• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on adaptive anti-rollover control of kiloton bridge transporting and laying vehicles①

    2017-06-27 08:09:22GuoRuiShiYuWangChaoTianYayaZhaoJingyi
    High Technology Letters 2017年2期

    Guo Rui(郭 銳), Shi Yu, Wang Chao, Tian Yaya, Zhao Jingyi

    (*Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University), College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, P.R.China) (**Lianyungang Tianming Equipment Co., Ltd,Lianyungang 222000, P.R.China)

    Research on adaptive anti-rollover control of kiloton bridge transporting and laying vehicles①

    Guo Rui(郭 銳)②***, Shi Yu*, Wang Chao*, Tian Yaya*, Zhao Jingyi*

    (*Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University), College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, P.R.China) (**Lianyungang Tianming Equipment Co., Ltd,Lianyungang 222000, P.R.China)

    The SPMT construction method is a new rapid construction technology of large urban overpass with unblocked traffic, and unstability of SPMT construction method equipment cannot be accurately described due to the concrete beam size, irregular shape and complex transport conditions, which is called kiloton bridge transporting and laying vehicle. The anti-rollover performance of SPMT suspension system is studied, and vehicle side slip angle and load transfer rate (LTR) are regarded as the evaluation indexes. An active suspension adaptive anti-rollover control model of SPMT, in which roll stability affected by the structural parameters and control parameters, is built based on fuzzy PID, and the effectiveness of the control method is verified through real vehicle test.

    kiloton bridge transporting and laying vehicle, SPMT construction method, active suspension, adaptive anti-rollover control

    0 Introduction

    In the conventional bridge reconstruction, a traditional method that scaffold built, scrapped beam descent and demolition,and new bridge erection is adopted,as a result of which the traffic will be paralyzed. The SPMT construction method by which old concrete beams are demolished and transporting monolithically and then new beam is carried to exact location monolithically, is a new construction technology in beam monolithic replacement, therefore time occupation of urban road is reduced greatly. Kiloton bridge transporting and laying vehicles (1000t BTLV) by using the SPMT construction method for bridge construction is developed in cooperative by author’s team and Beijing Baishan Heavy Industry Co., Ltd. The vehicle was applied in a ring beam construction project of Changping Xiguan Traffic Island Bridge in November 2011, and 95%of the project duration for occupied road construction was saved in comparison with conventional construction. The beam monolithic replacement work of Sanyuan Bridge was also accomplished by the vehicle in November 2015. And the duration was reduced from one month to 43 hours. Operation object of 1000t BTLV have overweight, oversized and irregular shape characteristics. The vehicle during operation has the possibility of load barycenter shift[1], and the result would be very serious if accident occurs.

    Vehicle anti-rollover control has been attracting more and more attention recently. For example, Kadir, et al. utilized overturning moment control suspension system to prevent vehicle rollover[2]. Sampson, et al. obtained active anti-rollover torque of vehicle suspension based LQR, and designed anti-rollover controller of heavy-duty vehicle[3]. Miege, et al. simplified the rollover model of heavy vehicle, and the load transfer rate (LTR) of vehicle was reduced by 20%[4]. Zhao conducted some theoretical researches and real vehicle tests for active suspension anti-rollover control of automobile[5]. Yu, et al. used the active suspension system to replace the passive suspension system for poor roll stability problem[6]. Zhao, et al. put forward swing axle for suspension electro hydraulic control system to solve rollover of self-propelled heavy transport vehicle made by transverse slope[7]. Liu, et al. used minimum variance self-tuning control algorithm to control a vehicle active suspension system[8]. Yu, et al. applied an adaptive control strategy to suspension system, so as to ensure the best performance of the vehicle under different conditions[9]. Sun, et al. selected LMS adaptive filtering algorithm that was suitable for the control of active suspension to improve the vehicle handling stability and ride comfort[10-11]. Liu, et al. put optimal control design based on back stepping method forward to hydraulic active suspension[12-13]. Jin Zhilin studied the roll dynamic stability of vehicle in the case of high speed turning, and the anti-rollover control strategy based on fuzzy differential braking with early warning[14-15]. Zhang, et al. designed semi-active suspension system of oil and gas with the function of anti-rollover fuzzy control[16].

    The adaptive anti-rollover control method of collaborative1000t BTLV based on fuzzy PID is put forward, and then suspension system anti-rollover performance mathematical model of 1000t BTLV is built and analyzed, according to the selected indicators of performance evaluation. Finally, through real vehicle tests, the correctness of the control method and the feasibility of engineering application are verified.

    1 Dynamic analysis

    1.1 The establishment of the dynamic differential equations

    Affected by complex road environment factors such as slope and crooked road, as shown in Fig.1 and Fig.2, vehicles will be in dangerous condition of overturn. A 4DOF single-axis dynamic model is established for 1000t BTLV’s suspension system, as shown in Fig.3.

    Fig.1 The vehicle on the slope

    Fig.2 The vehicle on crooked road

    Fig.3 A 4DOF single-axis dynamic model is established for 1000t BTLV’s suspension system

    For the modeling below, notations and basic parameters involved are listed firstly, as shown in Table 1.

    Table 1 The explanation of symbols and parameters

    Continued Table 1

    An active suspension dynamical model of 1000t BTLV is derived by using d’Alambert which is used for analyzing the kinematic relationship.

