• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A real-time 5/3 lifting wavelet HD-video de-noising system based on FPGA①

    2017-06-27 08:09:23HuangQiaojie黃巧潔LiuJiancheng
    High Technology Letters 2017年2期

    Huang Qiaojie (黃巧潔), Liu Jiancheng

    (Department of Mechanics and Electricity, Guangdong Agriculture Industry Business Polytechnic, Guangzhou 510507, P.R.China)

    A real-time 5/3 lifting wavelet HD-video de-noising system based on FPGA①

    Huang Qiaojie (黃巧潔)②, Liu Jiancheng

    (Department of Mechanics and Electricity, Guangdong Agriculture Industry Business Polytechnic, Guangzhou 510507, P.R.China)

    In accordance with the application requirements of high definition (HD) video surveillance systems, a real-time 5/3 lifting wavelet HD-video de-noising system is proposed with frame rate conversion (FRC) based on a field-programmable gate array (FPGA), which uses a 3-level pipeline paralleled 5/3 lifting wavelet transformation and reconstruction structure, as well as a fast BayesShrink adaptive threshold filtering module. The proposed system demonstrates de-noising performance, while also balancing system resources and achieving real-time processing. The experiments show that the proposed system’s maximum operating frequency (through logic synthesis and layout using Quartus 13.1 software) can reach 178MHz, based on the Altera Company’s Stratix III EP3SE80 series FPGA. The proposed system can also satisfy real-time de-noising requirements of 1920×1080 at 60fps HD-video sources, while also significantly improving the peak signal to noise rate of the de-noising images. Compared with similar systems, the system has the advantages of high operating frequency, and the ability to support multiple source formats for real-time processing.

    video surveillance, threshold filtering, discrete wavelet transformation (DWT), field-programmable gate array (FPGA), de-noising

    0 Introduction

    The performance of sampling devices, signal transmission channels, and other factors may cause noise to be added to video images in video surveillance systems. The addition of noise degrades the display quality of the images and affects subsequent analytical processing. As such, the ability to remove noise in real-time is critical to enhancing video quality. With the continuous developments of high definition (HD) signal processing technology, quantities of video data, as well as types of video sources, are increasing. Different signal sources vary in their video formats, which lead to different output resolutions from decoder chips and different pixel clock frequencies. Therefore, video surveillance systems require real-time processing with frame rate conversion for multiple signal source formats.

    Presently, there are 3 types of hardware platforms for implementing real-time video de-noising: (1) application specific integrated circuit (ASIC) platforms, (2) digital signal processor (DSP) platforms, and (3) field-programmable gate array (FPGA) platforms. The ASIC platform has a high operating frequency and strong real-time processing ability; however, it requires a longer design cycle and lacks flexibility in online programming. Due to the limitation of instruction execution of the DSP core processing structure and the main frequency, the DSP-based system is deficient in processing HD-video in real-time as it takes a long time to deal with large amounts of image data. The FPGA-based implementation can be programmed online, processed in parallel, and achieve real-time performance and low-power consumption, which is an improvement over both the DSP and ASIC systems[1]. As such, the FPGA systems have garnered more attention and research.

    For instance, Katona, et al.[2]presented a real-time implementation of wavelet video de-noising by using 2 FPGA chips operated alternately in order to realize wavelet decomposition and reconstruction. By utilizing a ping-pong storage method and an operating mechanism based on FPGA, Ma[3]attained a processing result of 640×480 at 25fps. Ji, et al.[4]presented a real-time implementation of wavelet image processing using the Altera Stratix II series FPGA, which was able to process numerous image data in parallel, and achieve a processing effect of 320×240 at 50fps. Ning, et al.[5]implemented a dynamic random-access memory (RAM) structure inside an FPGA device for a 5/3 lifting wavelet, which was suitable for pre-processing, de-noising, and compression transmission for static images. Tang, et al.[6]presented an improved system using the Altera Stratix II FPGA based on paralleled row processing, which realized the 3-level 2-dimensional (2-D) 9/7 integer wavelet transformations for 1024×1024 at 100fps gray images under the operating clock frequency of 86.5MHz. Guo, et al.[7]presented a high performance and low memory discrete wavelet transformation (DWT) structure in JPEG2000, which was verified on a Xilinx FPGA platform. Its operating clock frequency reached 150MHz for 512×512 images and for wavelet decomposition. Wang, et al.[8]proposed a real-time system with 2-D lifting integer wavelet transformations using a very large scale integration (VLSI) structure based on row processing for satellite image encoding. The system was tested on a Xilinx FPGA platform and its highest operating frequency was above 115MHz. Finally, Wang, et al.[9]used a flipping structure and normalization steps in row and column DWT and rearranged data using a multiplexer in order to realize a 2-D 9/7 lifting wavelet VLSI structure in JPEG2000, with simulation frequency of up to 136MHz based on the FPGA.

