structure in common.

    2.2 Thermal stability of Ni-CP

    To study the thermal stability of Ni-CP,the thermogravimetry curve was measured in air (Fig S2).From the curve,we find that the first weight loss occurred from 75 to 167 ℃with a weight loss rate of 7.68%,which could be attributed to the loss of all coordination and lattice water molecules (Calcd.7.70 %).After a small platform,the second weight loss process was from 331 to 391℃due to the collapse of the Ni-CP skeleton.

    2.3 PXRD analysis

    After measuring the single crystal diffraction to get crystal structure,the PXRD patterns were tested at room temperature to detect the purity of the Ni-CP powder.As shown in Fig.S3,the measured patterns of Ni-CP were compared with the simulated ones from the crystal structure data.Their positions of the diffraction peaks were almost coincident,indicating the powder of high purity and good crystallinity.After the photocatalytic oxidation of the dye,the powder was filtered and collected for PXRD and FTIR,as shown in Fig.S3 and S4.The position of the diffraction peak did not change,indicating that the Ni-CP has good stability during photocatalytic degradation.

    2.4 XPS analysis

    The chemical composition characterization of Schottky structures of Ag@Ni-CP was identified by XPS.The full XPS spectrum of Ag@Ni-CP is shown in Fig.2a,calibrating the corresponding binding energy according to the C1s(284.8eV) component signal (wrt)(Fig.2b).In the XPS spectrum of the sample,in addition to the typical N and O signals,the bimodal signals at 374.2 and 367.7 eV can be attributed to Ag3d,and by comparing it with the XPS electron binding energy comparison table,the valence state of Ag was 0,which means that there is an Ag primitive material on top of Ni-CP through XPS (Fig.2c).The peak at 855.4 eV can be attributed to Ni2p(Fig.2d) by comparing Ni to a valence state of +2,which is consistent with CCD testing.

    Fig.2 (a)Survey,(b)C1s,(c)Ag3d,and(d)Ni2p XPS spectra of Ag@Ni-CP

    2.5 SEM of Ni-CP and Ag@Ni-CP

    To study the morphology of the samples,the SEM images of Ni - CP (Fig.3a and 3b) and Ag@Ni-CP(Fig.3c and 3d) have been obtained,showing their same stick-like morphology.Some small prominent particles of about 200 nm were observed on the surface of the Ni-CP stick as shown in Fig.3c and 3d.It indicates that the silver nanoparticles are highly dispersed on the Ni-CP surface,which is consistent with the XPS results.To further confirm the successful deposition of silver on the Ni-CP surface,the electron image,the elemental mapping image,and the EDS layered image were analyzed (Fig.3e-3i).As we can see from the diagram,the silver elements are well-distributed(Fig.3i),and the mapping shows that the elements are evenly distributed.Finally,an EDS layered image displays the location relationship between elements,further confirming that Ag particles are deposited on Ni-CP(Fig.S4).

    Fig.3 (a,b)SEM images of Ni-CP;(c,d)SEM images of Ag@Ni-CP;(e-i)EDS element mappings of Ag@Ni-CP

    2.6 Photocatalytic activities

    To study the photocatalytic activities of Ni-CP and Ag@Ni-CP,the luminous intensities were measured at room temperature first.Inhibition of the e-/h+recombination can prolong carrier life and thus improve interfacial charge transfer efficiency.For Ag@Ni- CP,Ag nanoparticles act as traps for photoelectrons in Ni-CP Schottky junction assemblies,which means that the Ag@Ni-CP Schottky junction can enhance photocatalytic activity.Photochemical measurements were made to study the activity differences among the catalysts.The photoluminescence (PL) spectra showed the lowest luminescence intensity of Ag@Ni-CP (Fig.4a),and the lower intensity usually indicates a lower photoluminescence carrier recombination rate.As shown in Fig.4b,Ag@Ni-CP had the highest photocurrent effect,which means an increase in the separation rate of electrons excited from the valence band to the conduction band.From the Nyquist plots of different electrodes (Fig.4c),Ag@Ni-CP had the shortest diameter and the highest slope line,which reflects the ion diffusion resistance caused by the porous structure in the active material.The cross-validation of the above three examples discovers that the best photocatalyst is Ag@Ni-CP.The degradation of BF with the three materials also indicates that the most effective degradation catalyst is Ag@Ni-CP (Fig.4d).Thus,it is concluded that photogenerated electrons can be efficiently transported to the Schottky junction interface,and it is expected to show the highest efficiency in photocatalytic applications.

