• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temperature dependence of pattern transitions on water surface in contact with DC microplasmas

    2020-06-14 08:45:32YanfeiCHEN陳妍菲BowenFENG馮博文QingZHANG張卿RuoyuWANG王若愚KostyaKenOSTRIKOV歐思聰andXiaoxiaZHONG鐘曉霞
    Plasma Science and Technology 2020年5期
    關(guān)鍵詞:陳妍博文

    Yanfei CHEN (陳妍菲),Bowen FENG (馮博文),Qing ZHANG (張卿),Ruoyu WANG (王若愚),Kostya (Ken) OSTRIKOV (歐思聰) and Xiaoxia ZHONG (鐘曉霞)

    1 Key Laboratory for Laser Plasmas(Ministry of Education)and State Key Laboratory of Advanced Optical Communication Systems and Networks,Department of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai 200240,People’s Republic of China

    2 School of Chemistry,Physics and Mechanical Engineering,Queensland University of Technology,Brisbane QLD 4000,Australia

    3 CSIRO-QUT Joint Sustainable Processes and Devices Laboratory,Lindfield NSW 2070,Australia

    Abstract

    Keywords:microplasma,self-organized pattern,optical emission spectroscopy

    1.Introduction

    Microplasmas are typically characterized with small size,stable operation atmospheric pressure,non-thermal characteristics,high electron density and non-Maxwellian electron energy distribution [1,2].Presenting the clear advantages of being vacuum free,clean,and environment friendly,and highly effective technology,microplasmas have recently attracted more and more attention [3,4].The areas of particular interest include the solution plasma processing [5–7],plasma biomedical technologies and medicine [8,9],nanoparticle synthesis[10–12],water purification[13,14],plasma agriculture and food processing [15,16],and some others.Self-organized pattern transition on the liquid surface has attracted a tremendous amount of interests from the plasma community [17–24]because it encompasses a diversity of physical and chemical process at the plasma-liquid interface.Wilson et al observed [19]that a luminous spot formed on the gold or water anode produced circular patterns,while the spot rotation speed depended on the gas composition,discharge current,and discharge length.Shirai et al reported that the concentration of the electronegative gas such as oxygen gas plays an important role in the observed pattern transitions [22].Verreycken et al[20]indicated that spots observed on the water anode clearly coexisted and the pattern was not made of a single or a few filaments moving across the water surface.Also,according to them,patterns appear at higher discharge currents and disappear when the water conductivity is increased,and the mechanisms of the observed pattern transition are of the electric nature rather than of the chemical nature [20].Later,Zhang et al suggested that the type of liquid (HCl,H2SO4) rather than the electrical conductivity of the liquid actually determines the discretization features of the patterns including the various types of rings,spots or strips [21].

    From the previous reports of other researchers,it appears difficult to single out the influence of two interlinked parameters such as the current and water conductivity on the pattern formation.For example,increasing the water conductivity but keeping the discharge current unchanged actually means that the power absorbed by the discharge system is decreasing.Likewise,it is very difficult to distinguish the influence of the water conductivity and the dissolved chemicals on the pattern formation,especially if the water conductivity is suitably adjusted by adding different amounts of chemicals into water.

    On the other hand,it can be noticed that the effects of the gas and electrode temperature variation have not been carefully studied,especially under realistic conditions when the conductivity,the current,gap distance,and gas composition are changed.The effects of the gas and electrode temperature on pattern formation still remain unclear.However,the water temperature is coupled with the conductivity and the discharge current due to Joule heating during the discharge and also affects its conductivity in turn,in addition,the gas temperature of the plasma is a function of discharge parameters such as current,gas flow,gas composition,gap distance,electrode conductivity,etc.Apparently,the effects of the gas and electrode temperature on pattern formation require particular attention because it was previously shown that originally homogeneous systems may become unstable and structured when the temperature changes [25].Moreover,nonlinearities arising due to the local gas heating may generate the nonlinear feedback between the localized electric field,ionization rates,and the working gas density in the discharge.The interplay of these factors ultimately determines the structure of the higher-order modes after the system has transitioned to a patterned state [26].

    In this paper,a dedicated experiment is designed and carried out to investigate the influence of the electrode and gas temperatures of the atmospheric-pressure microplasmas on the self-organized pattern transitions.The results show that the appearance and the shape of the luminous pattern formed on the water surface are coupled to the electrode and gas temperatures of the plasma,where specific pattern modes are observed for certain gas temperatures.

    2.Experimental

    Figure 1.(a) Schematic diagram of the experimental system.(b) A fitting of experimental rovibrational bands of the N2 second positive system,in the wavelength range of 392–400 nm.The discrete crossheads represent the experimental data,and the red curve is the simulation spectra.