    The research for real-time video processing systems based on the FPGA platforms focuses on 2 areas: the first area is concerned with reducing hardware resource overhead in order to improve resource utilization efficiency. The second area is concerned with shortening the time delay of critical paths in order to improve the system’s operating speed. Liao, et al.[10]proposed a recursive algorithm which used the interdependencies between the wavelet coefficients by interleaving in order to calculate the higher level’s wavelet coefficients in the same data path in alternating clock cycles. The algorithm improved hardware utilization, but it caused high complexity in processing timing control, and more intermediate storage registers. Using the similarities between prediction and updating functions, Wu, et al.[11]merged the 2 steps together in order to increase operating frequency and reduce the consumption of the hardware resources. Shi, et al.[12]decomposed the serial operations of the lifting steps into many small steps, which shortened critical paths and lessened register consumption by using the correlation between the steps to re-arrange the calculation. Wu[13]proposed a 1-dimensional (1-D) multi-level pipeline architecture for a 9/7 lifting wavelet structure in order to shorten the time delay of critical paths; however, the method consumed too many registers. By using the abundant on-chip memories, ping-pong scheme, and serial pipeline, Chen, et al.[14]implemented a 5/3 lifting wavelet transformation which significantly reduced the number of registers in a 512×512 image. Todkar, et al.[15]proposed a pipelining and flipping structure with the overlapped strip based on scanning and calculation of the intermediate coefficients in order to shorten the time delay of critical paths.

    In actual applications of video surveillance systems, consideration must be given to both delay of critical paths and hardware resources. In accordance with these requirements, a real-time 5/3 lifting wavelet HD-video de-noising system based on an FPGA is proposed which supports frame rate conversion (FRC), and realizes real-time de-noising for 1920×1080 at 60fps in HD-video for display.

    1 System hardware framework

    Altera Company’s Stratix III EP3SE80 series FPGA is based on 65nm processing technology, and is characterized by rich logic resources, the ability to support DDR2/DDR3 high-speed storage devices, high performance, and low-power consumption. Based on this FPGA hardware platform, this study proposes a real-time 5/3 lifting wavelet HD-video de-noising system with a frame rate conversion structure shown in Fig.1. The system contains the following components: a 3-level 5/3 lifting wavelet transformation, adaptive threshold filtering, a paralleled lifting wavelet reconstruction (also called wavelet inverse transformation), a frame buffer interface control module for frame rate conversion, and a memeory control module.

    Fig.1 The block diagram of the proposed 5/3 lifting wavelet HD-video de-noising system

    A 5/3 lifting wavelet transformation with a 3-level pipeline paralleled structure is selected to reduce serial computation and achieve real-time processing, and an adaptive threshold filtering is selected to remove noise. Generally, there are different signal source formats with different frame rates and pixel clock frequencies; however the display resolution of the display terminal remains fixed. Therefore, frame rate conversion is needed between the input and output terminals. When the output frame rate is lower than that of input, a corresponding number of frames need to be extracted between the input frames to achieve the required frame rate. Similarly, when the output frame rate is higher than the input frame rate, a corresponding number of frames need to be added to the input frames to achieve the required frame rate.

    The implementation of frame rate conversion is shown in Fig.2 and contains the following parts:

    (1) Synchronization processing for the input signals of HS_i (Horizontal Synchronous Signal), VS_i (Vertical Synchronous Signal), DE_i (Image Enable Signal), and PCLK_i (Pixel Clock Signal) to the corresponding output signals.

    (2) A frame buffer part for input data. The frame buffer part needs to buffer at least 3 frames through the external DDR2 SDRAM memory.

    (3) A logic control part for frame rate conversion. The logic control part buffers the reading and writing operations, and achieves frame rate conversion for output.

    As mentioned above, the input and output signals may be asynchronous. The frame rate of the input signal can be greater than, equal to, or less than the frame rate of the output signal. Therefore, a frame buffer interface control module is designed in order to facilitate basic frame rate conversion processing. The reading and writing operation pointers’ control for frame rate conversion must meet the following rules: first, the faster frame pointer should wait for the slower frame pointer; second, the slower frame pointer needs to circulate freely; third, the current writing frame pointer is always the one previous to the current reading frame.

    Fig.2 The module implementation for frame rate conversion

    For a 1080p60 HD-video signal, the frame rate is 60fps, and each frame contains 1920×1080 pixels. The processing time for each pixel should be no more than 8ns. Considering the blanking region of the video images, actual processing time for each pixel should be no more than 6.7ns. Therefore, the minimum operating frequency for HD-video processing should be 148.5MHz.

    In order to achieve real-time wavelet domain de-noising for HD-video of 1920×1080 24bits, at 60fps, 2 writing and 2 reading operations on DDR2 are needed. The required maximum throughput of DDR2 for HD-video of 1920×1080p60 is about 11.94Gbps. Assuming the access efficiency of 32-bit DDR2 is 80% and the clock frequency is 333MHz, the required bandwidth will be about 17.05Gbps, which is much larger than the required bandwidth of 11.94Gbps. Therefore, it meets the bandwidth requirement for real-time processing.