    Fig.4 (a)PL spectra,(b)transient photocurrent response,and(c)Nyquist plots of different materials;(d)Photocatalytic degradation of BF by Schottky junction formed with Ag@Ni-CP in different Ag proportions

    In photocatalysis,the photoinduced reaction usually plays a dominant role near the catalyst′s surface.To evaluate the photocatalytic effect of the synthesized Ag@Ni-CP Schottky structure under visible light,three dyes (MB,RhB,and BF) were selected as typical cationic organic pollutant models frequently released from the textile manufacturing industry.The photocatalytic activity of Ag@Ni-CP of the Schottky structure and its kinetics for the degradation of dyes in visible light is shown in Fig.5.In this study,self-degradation (dark degradation) of dyes was found to be negligible in the absence or presence of a catalyst in the dark.BF,MB,and RhB aqueous solutions were catalyzed and degraded by Ag@Ni-CP as photocatalysts,respectively (Fig.5a-5c).It can be observed that after photocatalytic degradation at different intervals under visible light,the maximum absorption characteristic peaks of 547 nm(BF),553 nm (RhB),and 664 nm (MB) gradually decreased with time,and the degradation rates of MB,RhB,and BF reached 99%,99%,and 96% after 60 min of degradation,respectively,which shows that Ag@Ni-CP has a good photocatalytic degradation effect on MB,BF,and RhB systems in visible light.

    Fig.5 UV-Vis absorption spectra of(a)BF,(b)RhB,and(c)MB systems after visible illumination with Ag@Ni-CP photocatalyst;(d)Linear fitting diagram of photocatalytic degradation kinetics for various catalysts;(e)Photoreaction rate constants(k)of BF,RhB,and MB in the presence of various catalysts

    The experimental data were accorded with a firstorder model with the following formula: -ln(c/c0)=kt(c0is the initial concentration of dye at the time of irradiation,cis the residual concentration of pigment in solution after irradiation time,kandtare the photocatalytic degradation rate constants and light duration,respectively).By converting the photocatalytic degradation data,the linear relation between -ln(c/c0) andtcould be obtained,and the slope of the linear fitting curve wask(Fig.5d).Ag@Ni-CP showed a higher photocatalytic reaction rate for MB,BF,and RhB,and the rate constants for MB,BF,and RhB were 0.012,0.006,and 0.001 8 min-1,respectively (Fig.5f).It is shown that the Schottky system with Ag@Ni-CP has good photocatalytic properties for MB,BF,and RhB for Agdeposition on the surface of Ni-CP to form Schottky junction.The comparative analysis of the degradation of different dyes by different materials is shown in Table 2.Compared with other CPs-based degradation materials,our material can quickly achieve a high degradation rate,which is a very effective photocatalytic degradation material.

    Table 2 Comparative analysis of dye degradation by different photocatalysts

    2.7 Photocatalytic mechanism

    To analyze the photocatalytic degradation mechanism of Ni-CP and Ag@Ni-CP,we measured the UVVis diffuse reflectance spectra at room temperature.As shown in Fig.6a,the band gap energy was calculated from the Kubelka-Munk equation:αhν=(hν-Eg)1/2.The linear portion of the absorption line extrapolates that the energy band gap (Eg) of Ni-CP,Ag30%@Ni-CP,Ag40%@Ni-CP,and Ag@Ni-CP were 2.90,2.94,2.97,and 3.17 eV,respectively,showing their potential semiconductor properties.

    Fig.6 (a)UV-Vis diffuse reflectance spectra of Ni-CP and Ag-loaded Ni-CPs;(b)Mott-Schottky curve of Ag@Ni-CP;(c)Mechanism diagram;(d)Effect of scavenger on dye degradation photocatalyzed by Ag@Ni-CP

    Mott-Schottky curves were obtained at 800,1 000,and 1 200 Hz in 0.5 mol·L-1Na2SO4electrolyte for Ag@Ni-CP.The flat band potential of the semiconductor was calculated by the Mott-Schottky curve.Fig.6b shows the positive slope at three different frequencies,indicating that the semiconductor is a typical n-type semiconductor.Based on the following equation:ENHE=EAg/AgCl+0.059pH-0.197,(EAg/AgCl=0.197 V at 25 ℃)[14],theEfbvalue relative to the standard hydrogen electrode (NHE) was deduced from the tangent line by a potential of -0.51 eV,and theECBwas 0.2 eV lower than theEfb[15-16],soECBis -0.31 eV.The valence band(EVB) of Ag@Ni-CP could be calculated as 2.86 eV according to the formula ofEg=EVB-ECB.