    The experimental system is presented in figure 1(a).The DC power source(SL2000,SPELLMAN)supplies a high voltage for the atmospheric-pressure microplasma discharge which is generated between a tungsten steel tube (1 mm inside diameter)and the tap water with the discharge current limited by a ballast resistor(about 30 kΩ).The helium gas is fed through the tungsten steel tube and the flow is controlled by a mass flow controller.A platinum electrode (anode) is immersed into the tap water contained in a glass dish.The tungsten steel tube served as the cathode and the tap water worked as the anode.The gap distance between the tube end and water surface is adjustable.The plasma is ignited when the voltage is increased to about 2000 V.Thereafter the voltage decreases to about 700–1100 V under different experimental conditions.The pictures of patterns formed on water surface were taken by a CCD camera (Manta G201C).A temperature probe(GM1312) is fixed in the water to measure the temperature,while another probe is fixed on the tungsten steel and the distance between the probe and the tube end is 2 cm.

    The spectra of the microplasma are collected using a spectrometer (AvaSpec-2048FT-4-DT).It is well known that the gas temperature can be estimated by the rotational temperature of nitrogen molecules in the plasma.This is why the wavelength range of 392–400 nm of the second positive system of nitrogen is chosen to analyze the gas temperature of the plasma [27]as shown in figure 1(b).Figure 1(b)demonstrates that both the vibrational and rotational temperature of N2molecules can be obtained by fitting the recorded experimental spectrum with the calculated spectrum.The calculated spectrum can be described by the following equation [27–30]

    Figure 2.(a) Dependence of pattern on temporal evolution.(b) Dependence of temperature of electrodes and gas temperature on temporal evolution.The gas flow rate is 30 sccm,the current is 40 mA,and the gap distance is 4.5 mm.

    where I is the light intensity,D is a constant,v',v"are the vibrational states,J',J"are the rotational states,λ is the wavelength of the emission spectra,qv',v"is the Franck–Condon factor [31].Here,SJ',J"is the Honl–London factor[28],Ev'andEJ'are the vibrational and rotational energy,respectively,k is the Boltzmann constant.Furthermore,TvandTrare the vibrational and rotational temperatures,respectively.

    3.Results and discussion

    3.1.Pattern versus time

    The temporal evolution of the microplasma pattern during the discharge is presented in figure 2(a),and the time dependence of the gas temperature (Tg) of the plasma,the water anode temperature (Ta),the tungsten cathode temperature (Tc) are given in figure 2(b).The pattern structure is labeled at each temperature point (Tg,Ta,Tc) where the gas flow rate is 30 sccm,the discharge current is 40 mA,and the gap distance is 4.5 mm.

    The pattern with the features of both ring-like and distinct spots structures is observed over the water anode surface at the initial moment when the water temperature is 25 °C(298.15 K),as seen in figure 2(a).1 min after the discharge,the pattern already transforms to feature both the distinct spots and gearwheel structures.2 min into the discharge,and pattern assumes the gearwheel structure,and remains unchanged later on.

    Figure 3.(a)Dependence of pattern on gap distance.(b)Dependence of temperature of electrodes and gas temperature on gap distance.The current is 30 mA,the helium gas flux is 30 sccm,and the gap distance ranges from 3.5 to 5 mm.

    On the other hand,the temperatures of both electrodes as well as the gas temperature rise faster within the initial 1 min discharge and tend to be stabilized thereafter,as shown in figure 2(b).The increment rates of the gas temperature,the anode temperature and the cathode temperature are around 66 K min-1,7 K min-1,and 13 K min-1,respectively at the beginning of the discharge.After 1 min into the discharge,the rates of change of the gas,anode,and cathode temperatures all decline.Comparing the temporal evolution of the gas temperature with that of the electrodes temperature,it can be seen that less time is required for the gas temperature to stabilize.The result indicates that the temperatures of the electrode have little influence on the gas temperature which is much higher than the electrode temperature.

    In comparison of the figures 2(a) and (b),one can see that the initial pattern (in between the ring-like and distinct spot structure) occurs at the temperature point (Tg=2362 K,Ta=298.15 K,Tc=468.15 K).The pattern later transforms into a combination of the distinct spots and gear wheel structures at the temperature point (Tg=2428 K,Ta=304.35 K,Tc=481.65 K).Subsequently,the pattern resembling the gearwheel structure emerges at the temperature point (Tg=2414 K,Ta=308.75 K,Tc=488.32 K).Later,the pattern of the gearwheel structure remains stable.Meanwhile,the values of the gas,anode,and cathode temperatures remain almost unchanged.Apparently,the temporal evolution of the pattern shape is closely related to the temporal variation of the temperatures of the gas and the electrodes.The result indicates that the shape of pattern in the atmospheric-pressure micro-discharge can be related to values of the temperatures of the gas and both electrodes.

    3.2.Pattern versus gap distance

    The stabilized patterns formed over the water anode,and the temperatures of the gas and the electrodes at different gap distances are presented in figures 3(a) and (b),respectively.Here the discharge current is 30 mA,the gas flux is 30 sccm,and the pattern structure are also labeled at each temperature point (Tg,Ta,Tc) in figure 3(b).The homogeneous spot is observed at the gap distances of 3.5 and 4 mm,and it turns to the ring shape pattern at the gap distances of 4.5 and 5 mm.