    Dynamic differential equations of the mass of body and loadMbare

    (1)

    (2)

    Dynamic differential equation of non-suspension mass of left side is

    (3)

    Dynamic differential equation of non-suspension mass of right-side is

    (4)

    1.2 The establishment of the state equations

    wherex1andx2are the vertical displacement and velocity of vehicle’s body respectively,x3andx4are the displacement and velocity of left side non-suspension mass respectively,x5andx6are the displacement and velocity of right-side non-suspension mass respectively,x7andx8are vehicle side slip angle and angular velocity respectively.

    State equation of system can be written as follows:

    (5)

    Eightstatevariablesselectedfromtheabovestateequations,areusedtodescribetime-domainresponseofactivesuspensionsystem,whichprovidesfundamentalbaseforthefollowingresearches.

    2 Mechanicalsimulationofactivesuspension

    2.1 The simulation of independent suspension

    The single-axis simulation model of 1000t BTLV is built using ADAMS/VIEW. The overturning moment parameters are: STEP(time,0.2,0.0,0.201,-1.0E+007), which means the simulation model is acted by a overturning moment at 0.2s, and velocity of 5km/h for simulating 1000t BTLV that encountered detours or transverse slope. The characteristic curve of vehicle side slip angle and LTR are observed with setting simulation time 5s. The time domain response curve of vehicle side slip angleβis shown in Fig.4, and the time domain response curve of LTR is shown in Fig.5.

    Fig.4 Time domain response curve of vehicle side slip angleβ

    Closer examination of the time domain response curves of above two evaluation indexes shows it takes only 2.4s to stabilize the system. After that, vehicle side slip angleβis 2.5 radians, LTR is 0.61. It is suggested that the anti-rollover effect of independent suspension system without any external active-controlled can’t meet the actual requirements. Therefore, it is necessary to improve the design of an active suspension anti-rollover system of 1000t BTLV.

    Fig.5 The time domain response curve of LTR

    2.2 Simulation of an active suspension system

    2.2.1 PID control of active suspension

    The active suspension model of 1000t BTLV based on PID control is built using Matlab/Simulink, which takes LTR as the control object, reducing LTR as the goal, the deviation of the actual and reference LTR as input and the active control force of suspension as output.

    The PID control method can yield the system static characteristic and dynamic characteristic results, when some appropriate argument values like proportion adjustment coefficientKp, integral adjustment coefficientKiand differential adjustment coefficientKdare adjusted. The expected control performance of the system, including the system steady state characteristics and dynamic characteristics is achieved by the PID control. According to the relationship between PID control parameters and the time domain response evaluation index, as shown in Table 2, the three parameters are determined by trial and error.

    Table 2 The relationship between PID control parameters and the time domain response evaluation index

    2.2.2 Fuzzy PID control of active suspension

    The structure of the fuzzy controller includes one dimensional, two dimensional and three dimensional fuzzy controllers. The one dimensional fuzzy controller has unstable performance, and the control rules of three-dimensional fuzzy controller are complex. So, the two-dimension fuzzy controller is adopted to reflect more realistic dynamic characteristics of the output under controlled conditions, which is proved in numerous actual projects.

    (1) The constructions of fuzzy-PID controller

    Differenceebetween the actual value and predetermined value of load transfer rate, and changeecof load transfer rate are used as input variable of fuzzy-PID controller. The modified value of PID control parameters,ΔKp,ΔKi,ΔKd, is taken as output variable of fuzzy controller.

    (2) The fuzzy field

    The seven language subsets {NB, NM, NS, ZE, PS, PM, PB} are used to describe input variables and output variables of two controllers, which are defined as

    e,ec={NB,NM,NS,ZE,PS,PM,PB}

    ΔKp, ΔKi, ΔKd={NB,NM,NS,ZE,PS,PM,PB}

    The actual value range of 1000t BTLV’s tire load transfer rate is [-0.65,0.65]. The basic field of load transfer change rate is [-3,3], and the fuzzy field of erroreand error changeecis [-3,3] .The fuzzy field of the final PID control parameters is [-1,1]. Accordingly, all the quantitative factors are obtained. Trigonometric function is selected as subordinating degree function of input variables and output variables of the active suspension system.

    (3) The rule of fuzzy control

    According to the rule of fuzzy control standards, as shown in Table 3, the proposed fuzzy control rule of 1000t BTLV’s active suspension system is made, as shown in Table 4, based on the performance evaluation index and the experimental results.

    Table 3 Standards of the fuzzy control rule

    The fuzzy control rules of 1000t BTLV’s active suspension system can be made, as demonstrated in Table 4

    The general expression is:

    Ife=ei(NB) andec=eci(NB) thenu=ui(NB)

    i=1, 2, 3 … 49 (6)

    (4) The fuzzy inference

    According to the maximum and minimum methods of Mamdani reasoning, the fuzzy reasoning is applied to study the control set under the rule of fuzzy control. The relationship between the input and output variables of the fuzzy controller can be got by MATLAB/Simulink.

    (5) The fuzzy judgment

    Fuzzy judgment adopts a gravity method to judge deterministic PID parameters for output control variable.

    The single-axis simulation model of 1000t BTLV’s active suspension based on fuzzy control is established, as shown in Fig.6.