    After the above analysis,the photocatalytic mechanism of Ag@Ni-CP of the activation products could be proposed (Fig.6c).Under simulated illumination,the activated valence band electrons of Ag@Ni-CP are excited to the conduction band to form a photoelectronhole pair.The valence bandEVBis 2.86 eV,producing·OH.The photo-generated holes in the valence band have an affinity for the adsorbed dye molecules,which can directly oxidize the dye molecules and eventually degrade to small intermediates or final products.Active substances can effectively degrade organic pollutants.These active substances include superoxide radicals (·O2-),hole (h+),and hydroxyl (·OH) radicals.Because different photocatalysts have different band structures and phase compositions,the degraded active substances may change.Thus,to elucidate the mechanism of photocatalytic activity of Ag@Ni-CP and assess the contribution of active substances,free radical trapping experiments for active substances were carried out usingp-benzoquinone (BQ),EDTA-2Na andtert-butyl alcohol (TBA) as superoxide radicals ·O2-,h+and ·OH radicals scavengers,respectively,and BF as the dye(Fig.6d).The results showed that the addition of different scavengers inhibited the degradation of BF in various degrees.Adding EDTA-2Na,the degradation rate dropped from 96% to 40%.The degradation rate of BF decreased from 96%to 85%after adding TBA.By adding BQ,the degradation rate did not change significantly.The above results show that the h+plays a crucial role in the photocatalytic degradation of BF,and ·OH can affect the degradation process,thanking for the formation of Schottky junctions that prolong the lifetime of photocarriers.

    Based on these experimental results,a possible mechanism was proposed to obtain superior photocatalytic activity for composite Ag@Ni-CP.XPS results suggest that Schottky junctions may form at the interface between Ni-CP and Ag,where electrons are excited from the VB to the CB of Ni-CP by simulated sunlight,leaving holes in the VB.The photoelectrons in Ni-CP can be further trapped by the Schottky junction and then transferred to Ag,where the Schottky junction effectively prevents the photoelectrons from returning to the holes in the VB of Ni-CP and further prevents the re-assembly of the photoelectrons and the holes.Subsequently,OH-reacted with h+to form ·OH.h+with strong oxidation can also respond with dyes to degrade dyes to inorganic molecules or CO2and H2O.The mechanism is summarized as follows:

    e-+Ag+→Ag

    Ni-CP+hν→Ni-CP(h+)+Ni-CP(e-)

    H2O →H++OH

    OH-+h+→·OH

    ·OH+dye →CO2+H2O

    h++dye →CO2+H2O

    3 Conclusions

    We have successfully prepared a 2D waved network nickel(Ⅱ)coordination polymer (Ni-CP) based on 1,4-di(3,5-dicarboylphenoxy) benzene and 2,2′-bipyridine and its Ag-loaded product (Ag@Ni-CP) by light reduction method.Photocatalytic degradation investigation discovers the Ag@Ni-CP possessed excellent degradation ability for cationic dyes MB,BF,and RhB with a degradation rate of 99%,96%,and 99% in 60 min,respectively.The photocatalytic mechanism shows that h+plays a key role,and ·OH can have a slight effect on the degradation process of Ag@Ni-CP for MB,BF,and RhB.Mechanism analysis evaluates that the electrons in Ni-CP are trapped by the Schottky junction and transferred to Ag,which prevents the photoelectrons from flowing back to Ni-CP.This study provides a new idea for photo-reduction of coordination polymers to prepare composite catalysts and photocatalytic degradation.