    On the other hand,there is an obvious increasing trend in the gas temperature,the anode temperature and the cathode temperature at larger gap distances as presented in figure 5(b).As the gap is widened from 3.5 to 5 mm,the gas temperature,the anode temperature and the cathode temperature all show a consistent increase from 1589 to 1964 K,295.98 to 301.68 K,and 442.15 to 480.72 K,respectively.As we know,the gas temperature is determined by thermal balance between the heat energy absorbed by the plasma and the heat dissipated across the plasma boundary.By increasing the discharge gap distance,the surface to volume ratio of the plasma decreases,which weakens the dissipation of the heat energy,and leads to the rise of the gas temperature,and simultaneously to the rise of the temperatures of both electrodes [32].

    It can be seen that the pattern of a homogeneous spot is observed on the water anode at the temperature points(Tg,Ta,Tc) of (1589 K,295.98 K,442.15 K) and (1778 K,297.62 K,460.05 K).When the gap distance increases to 4.5 mm,the ring-like structure pattern is observed,the value of the temperature point (Tg,Ta,Tc) is (1811 K,299.45 K,472.48 K).Further increasing the gap distance to 5 mm,the value of the temperature point (Tg,Ta,Tc) is (1964 K,301.68 K,480.72 K),and the pattern formed on the water surface still presents a ring-like shape.The value of temperature point(Tg,Ta,Tc)at which the ring-like pattern appears is higher than the temperatures (Tg,Ta,Tc) when the homogeneous spot appears.This result is consistent with the result shown in figure 2 and confirms that the gas temperature of the plasma,the anode temperature and the cathode temperature do affect the observed pattern transitions.

    3.3.Pattern versus current and gas flux

    The effects of the current and gas flux on the observed pattern transition and the temperature of the neutral gas,the anode and the cathode are presented in figure 4,where the gap distance between the electrodes is 4.5 mm.The pattern shape is also labeled at each temperature point in figures 4(b)–(d).

    In the first column of figure 4(a),the gas flux is fixed at 30 sccm,and a homogeneous spot is observed when the current is 25 mA.As the current is increasing to 35 and 40 mA,a pattern with the ring-like structure appears on the water anode.Further increasing the current to 45 mA,the ring-like pattern changes into a pattern with several distinct spots distributed around the central homogeneous spot.In the second column of figure 4(a)when the gas flux is 45 sccm,the pattern turns to be a homogenous spot at a current of 25 mA,and a ring-like structure appears at the current values of 35,40,and 45 mA.Differently from the patterns formed at the gas flux of 30 sccm,there are no distinct luminous spots formed around the central spot when the current and gas flux are 45 mA and 45 sccm,respectively.In the third column when the gas flux is 60 sccm,the pattern formed at the current of 25 mA also turns to be a homogenous spot.Differently from the results obtained for the gas fluxes of 30 and 45 sccm,the pattern does not change into the ring-like or distinct spot structures at the current values of 35,40,45 mA when the gas flux is set to 60 sccm.

    Figure 4.Dependence of pattern on current and gas flux.The gap distance is 4.5 mm.(a) Dependence of pattern on current and gas flux.(b) Dependence of temperature of water on current and gas flux.(c) Dependence of temperature of tungsten steel on current and gas flux.(d) Dependence of gas temperature on current and gas flux.(e) Dependence of pattern on temperature.

    Figure 5.Temperature dependence of the observed pattern transitions.(a)Gas temperature.(b)Temperature of anode.(c)Temperature of cathode.

    The gas temperature of the plasma,the anode temperature and the cathode temperature in dependence of discharge current and gas flux are shown in figures 4(b)–(d),respectively.According to figure 4(b),with the discharge current increasing from 25 to 45 mA,the gas temperature increases from 1592 to 2252 K at the gas flux of 30 sccm.The gas temperature increases from 1518 to 1958 K at the gas flux of 45 sccm,while the corresponding increase at the gas flux of 60 sccm is from 1390 to 1776 K.Obviously,the gas temperature decreases with the increasing of gas flux if the discharge current is fixed.The effects of the current and the gas flux on the temperature of electrodes are the same as the effect of the gas temperature of the plasma.As the current increases from 25 to 45 mA,the anode temperature increases from 298.72 to 305.65 K at the gas flux of 30 sccm.The anode temperature increases from 297.55 to 303.45 K at the gas flux of 45 sccm,as well as from 295.88 to 300.48 K at the gas flux of 60 sccm as shown in figure 4(c).By fixing the discharge current,one can also reduce the anode temperature while raising the gas flux.Likewise,as the current increases in the range from 25 to 45 mA,the cathode temperature increases from 408.92 to 463.88 K at the gas flux of 30 sccm,from 403.78 to 446.78 K at the gas flux of 45 sccm,and from 390.88 to 417.02 K at the gas flux of 60 sccm as shown in figure 4(d).Similarly,the drop of the cathode temperature with the higher gas flux is also seen in figure 4(d).

    As the current is directly correlated to the power input into the discharge system,and the gas flow is beneficial to energy dissipation,the behavior that the gas temperature and the electrode temperature varied with the discharge current and the gas flow rate shown in figures 4(b)–(d) can be easily understood.