    Fig.6 The single-axis simulation model of 1000t BTLV’s active suspension based on fuzzy control

    2.2.3 Anti-rollover simulation analysis of active suspension under different control strategy

    After the combination of the double vehicles, there is no inter-vehicle hydraulic line connection, so the hydraulic system is regulated by each vehicle respectively. The suspension system of each vehicle is adjusted firstly in the process of anti-rollover, and then roll prevention control of double vehicles can be done after ensuring the safety of each vehicle. The anti-rollover control flow chart of parallel double vehicles transporting work is shown in Fig.7.

    To prevent anti-rollover accidents, the specific work of double vehicles parallel transporting bridge girder are: when No.1 and No.2 vehicles encounter in rough road conditions (detours, slope), the inclination angle of bridge is detected by angle sensors which are installed on the bridge girder, then a height difference between double vehicles load platform is calculated and fed to the main controller. After that, the main controller sends the rise command to lower vehicle suspension system of load platform, under the principle of keeping the peaks immovability.

    Fig.7 The anti-rollover control flow chart of parallel double vehicles transporting bridges

    Then all suspension cylinders of the vehicles execute displacement command to raise lower vehicle transporting platform in order to reduce and even disappear side slip angle of bridge girder, so that keeps girder at the horizontal position all the time, which would prevent bridge from rolling over.

    The co-simulation of parallel transporting bridge girder of double vehicles based on above method is built in AMESim. The overturning moment is applied to multi-body model in ADAMS, overturning moment is set as: STEP(time, 0.2, 0.0, 0.201, -1.0E+007), in other words, the simulation model is acted by overturning moment at 0.2s, and the velocity of model is set 5km/h for simulating that 1000t BTLV carrying bridge on the road when encountered detours or transverse slope.

    The time domain response curves of vehicle side slip angleβand LTR based on different control strategies are analyzed, by comparing with the results without any control strategy.

    Fig.8 The time domain response curve of vehicle side slip angleβ

    RisetimePeaktimeMaximumovershootSteadyvalueNotaddcontrol2.60.730.67%2.6PIDcontrol20.725.81%2.3Fuzzycontrol20.719.64%2.25FuzzyPIDcontrol20.718.52%2.2

    Fig.9 The time domain response curve of LTR

    RisetimePeaktimeMaximumovershootSteadyvalueNotaddcontrol2.40.535.1%0.61PIDcontrol2.40.539.29%0.51Fuzzycontrol2.40.531.51%0.5FuzzyPIDcontrol2.40.530.77%0.45

    Form Fig.8 and Fig.9, it can be seen that evaluation indexes of the vehicle rollover performance and the response rate of active suspension, after adding controller, are improved, and the system tends to be stable finally. In other words, anti-rollover ability of 1000t BTLV is improved effectively. Specific values for response speed via fuzzy PID processing and without fuzzy PID processing are shown in Table 5 and Table 6. It is obvious that anti-rollover effect based on fuzzy PID control strategy is the best, by comparing the evaluation indexes curve of anti-rollover strategy with the PID controller, fuzzy controller and fuzzy PID controller.

    2.2.4 Anti-rollover simulation analysis of active suspension on fuzzy PID control

    Processing continues in the same way, the overturning moment is applied to multi-body model in ADAMS, overturning moment is set as: STEP(time,0.2,0.0,0.201,-1.0E+007),in other words, the simulation model is acted by overturning moment at 0.2s, and the velocity of model is set 5km/h for simulating that1000t BTLV carrying bridge on the road when encountered detours or transverse slope.

    The time response characteristic curves of No.1 and No.2 transporting bridge vehicles are illustrated in Fig.10 and Fig.11, vehicle side slip angle β and bridge roll angle based on fuzzy PID are shown in Fig.10. And the time domain response characteristic curves of LTR based on fuzzy PID are shown in Fig.11.

    Fig.10 The time domain response curves of vehicle side slip angleβand roll angle of bridge of double vehicles

    Fig.11 The time domain response curves of double vehicles of LTR

    In the process of double vehicles under anti-rollover control respectively, the vehicle side slip angle and LTR of No.1 and No.2 vehicles decrease gradually, and tend to be stable state, but bridge roll angle does not change greatly. With vehicle side slip angle and LTR of the No.1 and No.2 vehicles tend to be stable, the bridge roll angle begins to decrease, reaches steady state at about 3s, and finally approached the stable value of 2.25 radians.

    3 Field tests

    To verify active suspension anti-rollover performance of 1000t BTLV, real vehicle tests are conducted. The tests include one vehicle with bridge and double vehicles with bridge in parallel driving on the cross-slope, as shown in Fig.12.

    (a)Single vehicle with bridge driving on the cross-slope

    (b) Double vehicles with bridge driving in parallel on the cross-slope

    The experimental curves of evaluation indexes on the anti-rollover are obtained from the test by setting load of one vehicle is 1000t, load of double vehicles in parallel is 2000t, velocity is 5km/h, road cross slope is 5%. By comparing with the corresponding co-simulation curves, good active suspension anti-rollover performance of 1000t BTLV is verified.

    The time domain response curve of evaluation indexes of one vehicle anti-rollover with bridge driving is shown in Fig.13, and the time domain response curve of evaluation indexes of double vehicles anti-rollover with bridge in parallel driving is shown in Fig.14.As can be seen from Fig.10 and Fig.11, there is that the co-simulation and real vehicle tests results are basically identical.