    Conflicts of interest:There are no conflicts to declare.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    肖特基延安大學(xué)化工學(xué)院
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    延安大學(xué)王必成教授書寫
    《延安大學(xué)學(xué)報(bào)(社會科學(xué)版)》征稿啟事
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    場發(fā)射ZrO/W肖特基式場發(fā)射陰極研究進(jìn)展
    電子制作(2018年12期)2018-08-01 00:47:46
    Research on the Application of English Reading Strategies for Junior High School Students
    溝道MOS 勢壘肖特基(TMBS)和超級勢壘整流器
    電子制作(2017年19期)2017-02-02 07:08:45
    無 題
    文苑(2016年17期)2016-11-26 12:40:05
    《化工學(xué)報(bào)》贊助單位
    久久国产亚洲av麻豆专区| 男女之事视频高清在线观看| 成人精品一区二区免费| 少妇的丰满在线观看| 啪啪无遮挡十八禁网站| 免费女性裸体啪啪无遮挡网站| 他把我摸到了高潮在线观看 | 王馨瑶露胸无遮挡在线观看| 精品一区二区三区av网在线观看 | 久久国产亚洲av麻豆专区| 搡老乐熟女国产| 99久久国产精品久久久| 亚洲欧美一区二区三区黑人| 久久久水蜜桃国产精品网| 十分钟在线观看高清视频www| 狠狠婷婷综合久久久久久88av| 久久久水蜜桃国产精品网| 久久av网站| 国产又爽黄色视频| 新久久久久国产一级毛片| 午夜视频精品福利| 成人特级黄色片久久久久久久 | videos熟女内射| 99国产极品粉嫩在线观看| 一区二区三区激情视频| 亚洲一区中文字幕在线| 国产成+人综合+亚洲专区| 搡老乐熟女国产| 伦理电影免费视频| 少妇的丰满在线观看| 亚洲第一欧美日韩一区二区三区 | 久久久精品94久久精品| 国产成人av教育| 69精品国产乱码久久久| 别揉我奶头~嗯~啊~动态视频| a级毛片在线看网站| 母亲3免费完整高清在线观看| 亚洲av电影在线进入| 狠狠婷婷综合久久久久久88av| 母亲3免费完整高清在线观看| 国产色视频综合| 精品一区二区三区四区五区乱码| 亚洲国产av新网站| 大码成人一级视频| 欧美成人免费av一区二区三区 | 亚洲黑人精品在线| 视频在线观看一区二区三区| 久久精品亚洲av国产电影网| 69精品国产乱码久久久| 99香蕉大伊视频| 黄色片一级片一级黄色片| 国产极品粉嫩免费观看在线| 亚洲国产av新网站| 日本vs欧美在线观看视频| 老司机午夜十八禁免费视频| 老司机午夜十八禁免费视频| 99香蕉大伊视频| 操出白浆在线播放| 日本av免费视频播放| 国产成人影院久久av| 1024视频免费在线观看| 中国美女看黄片| 久久性视频一级片| 亚洲一码二码三码区别大吗| 国产成人精品在线电影| 黄频高清免费视频| 人成视频在线观看免费观看| 一级片免费观看大全| 18在线观看网站| a在线观看视频网站| 大香蕉久久成人网| 两性夫妻黄色片| 成人手机av| 男人操女人黄网站| 免费在线观看黄色视频的| 在线观看免费日韩欧美大片| 视频在线观看一区二区三区| a在线观看视频网站| 亚洲一卡2卡3卡4卡5卡精品中文| 久久这里只有精品19| 国产单亲对白刺激| 午夜久久久在线观看| 美女扒开内裤让男人捅视频| 国产麻豆69| 99久久精品国产亚洲精品| 