    The values of the temperature points(Tg,Ta,Tc)uniquely corresponding to each pattern are shown in figures 4(b)-(d).One can see that the values of temperature points (Tg,Ta,Tc)are (1592 K,298.72 K,408.92 K),(1518 K,297.55 K,403.78 K),(1390 K,295.88 K,390.88 K),(1582 K,297.42 K,398.25 K),(1691 K,298.95 K,410.68 K) and (1776 K,300.48 K,417.02 K)at which the homogeneous spot formed.The following temperature points (1991 K,302.05 K,428.12 K),(2191 K,304.52 K,447.72 K),(1747 K,299.48 K,420.88 K),(1838 K,301.12 K,434.55 K) and (1958 K,303.45 K,446.78 K) produce the ring-like shapes.Likewise,temperatures(2252 K,305.65 K,463.88 K)correspond to the point when several distinct spots instead of a ring are observed around the central spot.This result is similar to the result presented in figures 2(b)and 3(b),and reveals the vital effect of the gas temperature of the plasma,the anode temperature and the cathode temperature on the pattern transitions.

    To clarify the temperature dependence of the observed pattern transitions,all patterns presented in figures 2–4 are drawn in figures 5(a)–(c) as a function of the gas temperature,anode temperature and cathode temperature,respectively.It can be seen that the homogenous pattern can only exist at the relatively low gas temperature and electrode temperature.Meanwhile,the pattern changes from the homogenous spot to the ring-like pattern as the gas temperature and the electrode temperature rise.The appearances of the patterns with distinct spots and gearwheel shape are accompanied by the high gas,anode,and cathode temperatures.One can also notice that there are the overlapping temperature regions in figures 5(a)–(c)between the two adjacent kinds of patterns,namely between the homogenous spot and the ring-like spot,between the ring-like spot and the distinct spot,and between the distinct spot and the gearwheel structure.The overlapping temperature regions between the adjacent kinds of the patterns may reveal the dominant temperature that affects the pattern transition.When the overlapping temperature region is larger,the effect of temperature on the pattern transition becomes smaller.One can notice that the overlapping region in the gas temperature is much smaller than that in the anode temperature shown in figure 5(b) and the cathode temperature shown in figure 5(c)when the pattern transits from the homogeneous spot to the ring-like structure.

    The results indicate that the gas temperature plays a key role in discretizing the pattern from the homogeneous spot to the ring-like structure.This finding can be understood since the pattern transformation is determined by the local temperature at the plasma-water interface,which in turn depends on the gas temperature in the plasma discharge and the water temperature.Since the water temperature is much lower than the gas temperature of the plasma discharge,the interface temperature(which plays an important role in the pattern formation) is mainly dependent on the gas temperature.If the gas temperature is the main factor that determines the pattern structure,it can be understood that the pattern evolves with gas composition [22],liquid conductivity[20,33,34]and liquid composition[21],all of which affect the gas temperature.Apparently,to unveil the mechanisms of the pattern transitions,more theoretical and experimental studies are necessary.

    4.Conclusion

    The self-organized patterns generated by atmosphericpressure DC microplasmas have been formed on the water surface.It is observed that the discharge time,discharge gap width,plasma current and gas flux all influence the pattern transitions as well as the gas temperature of the plasma and the temperature of the electrodes.Analyzing the pattern at each temperature point determined by the gas temperature Tgand the electrode temperatures (Taand Tc),one can conclude that the gas temperature is related to the discretization features of the patterns and plays a role in the successive pattern transitions from the homogeneous spot to the ring-like shape,the distinct spots and the gearwheel structures.Our results are consistent with the earlier findings [25]that the originally homogeneous systems may be destabilized to assume nonuniform self-organized patterns.Our results further indicate that the gas temperature Tgis the important parameter that may affect the reaction–diffusion instability,likely leading to the pattern transitions from the homogeneous spots to the gearwheel structure.The outcomes of this work are relevant to the diverse applications where microplasma discharges are brought into contact with liquids.

    Acknowledgments

    This research is supported by National Natural Science Foundation of China (No.11675109) and Biomedical Engineering Cross Research Foundation of Shanghai Jiao Tong University(YG2016MS12).K Ostrikov thanks the Australian Research Council for partial support.