    Fig.13 Time domain response curves comparison of one vehicle anti-rollover with bridge driving

    Fig.14 The time domain response curves comparison of double vehicles anti-rollover with bridge in parallel driving

    In order to ensure that the safety bearing area are large enough, the distance of double vehicles needs to take a larger value, which makes 1000t BTLV to accommodate the road cross slope in poor performance. Based on above issues, slope should be reduced to prevent 1000t BTLV from rollover accident by reconstructing pavement. Besides, rollover accident probability of 1000t BTLV could be reduced by reconstructing pavement, when the distance of double vehicles is limited for the working environment, namely the safe bearing area of the bearing platform is smaller.

    4 Conclusion

    An independent suspension system without any external active control can’t meet the anti-rollover effect actual requirements from the simulation analysis, by vehicle side slip angle and load transfer rate (LTR) regarded as the evaluation indexes.

    The actions of all suspensions and the control force of suspension cylinder are adjusted for reducing vehicle side slip angle and LTR, by taking anti-rollover control strategy of active suspension system cooperated with fuzzy PID control and blending both vehicle side slip angle and LTR. From the co-simulation of the mechanism, electron, hydraulic and real vehicle tests, it is verified that the load barycenter shift of 1000t BTLV by using the control strategy can be effectively controlled when 1000t BTLV encountered the circumstances of cross slope or curve.

    1000t BTLV rollover accident would be prevented effectively by maintaining the passive measures and adding the anti-rollover control strategy of active suspension cooperated with the fuzzy PID control strategy as assistant tools. It is significant for expending the application range in the field of engineering.

    [ 1] Wang X Y, Zhao J Y, Xu L J.Fuzzy decoupling control strategy for synchronous bridge lifting.ChineseJournalofConstructionMachinery, 2015,13(4): 347-352+371

    [ 2] Kadir Z A, Hudha K, Jamaluddin H, et al. Active roll control suspension system for improving dynamics performance of passenger vehicle. In: Proceedings of the International Conference on Modelling, Identification & Control, Shanghai, China, 2011. 492-497

    [ 3] Sampson D J M, Mckevitt G, Cebon D. The development of an active roll control system for heavy vehicles.AcsMedicinalChemistryLetters, 2000, 3(11): 897-902

    [ 4] Miege A J P, Cebon D. Optimal roll control of an articulated vehicle:Theory and model validation.VehicleSystemDynamics, 2005, 43(12): 867-884

    [ 5] Zhao D X. Articulated Vehicle Stability and Simulation and Control. Beijing: China Railway Publishing House, 1997. 1-8

    [ 6] Yu Q, Ma J. Analysis of improvement on automobile roll stability with active suspension system.ChinaJournalofHighwayandTransport, 2005,18(3):114-117

    [ 7] Zhao J Y, Guo R, Wang Z Y. The developing of independent suspension and its electro-hydraulic control system of heavy platform vehicle.JournalofNortheasternUniversity(NaturalScience), 2008,29(S2): 237-240

    [ 8] Liu X L, Zhang J W, Chen Z N. An approach of self-tuning control for automotive active suspensions.AutomotiveEngineering,1998,20(3):165-170

    [ 9] Yu F, Guo K H. The potential vehicle’s performance improvements on adaptive suspension.ChinaMechanicalEngineering,1998,9(6):67-69+94

    [10] Sun J M, Yang Q M, Chen Y Q. Study on LMS adaptive control of vehicle active suspension system.ChinaMechanicalEngineering, 2003,14(24):90-93+7

    [11] Sun J M, Wang Z Q, Zhang X Y. LMS adaptive control of vehicle active suspension system.AutomotiveEngineering, 2003,25(4):360-363

    [12] Liu Z, Zhu X C, Luo C, et al. Backstepping based optimal control design and simulation of hydraulic active suspensions applied to a half-car model.JournalofNationalUniversityofDefenseTechnology,2006,28(4):115-120

    [13] Liu Z, Zhu X C, Luo C, et al. Backstepping-based optimal control design of hydraulic active suspension applied to a full-car model.ControlTheory&Applications, 2008,25(1):1-8

    [14] Jin Z L, Zhang H S, Ma C Z, et al. Vehicle rollover warning based on dynamic stability.JournalofMechanicalEngineering, 2012,48(14):128-133

    [15] Jin Z L, Zhang J L, Ma C Z, et al. Robust control strategy of passenger car rollover prevention with multi-population genetic optimization.JournalofMechanicalEngineering, 2014,50(24):130-136

    [16] Zhang C H, Zhao J Y, Tian X, et al. Applications of semi-active hydro-pneumatic suspension system based on fuzzy control in articulated dump truck.ChinaMechanicalEngineering, 2014,25(18):2550-2555

    Guo Rui, born in 1980. He is currently an associate professor in mechatronics engineering at Yanshan University, China. He received his Ph.D degree from the Department of Mechanical Engineering of Yanshan University, Qinhuangdao, China, in 2010.His research interests include innovative design and reliability of complex electromechanical products.

    10.3772/j.issn.1006-6748.2017.02.013

    ①Supported by the National Natural Science Foundation of China (No. 51405424, 51675461, 11673040) and Hebei Province Natural Science Foundation of China (No. E2012203071).