成人三级做爰电影| 丰满迷人的少妇在线观看| 99国产精品99久久久久| 无限看片的www在线观看| 搡老熟女国产l中国老女人| 下体分泌物呈黄色| 欧美日韩黄片免| 99久久人妻综合| 国产主播在线观看一区二区| 天天影视国产精品| 亚洲精品一二三| 久久久国产精品麻豆| 男女免费视频国产| 中亚洲国语对白在线视频| 国产欧美日韩一区二区精品| bbb黄色大片| 两人在一起打扑克的视频| 老司机午夜福利在线观看视频 | 成人精品一区二区免费| 在线观看舔阴道视频| 亚洲va日本ⅴa欧美va伊人久久| 日韩一区二区三区影片| 国产亚洲精品第一综合不卡| 热99久久久久精品小说推荐| 亚洲综合色网址| 嫁个100分男人电影在线观看| 操出白浆在线播放| 国产高清videossex| 色播在线永久视频| 又紧又爽又黄一区二区| 丝瓜视频免费看黄片| 91麻豆精品激情在线观看国产 | 国产1区2区3区精品| 无限看片的www在线观看| 999久久久精品免费观看国产| 丝瓜视频免费看黄片| www.999成人在线观看| 黄频高清免费视频| 国产欧美日韩一区二区精品| 18禁裸乳无遮挡动漫免费视频| 黄片播放在线免费| 99国产精品一区二区三区| 变态另类成人亚洲欧美熟女 | 高清在线国产一区| 69精品国产乱码久久久| 欧美精品高潮呻吟av久久| 欧美国产精品一级二级三级| 丰满迷人的少妇在线观看| 欧美精品av麻豆av| 国产极品粉嫩免费观看在线| 自拍欧美九色日韩亚洲蝌蚪91| 欧美精品一区二区免费开放| cao死你这个sao货| 亚洲av第一区精品v没综合| 大型黄色视频在线免费观看| 亚洲午夜精品一区,二区,三区| 在线观看www视频免费| 中文字幕高清在线视频| 777米奇影视久久| 超色免费av| 深夜精品福利| 日韩成人在线观看一区二区三区| 免费一级毛片在线播放高清视频 | 叶爱在线成人免费视频播放| 久久狼人影院| 午夜精品国产一区二区电影| 免费日韩欧美在线观看| 免费在线观看视频国产中文字幕亚洲| 咕卡用的链子| 欧美大码av| 国产欧美日韩综合在线一区二区| 男女无遮挡免费网站观看| 丝袜喷水一区| av欧美777| 男女无遮挡免费网站观看| 岛国毛片在线播放| 男人舔女人的私密视频| 91精品国产国语对白视频| 亚洲情色 制服丝袜| 中文字幕最新亚洲高清| 欧美日韩亚洲国产一区二区在线观看 | 国产亚洲午夜精品一区二区久久| 精品欧美一区二区三区在线| 这个男人来自地球电影免费观看| videosex国产| 大陆偷拍与自拍| 国产主播在线观看一区二区| 黄色成人免费大全| 啦啦啦视频在线资源免费观看| 美女扒开内裤让男人捅视频| 国产有黄有色有爽视频| 久久午夜亚洲精品久久| 老鸭窝网址在线观看| 99精国产麻豆久久婷婷| 国精品久久久久久国模美| e午夜精品久久久久久久| 久久九九热精品免费| av网站免费在线观看视频| 老司机影院毛片| 午夜福利在线免费观看网站| 性高湖久久久久久久久免费观看| av欧美777| 欧美av亚洲av综合av国产av| 亚洲成人免费av在线播放| 精品人妻1区二区| 91精品三级在线观看| 久久久久精品人妻al黑| 国产伦理片在线播放av一区| 亚洲美女黄片视频| 国产精品一区二区在线观看99| 久久久欧美国产精品| 深夜精品福利| 精品国产乱码久久久久久男人| 汤姆久久久久久久影院中文字幕| av网站免费在线观看视频| 国产一区二区三区综合在线观看| 午夜福利一区二区在线看| 90打野战视频偷拍视频| 国产伦人伦偷精品视频| 亚洲一码二码三码区别大吗| 亚洲精品中文字幕一二三四区 | 久久久水蜜桃国产精品网| 侵犯人妻中文字幕一二三四区| av不卡在线播放| 午夜91福利影院| 欧美日韩国产mv在线观看视频| 国产区一区二久久| 国产日韩欧美在线精品| 午夜福利免费观看在线| 中文字幕另类日韩欧美亚洲嫩草| 18禁观看日本| 丝袜人妻中文字幕| 最近最新中文字幕大全免费视频| 亚洲欧美色中文字幕在线| 亚洲成av片中文字幕在线观看| 国产精品.