    猜你喜歡
    陳妍博文
    中國(guó)兩會(huì)
    第一次掙錢
    鐘浩瑜 陳妍 賈靈璐
    Uniformly Normal Structure and Uniform Non-Squareness of Orlicz-Lorentz Sequence Spaces Endowed with the Orlicz Norm
    雪雀一家的新房
    誰(shuí)和誰(shuí)好
    養(yǎng)狗夢(mèng)
    陳妍希
    意林(2017年2期)2017-02-06 07:20:47
    Review on Tang Wenzhi’s The Gist of Chinese Writing Gamut
    打電話2
    边亲边吃奶的免费视频| 亚洲欧美日韩卡通动漫| 少妇人妻 视频| 日韩制服骚丝袜av| 99久久中文字幕三级久久日本| 九九久久精品国产亚洲av麻豆| 99久久中文字幕三级久久日本| 国产男人的电影天堂91| av又黄又爽大尺度在线免费看| av在线播放精品| 久久久久精品性色| 乱人伦中国视频| 久久精品国产亚洲av涩爱| 22中文网久久字幕| 有码 亚洲区| 性色avwww在线观看| 嘟嘟电影网在线观看| 18+在线观看网站| 欧美三级亚洲精品| 中文精品一卡2卡3卡4更新| 国模一区二区三区四区视频| videos熟女内射| 性高湖久久久久久久久免费观看| 亚洲国产av新网站| 日韩欧美精品免费久久| 精品亚洲成a人片在线观看| 五月开心婷婷网| 国产一区二区三区av在线| 日韩强制内射视频| 国产69精品久久久久777片| 日韩电影二区| 交换朋友夫妻互换小说| 国国产精品蜜臀av免费| 国产日韩欧美视频二区| 亚洲无线观看免费| 少妇被粗大猛烈的视频| 国产免费一区二区三区四区乱码| 久久精品国产亚洲av天美| 亚洲国产日韩一区二区| 最新中文字幕久久久久| 91久久精品国产一区二区成人| 国产精品久久久久久精品古装| kizo精华| 中文欧美无线码| 国产高清国产精品国产三级| 亚洲精品中文字幕在线视频 | 人人妻人人澡人人看| 日本av手机在线免费观看| 久久精品久久久久久久性| 尾随美女入室| 深夜a级毛片| 成人18禁高潮啪啪吃奶动态图 | 亚洲av综合色区一区| av专区在线播放| 久久久久国产网址| 亚洲av免费高清在线观看| 欧美日韩视频精品一区| 久久人人爽人人爽人人片va| 美女福利国产在线| 2018国产大陆天天弄谢| 一级毛片电影观看| av在线播放精品| 校园人妻丝袜中文字幕| 久久青草综合色| 日韩欧美精品免费久久| 亚洲精品国产av蜜桃| 少妇被粗大的猛进出69影院 | 一级毛片aaaaaa免费看小| 婷婷色麻豆天堂久久| 人妻夜夜爽99麻豆av| a级一级毛片免费在线观看| av有码第一页| 22中文网久久字幕| 26uuu在线亚洲综合色| 国产欧美另类精品又又久久亚洲欧美| 久久综合国产亚洲精品| 卡戴珊不雅视频在线播放| 女性被躁到高潮视频| 欧美 日韩 精品 国产| 国产亚洲av片在线观看秒播厂| 中文字幕亚洲精品专区| 日本91视频免费播放| 欧美老熟妇乱子伦牲交| 我的老师免费观看完整版| 午夜av观看不卡| 亚洲av福利一区| 一级二级三级毛片免费看| av卡一久久| 国产在视频线精品| 久久人人爽人人片av| 纯流量卡能插随身wifi吗| 国产欧美亚洲国产| 亚洲欧洲国产日韩| 午夜福利影视在线免费观看| 日韩欧美一区视频在线观看 | 亚洲四区av| 99热这里只有是精品在线观看| 亚州av有码| 久久久久久伊人网av| 少妇的逼好多水| 好男人视频免费观看在线| 欧美xxxx性猛交bbbb| av在线app专区| 99re6热这里在线精品视频| 大陆偷拍与自拍| av网站免费在线观看视频| 十分钟在线观看高清视频www | 精品一区二区三区视频在线| 中文字幕制服av| 国产探花极品一区二区| 一区二区三区精品91| 日韩av免费高清视频| 美女xxoo啪啪120秒动态图| 97精品久久久久久久久久精品| 精品一区二区三卡| 久久国产精品大桥未久av | 午夜激情福利司机影院| 熟妇人妻不卡中文字幕| 久热这里只有精品99| 色网站视频免费| 免费高清在线观看视频在线观看| 色婷婷av一区二区三区视频| 久久人人爽人人爽人人片va| 久久6这里有精品| av女优亚洲男人天堂| 免费黄网站久久成人精品| 欧美高清成人免费视频www| 精品国产露脸久久av麻豆| 欧美日韩精品成人综合77777| 欧美国产精品一级二级三级 | 精品熟女少妇av免费看| 亚洲熟女精品中文字幕| 国产高清有码在线观看视频| 青春草国产在线视频| 日韩欧美一区视频在线观看 | 中文字幕精品免费在线观看视频 | 国产男女内射视频| 国产高清国产精品国产三级| videossex国产| 一本一本综合久久| 久久精品国产亚洲av天美| 欧美xxⅹ黑人| 色视频在线一区二区三区| 99热这里只有精品一区| 肉色欧美久久久久久久蜜桃| 中国国产av一级| 熟妇人妻不卡中文字幕| 男女啪啪激烈高潮av片| 男男h啪啪无遮挡| 久久国产精品男人的天堂亚洲 | av.