    ②To whom correspondence should be addressed. E-mail: guorui@ysu.edu.cn

    on July 27, 2016

    中国国产av一级| 精品人妻熟女av久视频| 久久久久性生活片| 美女cb高潮喷水在线观看| 日韩 亚洲 欧美在线| 国内久久婷婷六月综合欲色啪| 久久久久久久久久成人| 国产精品福利在线免费观看| 美女xxoo啪啪120秒动态图| av视频在线观看入口| 狂野欧美白嫩少妇大欣赏| 真实男女啪啪啪动态图| .国产精品久久| 欧美日韩精品成人综合77777| 日韩强制内射视频| 桃色一区二区三区在线观看| 午夜免费男女啪啪视频观看 | 嫩草影院精品99| 国产欧美日韩一区二区精品| 中文字幕久久专区| 1000部很黄的大片| 精品久久国产蜜桃| 成人性生交大片免费视频hd| 国产av麻豆久久久久久久| 国产成人精品久久久久久| 色综合亚洲欧美另类图片| 女人十人毛片免费观看3o分钟| 国产视频内射| 免费av观看视频| 国内少妇人妻偷人精品xxx网站| 亚洲自偷自拍三级| 1024手机看黄色片| 国产欧美日韩精品一区二区| 蜜臀久久99精品久久宅男| 色哟哟·www| 日韩亚洲欧美综合| 精品久久久噜噜| 熟女电影av网| 波多野结衣高清作品| 18禁裸乳无遮挡免费网站照片| 国产69精品久久久久777片| 久久久久久久久中文| 久久久久久九九精品二区国产| 免费av毛片视频| 一区二区三区四区激情视频 | 搞女人的毛片| 国产一区二区在线观看日韩| 97热精品久久久久久| 免费黄网站久久成人精品| 亚洲最大成人中文| 精华霜和精华液先用哪个| 免费观看人在逋| 色视频www国产| 97超碰精品成人国产| 又粗又爽又猛毛片免费看| 有码 亚洲区| 人妻少妇偷人精品九色| 免费av观看视频| av天堂在线播放| 国产精品爽爽va在线观看网站| 国产成人aa在线观看| 99热这里只有是精品50| 国产成人a区在线观看| www.色视频.com| 久久人人精品亚洲av| 人人妻人人澡欧美一区二区| 日韩欧美一区二区三区在线观看| 亚州av有码| 天天躁日日操中文字幕| a级毛色黄片| 国产麻豆成人av免费视频| 成人鲁丝片一二三区免费| 91在线观看av| 少妇被粗大猛烈的视频| 亚洲欧美日韩卡通动漫| 级片在线观看| 国产乱人视频| 综合色丁香网| 日本在线视频免费播放| 寂寞人妻少妇视频99o| 亚洲精品色激情综合| 给我免费播放毛片高清在线观看| 一级毛片aaaaaa免费看小| 国产高潮美女av| 变态另类丝袜制服| 国产69精品久久久久777片| 国产成人freesex在线 | 亚洲美女搞黄在线观看 | 三级毛片av免费| 成人精品一区二区免费| 亚洲国产精品sss在线观看| 免费观看人在逋| 午夜福利成人在线免费观看| 在线天堂最新版资源| 久久中文看片网| 国产精华一区二区三区| 小蜜桃在线观看免费完整版高清| 搡老岳熟女国产| 欧美激情在线99| 国产久久久一区二区三区| 波野结衣二区三区在线| 国产精品日韩av在线免费观看| 午夜激情欧美在线| 国产白丝娇喘喷水9色精品| 草草在线视频免费看| 插阴视频在线观看视频| 免费观看精品视频网站| 午夜福利18| 欧美zozozo另类| 欧美国产日韩亚洲一区| 日韩欧美 国产精品| 激情 狠狠 欧美| 中出人妻视频一区二区| 国产一级毛片七仙女欲春2| 少妇的逼好多水| 热99re8久久精品国产| 在线播放无遮挡| 国产精品无大码| 久久6这里有精品| 别揉我奶头 嗯啊视频| 女同久久另类99精品国产91| 99久久中文字幕三级久久日本| 亚洲最大成人手机在线| 日本三级黄在线观看| 成年版毛片免费区| 日韩精品有码人妻一区| 超碰av人人做人人爽久久| 人妻久久中文字幕网| 亚洲经典国产精华液单| 国产私拍福利视频在线观看| 日本撒尿小便嘘嘘汇集6| 国产探花极品一区二区| 99热只有精品国产| 国产日本99.