久久久| 国产成人系列免费观看| 午夜免费成人在线视频| 精品亚洲乱码少妇综合久久| 国产日韩欧美亚洲二区| www.999成人在线观看| 宅男免费午夜| 老汉色av国产亚洲站长工具| 欧美在线黄色| 久久毛片免费看一区二区三区| 搡老岳熟女国产| 中文亚洲av片在线观看爽 | 国产日韩欧美在线精品| 精品一区二区三卡| 亚洲久久久国产精品| 18在线观看网站| 久久这里只有精品19| 最新在线观看一区二区三区| 亚洲五月婷婷丁香| 亚洲国产精品一区二区三区在线| 国产精品成人在线| av福利片在线| e午夜精品久久久久久久| 一级毛片精品| 丰满人妻熟妇乱又伦精品不卡| 国产免费视频播放在线视频| 久久久久久免费高清国产稀缺| 天天躁日日躁夜夜躁夜夜| 一级毛片女人18水好多| 国产成人精品久久二区二区免费| 国产老妇伦熟女老妇高清| 黄色视频在线播放观看不卡| 侵犯人妻中文字幕一二三四区| 国产xxxxx性猛交| 久久久水蜜桃国产精品网| 国内毛片毛片毛片毛片毛片| 性色av乱码一区二区三区2| 最新的欧美精品一区二区| 免费av中文字幕在线| www.熟女人妻精品国产| 国产一区二区 视频在线| 在线观看免费高清a一片| 欧美日韩av久久| 色老头精品视频在线观看| 亚洲欧美精品综合一区二区三区| 久久久久网色| 日韩免费高清中文字幕av| 黑人巨大精品欧美一区二区mp4| 每晚都被弄得嗷嗷叫到高潮| 亚洲欧美日韩另类电影网站| 一级毛片电影观看| 看免费av毛片| 国产精品98久久久久久宅男小说| 国产精品香港三级国产av潘金莲| 亚洲av成人不卡在线观看播放网| 91成人精品电影| 亚洲第一av免费看| 欧美激情极品国产一区二区三区| 久久九九热精品免费| 热99re8久久精品国产| 一本色道久久久久久精品综合| 如日韩欧美国产精品一区二区三区| 国产麻豆69| 成人三级做爰电影| 91老司机精品| 国产成+人综合+亚洲专区| 大型黄色视频在线免费观看| 国产精品久久久人人做人人爽| 国产欧美日韩精品亚洲av| 免费高清在线观看日韩| 叶爱在线成人免费视频播放| 日韩人妻精品一区2区三区| 欧美乱妇无乱码| 欧美日韩福利视频一区二区| 久久热在线av| 亚洲情色 制服丝袜| 亚洲色图综合在线观看| 欧美激情久久久久久爽电影 | 少妇的丰满在线观看| 亚洲国产欧美在线一区| 91大片在线观看| 热re99久久国产66热| 在线观看66精品国产| 水蜜桃什么品种好| 久久久久久免费高清国产稀缺| 亚洲 国产 在线| 免费在线观看完整版高清| 欧美日韩中文字幕国产精品一区二区三区 | 曰老女人黄片| av免费在线观看网站| 久久婷婷成人综合色麻豆| 国产精品国产高清国产av | 国产精品久久久久成人av| 2018国产大陆天天弄谢| 国产aⅴ精品一区二区三区波| 免费在线观看日本一区| 中文字幕制服av| 国产一区有黄有色的免费视频| 国产免费av片在线观看野外av| 嫁个100分男人电影在线观看| 国产麻豆69| 丰满迷人的少妇在线观看| 色老头精品视频在线观看| 亚洲三区欧美一区| 考比视频在线观看| 亚洲性夜色夜夜综合| 在线观看免费午夜福利视频| 国产成人av激情在线播放| 狠狠精品人妻久久久久久综合| 亚洲男人天堂网一区| 久久中文字幕一级| 欧美日韩视频精品一区| 国产av国产精品国产| 欧美激情久久久久久爽电影 | 国产午夜精品久久久久久| 人成视频在线观看免费观看| 精品国产一区二区久久| 2018国产大陆天天弄谢| 女人爽到高潮嗷嗷叫在线视频| 妹子高潮喷水视频| 欧美日本中文国产一区发布| 久久久久国内视频| 午夜久久久在线观看| 国产精品久久电影中文字幕 | 一级毛片电影观看| 丰满饥渴人妻一区二区三| 91成人精品电影| 老司机影院毛片| 欧美黄色淫秽网站| 黑人猛操日本美女一级片| 757午夜福利合集在线观看| 