在线天堂| 亚洲欧洲日产国产| 欧美成人午夜免费资源| av网站免费在线观看视频| 日韩成人av中文字幕在线观看| 国产在线一区二区三区精| 日本-黄色视频高清免费观看| 伦理电影免费视频| 日日啪夜夜爽| 亚洲精品乱码久久久久久按摩| 欧美日韩视频高清一区二区三区二| 午夜精品国产一区二区电影| 成人毛片a级毛片在线播放| 久久午夜综合久久蜜桃| 老熟女久久久| 久久久亚洲精品成人影院| 91在线精品国自产拍蜜月| 97在线人人人人妻| 91aial.com中文字幕在线观看| 男男h啪啪无遮挡| 男人添女人高潮全过程视频| 欧美日韩精品成人综合77777| 亚洲欧美清纯卡通| 国产在线男女| 国产精品秋霞免费鲁丝片| 国产精品久久久久成人av| 欧美一级a爱片免费观看看| 欧美激情极品国产一区二区三区 | 亚洲丝袜综合中文字幕| 久久久久久久久久人人人人人人| 99久久中文字幕三级久久日本| 在现免费观看毛片| 久久久精品免费免费高清| 一级毛片黄色毛片免费观看视频| 一级爰片在线观看| 全区人妻精品视频| 日日撸夜夜添| 热99国产精品久久久久久7| 亚洲国产毛片av蜜桃av| 久久久久久久久久人人人人人人| 99热网站在线观看| 亚洲欧美一区二区三区国产| 国产在线男女| 只有这里有精品99| av国产精品久久久久影院| 色视频www国产| 久久亚洲国产成人精品v| 少妇人妻一区二区三区视频| 91久久精品国产一区二区成人| videos熟女内射| 天天操日日干夜夜撸| 国产亚洲最大av| 水蜜桃什么品种好| 在线观看免费视频网站a站| 国产免费一级a男人的天堂| 97在线视频观看| 亚洲av综合色区一区| 久久精品国产亚洲av涩爱| 日韩制服骚丝袜av| 美女内射精品一级片tv| 日本91视频免费播放| 国产白丝娇喘喷水9色精品| 久久免费观看电影| 亚洲精品乱久久久久久| av国产久精品久网站免费入址| 亚洲国产欧美日韩在线播放 | 亚洲精品国产成人久久av| 熟女人妻精品中文字幕| 亚洲av成人精品一区久久| av.在线天堂| 亚洲国产欧美在线一区| 日韩欧美精品免费久久| videos熟女内射| 肉色欧美久久久久久久蜜桃| 亚洲精品乱久久久久久| 午夜福利影视在线免费观看| av在线老鸭窝| 在线观看av片永久免费下载| av一本久久久久| 最近的中文字幕免费完整| 高清在线视频一区二区三区| 一区在线观看完整版| 亚洲av免费高清在线观看| 成年人免费黄色播放视频 | 乱码一卡2卡4卡精品| 这个男人来自地球电影免费观看 | 日本欧美视频一区| 日本wwww免费看| 97精品久久久久久久久久精品| 大陆偷拍与自拍| 久久综合国产亚洲精品| 久久久欧美国产精品| 亚洲美女视频黄频| 大香蕉97超碰在线| 午夜视频国产福利| 日韩强制内射视频| 中文字幕精品免费在线观看视频 | 国产在线男女| 久久免费观看电影| 日日摸夜夜添夜夜爱| 精品人妻一区二区三区麻豆| 老司机影院毛片| 久久久久久伊人网av| 亚洲人与动物交配视频| 蜜桃在线观看..| 在线观看av片永久免费下载| 成人18禁高潮啪啪吃奶动态图 | 91在线精品国自产拍蜜月| 老司机影院成人| 久久久欧美国产精品| 亚洲欧美成人综合另类久久久| 丰满少妇做爰视频| 成人午夜精彩视频在线观看| 国产午夜精品久久久久久一区二区三区| 青春草亚洲视频在线观看| 建设人人有责人人尽责人人享有的| 两个人免费观看高清视频 | 高清av免费在线| 亚洲精品第二区| 日韩视频在线欧美| 亚洲av欧美aⅴ国产| 少妇的逼好多水| 少妇 在线观看| 久久婷婷青草| 男女免费视频国产| 天美传媒精品一区二区| 在线免费观看不下载黄p国产| 久久这里有精品视频免费| 2022亚洲国产成人精品| 啦啦啦在线观看免费高清www| 亚洲欧美中文字幕日韩二区| 精品99又大又爽又粗少妇毛片| 免费看光身美女| 久久久亚洲精品成人影院| 午夜久久久在线观看| 午夜91福利影院| 久久精品国产亚洲网站| 国产伦精品一区二区三区四那| 高清黄色对白视频在线免费看 | 久久久久精品性色| 美女视频免费永久观看网站| 少妇精品久久久久久久| 国产免费福利视频在线观看| 一区在线观看完整版| 卡戴珊不雅视频在线播放| 