免费观看| 欧美绝顶高潮抽搐喷水| 97超视频在线观看视频| a级毛色黄片| 99久久九九国产精品国产免费| 色综合亚洲欧美另类图片| 麻豆国产av国片精品| 久久久国产成人免费| 中文字幕免费在线视频6| 欧美激情久久久久久爽电影| 十八禁网站免费在线| 最近的中文字幕免费完整| 国产伦一二天堂av在线观看| 色吧在线观看| 夜夜夜夜夜久久久久| 99久久九九国产精品国产免费| 97超视频在线观看视频| 免费看日本二区| 亚洲经典国产精华液单| a级毛片a级免费在线| 国产精品久久久久久久久免| 国产午夜福利久久久久久| 色综合站精品国产| 直男gayav资源| 精品一区二区三区人妻视频| 超碰av人人做人人爽久久| 在线播放国产精品三级| 国产精品综合久久久久久久免费| 欧美在线一区亚洲| 看片在线看免费视频| 少妇人妻一区二区三区视频| 男人和女人高潮做爰伦理| 日日摸夜夜添夜夜添av毛片| 国产精品,欧美在线| 精品人妻熟女av久视频| 在线a可以看的网站| 天堂√8在线中文| 久久99热6这里只有精品| 白带黄色成豆腐渣| 久久久久久大精品| 午夜久久久久精精品| 一区二区三区高清视频在线| 免费人成视频x8x8入口观看| 国产伦精品一区二区三区四那| 亚洲欧美日韩无卡精品| 老司机影院成人| 日韩成人伦理影院| 亚洲av免费在线观看| 久久精品国产亚洲网站| 波野结衣二区三区在线| a级毛片免费高清观看在线播放| 成年女人毛片免费观看观看9| 国产老妇女一区| 久久久久久国产a免费观看| 精品日产1卡2卡| 亚洲电影在线观看av| 狂野欧美激情性xxxx在线观看| 晚上一个人看的免费电影| 寂寞人妻少妇视频99o| 在线观看美女被高潮喷水网站| 色av中文字幕| 日韩精品青青久久久久久| 女人十人毛片免费观看3o分钟| 午夜精品一区二区三区免费看| av天堂在线播放| 成人无遮挡网站| 午夜视频国产福利| 免费电影在线观看免费观看| 欧美极品一区二区三区四区| 男人舔奶头视频| 男女视频在线观看网站免费| 亚洲,欧美,日韩| 一进一出好大好爽视频| 精品日产1卡2卡| 日韩欧美 国产精品| 99国产精品一区二区蜜桃av| 欧美潮喷喷水| 久久中文看片网| 美女高潮的动态| 欧美日韩一区二区视频在线观看视频在线 | 日韩欧美精品v在线| 日韩高清综合在线| 日本熟妇午夜| 露出奶头的视频| 欧美国产日韩亚洲一区| 97人妻精品一区二区三区麻豆| 校园人妻丝袜中文字幕| 亚洲国产色片| 色综合亚洲欧美另类图片| 日韩欧美免费精品| 在线免费十八禁| 精品人妻一区二区三区麻豆 | 不卡一级毛片| 精品国产三级普通话版| 天美传媒精品一区二区| 亚洲欧美中文字幕日韩二区| 欧美色欧美亚洲另类二区| 蜜桃久久精品国产亚洲av| 成人美女网站在线观看视频| 少妇的逼水好多| 大香蕉久久网| 亚洲欧美精品自产自拍| 欧美又色又爽又黄视频| 欧美bdsm另类| 天堂动漫精品| 免费大片18禁| 性色avwww在线观看| 狂野欧美白嫩少妇大欣赏| 欧美高清性xxxxhd video| 国内精品久久久久精免费| 亚洲国产日韩欧美精品在线观看| 大香蕉久久网| ponron亚洲| 国产真实伦视频高清在线观看| 日韩欧美三级三区| 亚洲无线在线观看| 亚洲国产精品成人综合色| 99久久精品国产国产毛片| 国产日本99.免费观看| 又爽又黄a免费视频| 天堂av国产一区二区熟女人妻| 久久久久国产网址| 亚洲欧美精品自产自拍| 91av网一区二区| 国产一区亚洲一区在线观看| 美女xxoo啪啪120秒动态图| 春色校园在线视频观看| 亚洲一区高清亚洲精品| 国产在线精品亚洲第一网站| 久久久久免费精品人妻一区二区| 国产亚洲精品久久久久久毛片| 91午夜精品亚洲一区二区三区| 婷婷六月久久综合丁香| 色综合站精品国产| 性插视频无遮挡在线免费观看| 久99久视频精品免费| 99久国产av精品| 成人美女网站在线观看视频| 身体一侧抽搐| 九九热线精品视视频播放| 99热这里只有是精品在线观看| 天天躁夜夜躁狠狠久久av| 国国产精品蜜臀av免费| 亚洲成a人片在线一区二区| 国产伦一二天堂av在线观看| 精品一区二区免费观看| 亚洲成人久久爱视频| av在线亚洲专区| 91麻豆精品激情在线观看国产| 一进一出抽搐动态| 日韩国内少妇激情av| 国产精品一及| 欧美色视频一区免费| 午夜免费男女啪啪视频观看 | 国产69精品久久久久777片| 看十八女毛片水多多多| 国产av不卡久久| 成人二区视频| 高清午夜精品一区二区三区 | 欧美在线一区亚洲| 老女人水多毛片| 欧美+亚洲+日韩+国产| 欧美在线一区亚洲| 人妻丰满熟妇av一区二区三区| 日本黄色视频三级网站网址| 日韩强制内射视频| 校园春色视频在线观看| 亚洲一区二区三区色噜噜| 18禁在线播放成人免费| 欧洲精品卡2卡3卡4卡5卡区| 寂寞人妻少妇视频99o| 天美传媒精品一区二区| 亚洲久久久久久中文字幕| av.