午夜免费成人在线视频| 巨乳人妻的诱惑在线观看| 国产av一区二区精品久久| 精品国产一区二区三区久久久樱花| 欧美日韩视频精品一区| 50天的宝宝边吃奶边哭怎么回事| 国产真人三级小视频在线观看| 亚洲精品国产区一区二| 黄网站色视频无遮挡免费观看| 日韩欧美一区视频在线观看| 在线永久观看黄色视频| 国产精品自产拍在线观看55亚洲 | 男女之事视频高清在线观看| 中文字幕另类日韩欧美亚洲嫩草| 丰满人妻熟妇乱又伦精品不卡| 国产一区二区三区视频了| 精品国产一区二区三区四区第35| 99re在线观看精品视频| 1024视频免费在线观看| 欧美另类亚洲清纯唯美| 99九九在线精品视频| 久久亚洲精品不卡| 成人亚洲精品一区在线观看| 欧美精品一区二区大全| 亚洲色图 男人天堂 中文字幕| 最新美女视频免费是黄的| 超碰97精品在线观看| 亚洲人成77777在线视频| 制服诱惑二区| 精品第一国产精品| 丝袜美足系列| 99国产极品粉嫩在线观看| 深夜精品福利| 免费观看a级毛片全部| av电影中文网址| 亚洲伊人色综图| 久久中文看片网| 国产黄色免费在线视频| 成人18禁在线播放| 美国免费a级毛片| 久久久久久人人人人人| 日本精品一区二区三区蜜桃| 超色免费av| 两人在一起打扑克的视频| 下体分泌物呈黄色| tube8黄色片| 少妇裸体淫交视频免费看高清 | 69av精品久久久久久 | 色综合欧美亚洲国产小说| 亚洲精品av麻豆狂野| 亚洲av成人不卡在线观看播放网| 精品一品国产午夜福利视频| 精品少妇黑人巨大在线播放| 99久久国产精品久久久| 免费av中文字幕在线| 在线观看免费高清a一片| 国产亚洲一区二区精品| 久久ye,这里只有精品| 久久精品亚洲熟妇少妇任你| 怎么达到女性高潮| 十八禁人妻一区二区| 菩萨蛮人人尽说江南好唐韦庄| 人人澡人人妻人| 十分钟在线观看高清视频www| 中文字幕最新亚洲高清| 国产亚洲欧美精品永久| netflix在线观看网站| 手机成人av网站| 亚洲伊人色综图| 国产精品久久久久久人妻精品电影 | 色播在线永久视频| 亚洲中文字幕日韩| 精品乱码久久久久久99久播| 夜夜爽天天搞| 精品久久久久久电影网| 激情在线观看视频在线高清 | 欧美亚洲 丝袜 人妻 在线| 视频区图区小说| 97人妻天天添夜夜摸| 欧美变态另类bdsm刘玥| 久热这里只有精品99| 久久这里只有精品19| 久久精品国产综合久久久| videos熟女内射| av网站免费在线观看视频| 十分钟在线观看高清视频www| 国产成人精品久久二区二区免费| 新久久久久国产一级毛片| 1024视频免费在线观看| 国产在线精品亚洲第一网站| 亚洲va日本ⅴa欧美va伊人久久| 久久国产精品人妻蜜桃| 欧美大码av| 水蜜桃什么品种好| 一本一本久久a久久精品综合妖精| e午夜精品久久久久久久| 国产精品一区二区免费欧美| a级毛片黄视频| 人妻 亚洲 视频| 91av网站免费观看| 十分钟在线观看高清视频www| 亚洲成人免费电影在线观看| 美女高潮喷水抽搐中文字幕| 亚洲人成电影观看| 黑人欧美特级aaaaaa片| 不卡av一区二区三区| www.自偷自拍.com| 一区二区三区精品91| 高潮久久久久久久久久久不卡| 国产精品一区二区精品视频观看| 欧美激情 高清一区二区三区| 一边摸一边抽搐一进一小说 | 少妇被粗大的猛进出69影院| 久9热在线精品视频| 色婷婷久久久亚洲欧美| 80岁老熟妇乱子伦牲交| 欧美午夜高清在线| av福利片在线| 久久ye,这里只有精品| 777久久人妻少妇嫩草av网站| 国产男女超爽视频在线观看| 国产精品美女特级片免费视频播放器 | netflix在线观看网站| 欧美+亚洲+日韩+国产| 狠狠婷婷综合久久久久久88av| aaaaa片日本免费| 亚洲av成人一区二区三| 男人舔女人的私密视频| 狠狠狠狠99中文字幕| 久久久精品94久久精品| 