人妻系列 视频| 尾随美女入室| 日本av免费视频播放| 久久久久久久精品精品| 最近手机中文字幕大全| 99热这里只有是精品50| 国产av码专区亚洲av| 丰满人妻一区二区三区视频av| 国产成人a∨麻豆精品| 特大巨黑吊av在线直播| 亚洲丝袜综合中文字幕| 成人毛片60女人毛片免费| 色哟哟·www| 亚洲国产毛片av蜜桃av| 97精品久久久久久久久久精品| 极品少妇高潮喷水抽搐| 99精国产麻豆久久婷婷| 精品一区二区免费观看| 国模一区二区三区四区视频| 女的被弄到高潮叫床怎么办| 久久狼人影院| 国产精品久久久久久久电影| a级毛片免费高清观看在线播放| 蜜桃久久精品国产亚洲av| 久久99一区二区三区| 欧美性感艳星| 亚洲欧美日韩另类电影网站| 国产欧美亚洲国产| 又大又黄又爽视频免费| 国产 精品1| 日韩欧美一区视频在线观看 | 麻豆精品久久久久久蜜桃| h日本视频在线播放| 国产男女内射视频| 国产亚洲一区二区精品| 伦精品一区二区三区| 久久精品久久久久久噜噜老黄| 天堂8中文在线网| 纯流量卡能插随身wifi吗| 成人免费观看视频高清| 七月丁香在线播放| 精品久久久精品久久久| a级一级毛片免费在线观看| 69精品国产乱码久久久| 99久久精品国产国产毛片| 国产精品不卡视频一区二区| 亚洲美女视频黄频| 国产美女午夜福利| 亚洲精品一二三| 亚洲欧美成人综合另类久久久| 曰老女人黄片| 十八禁网站网址无遮挡 | 国产亚洲av片在线观看秒播厂| 欧美精品一区二区大全| 卡戴珊不雅视频在线播放| 人妻 亚洲 视频| 极品人妻少妇av视频| 久久精品国产亚洲网站| av.在线天堂| 久久99热这里只频精品6学生| 欧美97在线视频| 美女主播在线视频| 2021少妇久久久久久久久久久| 国产欧美日韩精品一区二区| 日本色播在线视频| 9色porny在线观看| 国产精品99久久99久久久不卡 | 春色校园在线视频观看| 国产精品伦人一区二区| 久久女婷五月综合色啪小说| 欧美少妇被猛烈插入视频| 国产日韩欧美亚洲二区| 免费观看a级毛片全部| 国产老妇伦熟女老妇高清| 亚洲国产日韩一区二区| av又黄又爽大尺度在线免费看| 中文乱码字字幕精品一区二区三区| 久久亚洲国产成人精品v| 2018国产大陆天天弄谢| 精品人妻熟女av久视频| 精品少妇黑人巨大在线播放| 少妇人妻 视频| 久久久久精品性色| 色5月婷婷丁香| 久久久久久伊人网av| 超碰97精品在线观看| 成人毛片a级毛片在线播放| 久久青草综合色| h视频一区二区三区| 一区二区av电影网| 最近2019中文字幕mv第一页| 久久婷婷青草| 最新中文字幕久久久久| 国产亚洲精品久久久com| 亚洲国产精品999| 国产精品秋霞免费鲁丝片| 麻豆精品久久久久久蜜桃| av网站免费在线观看视频| 久久国内精品自在自线图片| 成人亚洲精品一区在线观看| 精品一区在线观看国产| 国产精品一区www在线观看| 女性生殖器流出的白浆| 少妇裸体淫交视频免费看高清| 男人添女人高潮全过程视频| 精品国产乱码久久久久久小说| 人人妻人人添人人爽欧美一区卜| 自线自在国产av| 中文天堂在线官网| 能在线免费看毛片的网站| 乱码一卡2卡4卡精品| 亚洲精品aⅴ在线观看| 在线观看免费高清a一片| 国产成人一区二区在线| 97在线视频观看| 熟妇人妻不卡中文字幕| 免费高清在线观看视频在线观看| 在线观看免费高清a一片| 国产伦在线观看视频一区| 亚洲欧美精品自产自拍| 国产综合精华液| 中文字幕亚洲精品专区| 交换朋友夫妻互换小说| 黄色毛片三级朝国网站 | 如日韩欧美国产精品一区二区三区 | 成人国产av品久久久| 亚洲精品第二区| 免费观看av网站的网址| 久久国产亚洲av麻豆专区| 亚洲精华国产精华液的使用体验| 草草在线视频免费看| 妹子高潮喷水视频| 男女边摸边吃奶| 欧美 亚洲 国产 日韩一| 成人亚洲精品一区在线观看| 天美传媒精品一区二区| 国产av一区二区精品久久| 成人国产麻豆网| 亚洲成人一二三区av| 一级,二级,三级黄色视频| 国产精品嫩草影院av在线观看| 波野结衣二区三区在线| 国产高清有码在线观看视频| 国产精品国产av在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 桃花免费在线播放| 亚洲av不卡在线观看| 午夜av观看不卡| av女优亚洲男人天堂| 国产日韩欧美视频二区| 欧美日韩精品成人综合77777| 久久精品国产鲁丝片午夜精品| 日韩中文字幕视频在线看片| 蜜桃在线观看..