在线天堂| 综合色丁香网| 99久久成人亚洲精品观看| 人人妻,人人澡人人爽秒播| 免费搜索国产男女视频| 亚洲在线观看片| av在线观看视频网站免费| 岛国在线免费视频观看| 又爽又黄a免费视频| 日本免费一区二区三区高清不卡| 女人十人毛片免费观看3o分钟| 又爽又黄无遮挡网站| 国内精品久久久久精免费| 亚洲成人精品中文字幕电影| 狠狠狠狠99中文字幕| 国产69精品久久久久777片| 黄色一级大片看看| 99热只有精品国产| 精品一区二区三区视频在线| 少妇熟女aⅴ在线视频| 亚洲精品色激情综合| 晚上一个人看的免费电影| 午夜福利在线观看免费完整高清在 | 国产精品1区2区在线观看.| 床上黄色一级片| 中文字幕免费在线视频6| 国产亚洲精品久久久久久毛片| 国产精品爽爽va在线观看网站| 欧美成人免费av一区二区三区| 99久久久亚洲精品蜜臀av| 天天躁日日操中文字幕| a级一级毛片免费在线观看| 色噜噜av男人的天堂激情| 给我免费播放毛片高清在线观看| 午夜免费男女啪啪视频观看 | 中出人妻视频一区二区| 亚洲精品一卡2卡三卡4卡5卡| 美女黄网站色视频| 非洲黑人性xxxx精品又粗又长| 国产精品国产高清国产av| 九九久久精品国产亚洲av麻豆| 别揉我奶头~嗯~啊~动态视频| 伊人久久精品亚洲午夜| 99热只有精品国产| 日本黄色片子视频| 欧美区成人在线视频| 丰满乱子伦码专区| 校园春色视频在线观看| 国产女主播在线喷水免费视频网站 | 97超视频在线观看视频| 日本撒尿小便嘘嘘汇集6| 插逼视频在线观看| 欧美性猛交黑人性爽| 久久久国产成人精品二区| 国产熟女欧美一区二区| 免费看美女性在线毛片视频| 国产aⅴ精品一区二区三区波| 蜜臀久久99精品久久宅男| 禁无遮挡网站| 欧美激情国产日韩精品一区| 国产精品国产三级国产av玫瑰| 老司机午夜福利在线观看视频| 午夜福利在线观看免费完整高清在 | 国产高清视频在线观看网站| 亚洲欧美精品综合久久99| 亚洲av中文av极速乱| 午夜福利视频1000在线观看| 欧美绝顶高潮抽搐喷水| 精品久久久久久久久av| 欧美极品一区二区三区四区| 国产精品久久久久久亚洲av鲁大| 一级毛片我不卡| 欧美+日韩+精品| 国产一区亚洲一区在线观看| 久久精品国产99精品国产亚洲性色| 国产成人freesex在线 | 真实男女啪啪啪动态图| 精品久久久久久久久亚洲| 别揉我奶头~嗯~啊~动态视频| 婷婷精品国产亚洲av| 久久久精品欧美日韩精品| 中文字幕人妻熟人妻熟丝袜美| 国内精品美女久久久久久| 搡老妇女老女人老熟妇| 又黄又爽又刺激的免费视频.| 91午夜精品亚洲一区二区三区| 亚洲五月天丁香| 美女被艹到高潮喷水动态| 99久久精品热视频| 麻豆av噜噜一区二区三区| 在线天堂最新版资源| 亚洲七黄色美女视频| 国产激情偷乱视频一区二区| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲中文字幕一区二区三区有码在线看| 国产精品女同一区二区软件| 国内精品久久久久精免费| 男女下面进入的视频免费午夜| 热99re8久久精品国产| 亚洲欧美精品自产自拍| 超碰av人人做人人爽久久| av在线亚洲专区| 69人妻影院| 国产白丝娇喘喷水9色精品| av卡一久久| 在线观看66精品国产| 男人的好看免费观看在线视频| 在线天堂最新版资源| 男人和女人高潮做爰伦理| 欧美一区二区精品小视频在线| 国产精品美女特级片免费视频播放器| 久久欧美精品欧美久久欧美| 免费看av在线观看网站| 18禁裸乳无遮挡免费网站照片| 波野结衣二区三区在线| 精品欧美国产一区二区三| 天天躁夜夜躁狠狠久久av| 麻豆精品久久久久久蜜桃| 91av网一区二区| 蜜桃久久精品国产亚洲av| 亚洲av.av天堂| 啦啦啦观看免费观看视频高清| 国产一区二区在线av高清观看| 亚洲精华国产精华液的使用体验 | 亚洲欧美精品综合久久99| 久久这里只有精品中国| 国产高清三级在线| 久久久久久大精品| 又黄又爽又免费观看的视频| 在线观看午夜福利视频| 三级国产精品欧美在线观看| 国产日本99.