国产精品免费视频内射| 久久久久久免费高清国产稀缺| 亚洲成av片中文字幕在线观看| 成人手机av| 免费一级毛片在线播放高清视频 | 国产亚洲精品久久久久5区| 一区二区三区精品91| 最近最新中文字幕大全电影3 | 最近最新中文字幕大全电影3 | 最近最新免费中文字幕在线| 男女高潮啪啪啪动态图| 久久久久久人人人人人| 性色av乱码一区二区三区2| 亚洲国产欧美在线一区| 99国产精品一区二区三区| 精品少妇黑人巨大在线播放| bbb黄色大片| 王馨瑶露胸无遮挡在线观看| 国产成人系列免费观看| 欧美精品一区二区大全| 亚洲成人手机| 国产一区有黄有色的免费视频| 国产福利在线免费观看视频| 一级毛片电影观看| 国产精品久久久av美女十八| 成年动漫av网址| 国产av又大| 久久99热这里只频精品6学生| 久久久精品免费免费高清| 国产一区二区在线观看av| 国产老妇伦熟女老妇高清| 他把我摸到了高潮在线观看 | 精品久久蜜臀av无| 亚洲欧美一区二区三区久久| av在线播放免费不卡| 亚洲一码二码三码区别大吗| 国产精品久久电影中文字幕 | 91精品三级在线观看| 国产精品久久久久久人妻精品电影 | 欧美国产精品一级二级三级| 国产成人欧美| 美女高潮到喷水免费观看| 国产成人欧美在线观看 | 日本wwww免费看| www日本在线高清视频| 国产精品免费一区二区三区在线 | 制服人妻中文乱码| 少妇 在线观看| 国产亚洲欧美在线一区二区| 一本色道久久久久久精品综合| 日韩免费高清中文字幕av| 涩涩av久久男人的天堂| 午夜精品久久久久久毛片777| 香蕉久久夜色| 人妻一区二区av| 国产欧美日韩一区二区精品| 亚洲色图av天堂| 国产一区二区激情短视频| e午夜精品久久久久久久| 亚洲欧美精品综合一区二区三区| 狠狠狠狠99中文字幕| 国精品久久久久久国模美| 少妇精品久久久久久久| 一级,二级,三级黄色视频| 午夜免费鲁丝| 国产深夜福利视频在线观看| 久久久久久久久久久久大奶| 搡老熟女国产l中国老女人| 午夜福利欧美成人| 大香蕉久久成人网| 少妇的丰满在线观看| 涩涩av久久男人的天堂| 母亲3免费完整高清在线观看| 国产成人av激情在线播放| 国产成人欧美| 黄色视频,在线免费观看| 美女扒开内裤让男人捅视频| 9热在线视频观看99| 国产又爽黄色视频| 成人三级做爰电影| 亚洲熟女毛片儿| 日韩熟女老妇一区二区性免费视频| 99热国产这里只有精品6| 日韩一区二区三区影片| 国产精品.久久久| 国产单亲对白刺激| 9热在线视频观看99| 老司机影院毛片| 亚洲午夜理论影院| 我要看黄色一级片免费的| 国产亚洲精品第一综合不卡| 亚洲av欧美aⅴ国产| 怎么达到女性高潮| 亚洲成av片中文字幕在线观看| 久久这里只有精品19| 建设人人有责人人尽责人人享有的| a在线观看视频网站| 日韩免费高清中文字幕av| 国产欧美亚洲国产| 中文字幕av电影在线播放| 国产在线观看jvid| 亚洲天堂av无毛| 丝袜美足系列| 十八禁网站免费在线| 精品午夜福利视频在线观看一区 | 老司机亚洲免费影院| 免费黄频网站在线观看国产| 18在线观看网站| 91九色精品人成在线观看| 亚洲av日韩精品久久久久久密| 欧美日韩亚洲国产一区二区在线观看 | 午夜视频精品福利| 精品国产乱码久久久久久男人| 亚洲精品久久午夜乱码| 蜜桃在线观看..| 91大片在线观看| 国产淫语在线视频| 亚洲国产av新网站| 精品亚洲乱码少妇综合久久| 51午夜福利影视在线观看| 精品一区二区三区av网在线观看 | 日韩一区二区三区影片| 免费高清在线观看日韩| 久久人人爽av亚洲精品天堂| 男女床上黄色一级片免费看| 国产精品久久电影中文字幕 | 久久精品亚洲av国产电影网| 精品国产国语对白av| 亚洲九九香蕉| 91老司机精品| 美女午夜性视频免费| 国产男女内射视频| 国产男靠女视频免费网站| 中文字幕人妻熟女乱码|