| 天美传媒精品一区二区| 精品国产露脸久久av麻豆| 简卡轻食公司| 成人黄色视频免费在线看| 中文乱码字字幕精品一区二区三区| 久久人妻熟女aⅴ| 最近2019中文字幕mv第一页| 日本午夜av视频| 黑人巨大精品欧美一区二区蜜桃 | 欧美日韩精品成人综合77777| 久久精品国产鲁丝片午夜精品| 777米奇影视久久| 两个人免费观看高清视频 | 免费观看av网站的网址| 一级黄片播放器| 久久国产乱子免费精品| 新久久久久国产一级毛片| 亚洲av福利一区| 欧美老熟妇乱子伦牲交| 大片免费播放器 马上看| 我的老师免费观看完整版| 亚洲欧美日韩另类电影网站| 久久精品久久久久久噜噜老黄| 又黄又爽又刺激的免费视频.| 国产精品三级大全| 久久精品国产亚洲av涩爱| 欧美日韩国产mv在线观看视频| 午夜福利网站1000一区二区三区| 青春草国产在线视频| 精品国产一区二区久久| 成人综合一区亚洲| 人人妻人人添人人爽欧美一区卜| 国产有黄有色有爽视频| 国产精品一区www在线观看| 国产真实伦视频高清在线观看| 亚洲美女搞黄在线观看| 中文精品一卡2卡3卡4更新| 熟女av电影| 少妇猛男粗大的猛烈进出视频| 亚洲国产精品一区二区三区在线| 热re99久久精品国产66热6| 99久久精品热视频| 国产在线男女| 国产精品久久久久久av不卡| 22中文网久久字幕| 精品99又大又爽又粗少妇毛片| 久久久久视频综合| 在线播放无遮挡| 99久久综合免费| 在线看a的网站| 妹子高潮喷水视频| 97超视频在线观看视频| 久久久欧美国产精品| 91精品国产国语对白视频| 我的老师免费观看完整版| 男人狂女人下面高潮的视频| 亚洲精品色激情综合| 国产精品人妻久久久久久| 一二三四中文在线观看免费高清| 日本黄大片高清| 日韩一区二区三区影片| 日日撸夜夜添| a级片在线免费高清观看视频| 黄色毛片三级朝国网站 | 丝袜在线中文字幕| av免费在线看不卡| 18+在线观看网站| 亚洲,一卡二卡三卡| 人妻夜夜爽99麻豆av| 美女视频免费永久观看网站| 大码成人一级视频| 高清视频免费观看一区二区| 99久久精品国产国产毛片| av播播在线观看一区| 久热久热在线精品观看| 国产精品无大码| 久久精品久久久久久久性| 在线观看免费日韩欧美大片 | 下体分泌物呈黄色| 大话2 男鬼变身卡| 曰老女人黄片| 最新的欧美精品一区二区| 三级国产精品片| 国产黄色免费在线视频| 三级国产精品片| 日产精品乱码卡一卡2卡三| 狂野欧美激情性bbbbbb| 久久99一区二区三区| 亚洲国产精品成人久久小说| 国产精品久久久久久久电影| 精品少妇内射三级| 五月开心婷婷网| 欧美日韩国产mv在线观看视频| 精品酒店卫生间| 亚洲欧洲精品一区二区精品久久久 | 肉色欧美久久久久久久蜜桃| 99久国产av精品国产电影| 伊人亚洲综合成人网| 国产中年淑女户外野战色| 国产一区二区三区av在线| 国产无遮挡羞羞视频在线观看| 日本与韩国留学比较| 啦啦啦啦在线视频资源| 日韩伦理黄色片| 久久精品国产亚洲av天美| 一本色道久久久久久精品综合| 国产色婷婷99| 男女国产视频网站| 亚洲在久久综合| 亚洲成人手机| 日本-黄色视频高清免费观看| 亚洲欧美中文字幕日韩二区| 婷婷色麻豆天堂久久| 免费看日本二区| 成人国产麻豆网| 国产色爽女视频免费观看| 少妇的逼好多水| 97超碰精品成人国产| 国产av国产精品国产| 亚洲av二区三区四区| 亚洲欧美一区二区三区国产| 日本vs欧美在线观看视频 | 最后的刺客免费高清国语| av播播在线观看一区| 欧美97在线视频| 久久韩国三级中文字幕| 最新的欧美精品一区二区| 久久久a久久爽久久v久久| 国产黄片视频在线免费观看| 两个人的视频大全免费| 黑人巨大精品欧美一区二区蜜桃 | 少妇的逼好多水| 亚洲av二区三区四区| 建设人人有责人人尽责人人享有的| 久久久久视频综合| 黄色一级大片看看| 日韩 亚洲 欧美在线| 菩萨蛮人人尽说江南好唐韦庄| 日日摸夜夜添夜夜添av毛片| 老司机亚洲免费影院| 日韩精品有码人妻一区| 两个人免费观看高清视频 | a级毛片在线看网站| av在线app专区| 亚洲av电影在线观看一区二区三区| 九九在线视频观看精品| 国产精品伦人一区二区| 欧美国产精品一级二级三级 | 狂野欧美激情性bbbbbb| 十分钟在线观看高清视频www | 久久久久人妻精品一区果冻| 永久网站在线| 亚洲人成网站在线播| 青春草亚洲视频在线观看| 最近中文字幕2019免费版| 国产精品久久久久久久久免| a级毛片免费高清观看在线播放| 中文字幕人妻丝袜制服| 香蕉精品网在线| 日本猛色少妇xxxxx猛交久久| 大陆偷拍与自拍| 亚洲国产欧美日韩在线播放 | 成人亚洲精品一区在线观看| 色视频www国产| 有码 亚洲区| 黑丝袜美女国产一区|