免费观看| av国产免费在线观看| 免费黄网站久久成人精品| 国产精品,欧美在线| 免费人成在线观看视频色| 国国产精品蜜臀av免费| 日韩国内少妇激情av| 亚洲婷婷狠狠爱综合网| 国产免费一级a男人的天堂| 最近在线观看免费完整版| 99国产极品粉嫩在线观看| 国产v大片淫在线免费观看| 日韩欧美精品v在线| 一卡2卡三卡四卡精品乱码亚洲| 一进一出好大好爽视频| 女人被狂操c到高潮| 国产男靠女视频免费网站| 人妻久久中文字幕网| 香蕉av资源在线| 亚洲在线观看片| 激情 狠狠 欧美| 国产精品不卡视频一区二区| 一个人观看的视频www高清免费观看| 九九在线视频观看精品| 国产人妻一区二区三区在| 嫩草影视91久久| 国产视频内射| 日本 av在线| 久久久精品大字幕| 激情 狠狠 欧美| 少妇高潮的动态图| 1024手机看黄色片| 自拍偷自拍亚洲精品老妇| 内地一区二区视频在线| 免费高清视频大片| 尾随美女入室| 亚洲高清免费不卡视频| 国产精品综合久久久久久久免费| 久久精品国产99精品国产亚洲性色| 日韩制服骚丝袜av| 免费一级毛片在线播放高清视频| 日本a在线网址| 在线a可以看的网站| 国产人妻一区二区三区在| 国产一区二区三区av在线 | 小说图片视频综合网站| av女优亚洲男人天堂| 色在线成人网| 尤物成人国产欧美一区二区三区| 精品久久久久久久久av| 亚洲最大成人中文| 日本欧美国产在线视频| 村上凉子中文字幕在线| 色尼玛亚洲综合影院| 十八禁网站免费在线| 欧美日韩国产亚洲二区| 久久久久九九精品影院| 亚洲精品日韩在线中文字幕 | 亚洲专区国产一区二区| 在线观看午夜福利视频| 国产熟女欧美一区二区| 欧美性感艳星| 最近中文字幕高清免费大全6| 欧美+日韩+精品| 亚洲七黄色美女视频| 国产精品一区二区三区四区免费观看 | 18禁在线无遮挡免费观看视频 | 亚洲aⅴ乱码一区二区在线播放| 伦精品一区二区三区| 偷拍熟女少妇极品色| 在线播放无遮挡| 美女xxoo啪啪120秒动态图| 欧美+日韩+精品| 日韩成人av中文字幕在线观看 | 欧美性猛交╳xxx乱大交人| 亚洲中文日韩欧美视频| 亚洲无线在线观看| 久久久欧美国产精品| a级毛片免费高清观看在线播放| 亚洲中文日韩欧美视频| 嫩草影院精品99| 欧美人与善性xxx| 国产高清有码在线观看视频| 黄色一级大片看看| 精品免费久久久久久久清纯| 一个人看视频在线观看www免费| 少妇裸体淫交视频免费看高清| 国产精品乱码一区二三区的特点| 99久国产av精品国产电影| 嫩草影视91久久| 色尼玛亚洲综合影院| 九九热线精品视视频播放| 亚洲av二区三区四区| 国产欧美日韩一区二区精品| 村上凉子中文字幕在线| 最近最新中文字幕大全电影3| a级毛片a级免费在线| 三级男女做爰猛烈吃奶摸视频| 国产精品美女特级片免费视频播放器| 久久精品夜夜夜夜夜久久蜜豆| 国产探花在线观看一区二区| 69av精品久久久久久| 22中文网久久字幕| 精品99又大又爽又粗少妇毛片| 国产成人福利小说| 网址你懂的国产日韩在线| 简卡轻食公司| 草草在线视频免费看| 啦啦啦韩国在线观看视频| а√天堂www在线а√下载| 国产极品精品免费视频能看的| 在线看三级毛片| 久久精品久久久久久噜噜老黄 | 久久久久久久久久久丰满| 日韩强制内射视频| 黄色一级大片看看| 最近2019中文字幕mv第一页| www.色视频.com| 日韩成人伦理影院| 99久久精品国产国产毛片| 国产 一区精品| 淫妇啪啪啪对白视频| 国产黄色小视频在线观看| 九九热线精品视视频播放| 免费高清视频大片| 欧美一区二区国产精品久久精品| 久久久久精品国产欧美久久久| 波多野结衣高清作品| 老师上课跳d突然被开到最大视频| 欧美+亚洲+日韩+国产| 桃色一区二区三区在线观看| 亚洲成人精品中文字幕电影| 99热全是精品| 欧美bdsm另类| 成人亚洲精品av一区二区| 高清日韩中文字幕在线| 午夜视频国产福利| 欧美xxxx黑人xx丫x性爽| 91久久精品电影网| 久久草成人影院| 精品一区二区免费观看| 大又大粗又爽又黄少妇毛片口| 欧美日韩乱码在线| 精品一区二区三区人妻视频| 老司机午夜福利在线观看视频| 国产男人的电影天堂91| 内射极品少妇av片p| 久99久视频精品免费| 亚洲欧美成人综合另类久久久 | 婷婷精品国产亚洲av| 精品人妻熟女av久视频| 日韩精品有码人妻一区| 久久久欧美国产精品| 最近中文字幕高清免费大全6| 中文亚洲av片在线观看爽| 成人鲁丝片一二三区免费| 草草在线视频免费看| 亚洲三级黄色毛片| 一区二区三区四区激情视频 | 美女黄网站色视频| 日韩成人伦理影院| 99久国产av精品国产电影| www日本黄色视频网| 联通29元200g的流量卡| 久久韩国三级中文字幕| 99国产极品粉嫩在线观看| 少妇的逼水好多| 丝袜美腿在线中文| 两个人的视频大全免费| 欧美高清性xxxxhd video| 国产一区二区三区在线臀色熟女| 熟女电影av网| 91精品国产九色| 亚洲国产欧美人成| 亚洲人成网站在线播放欧美日韩| 男人狂女人下面高潮的视频| 国产黄a三级三级三级人| 在线观看66精品国产|