    As such, the proposed system, which uses a DDR2 with a clock frequency of 333MHz, meets the clock frequency requirement for HD-video processing in real-time.

    2 Implementations of key modules

    2.1 Implementation of 1-D 5/3 lifting wavelet transformation

    There are 2 kinds of wavelet transformations. The first one is the traditional wavelet transformation. The second one is the lifting wavelet transformation, where traditional wavelet transformation is based on the Fourier transformation, which utilizes very complex calculations. Importantly, the lifting wavelet transformation does not rely on the Fourier transformation; instead, it constructs the wavelet in the time domain and realizes integer to integer wavelet transformation. Moreover, the lifting wavelet transformation has the following advantages: high transformation speed; easy to be used in digital hardware circuits; and saving storage space for signal processing. Furthermore, the splitting structure before operating ensures that there are no redundant computations. Finally, wavelet reconstruction using the lifting wavelet transformation method can be obtained easily, which effectively reduces the power consumption of the entire system.

    Generally, the lifting wavelet transformation is divided into 3 steps:

    Step 1: Splitting. Divide the input sequencex(n)intoanoddsequencea(k)andanevensequenceb(k),whichcanbeexpressedby

    a(k)=x(2n-1)

    (1)

    b(k)=x(2n)

    (2)

    Step2:Predicting.ConstructpredictionoperatorPandusepredictivevalueP(b(k))ofevensequenceb(k)topredicttheoddsequenceinordertoobtainhighfrequencyinformation,asshownby

    c(k)=a(k)-P(b(k))

    (3)

    Step3:Updating.ConstructupdateoperatorUandupdatetheevensequencebyusingthepredictivehighfrequencyinformationtogetthelowfrequencyinformation,asshownbyEq.(4).

    d(k)=b(k)+U(c(k))

    (4)

    ThespecificimplementationprocessfortheliftingwavelettransformationisshowninFig.3.

    Fig.3 The lifting wavelet transformation process

    The wavelet reconstruction is the inverse process of the lifting wavelet transformation. The process only needs to reverse the processing sequence, and change the operation sign of each step, as shown in Fig.4.

    Fig.4 The lifting wavelet reconstruction process

    In digital signal processing, the 5/3 integer lifting wavelet transformation is characterized by low computation. It is especially suitable for image compression and de-noising because the resources are limited but high processing speed is still required[16]. The equations for 5/3 integer lifting wavelet transformations are expressed as follows[17]:

    (5)

    (6)

    Thesymbol?·」denotestheroundingoperation.x(2n+1)andx(2n)denotetheinputofoddandevensequences,respectively.y(2n+1)andy(2n)denotethehighandlowfrequencycoefficientsafterwaveletdecomposition.

    Theformulasfor5/3liftingwaveletreconstructioncanbeexpressedas

    (7)

    (8)

    Thedirectimplementationstructureofthe1-D5/3DWTispresentedinFig.5.

    Fig.5 The block scheme of the 5/3 direct DWT: whereα=-1/2,β=1/4, and R denotes the register

    After a thorough analysis of hardware implementations among direct structures, merged structures[11], and flipping structures, a folding and pipeline technique is adopted to best implement the 5/3 lifting wavelet transformation, as shown in Fig.6, where 1 and 0 in the selectors denote the odd and even inputs, respectively. In this structure, the predicting and updating steps use the folding and reuse method which uses 1 multiplexer, 2 adders, and 7 registers to implement the 5/3 lifting wavelet transformation. The processing time for critical paths can be assumed by the calculation time of the multiplexer (Tm) to protect the critical delay parameters and save registers. Therefore, a better hardware processing performance can be attained. Table 1 depicts comparisons of the hardware performance of various types of 1-D 5/3 DWT.

    Fig.6 The folding and pipeline structure for 1-D 5/3 DWT

    StructuretypeArithmeticresourcesMultiplicationAdditionNumberofregistersCriticalpathsControlcomplexityDirectstructure2417TmsimpleMergedstructure[11]1210TmcomplexFlippingstructure248TmcomplexStructureinRef.[12]249Tm+TanormalProposedstructure127Tmnormal

    2.2 Implementation of 2-D 5/3 lifting wavelet transformation

    The 2-D lifting wavelet transformation decomposes an image into 4 sub-bands: a low frequency sub-band (LL), a row high frequency sub-band (HL), a column high frequency sub-band (LH), and a high frequency sub-band (HH). As shown in Fig.7, the implementation of the 2-D wavelet transformation generally requires row transformation, column transformation, row buffer, and the corresponding control module. When a number of row input image data complete row transformation, the buffer data in the row buffer meet the requirement for column transformation based on pipeline processing. The column transformation begins when the data stream is fully established in order to obtain the wavelet coefficients of the LL, HL, LH, and HH sub-bands. In the processing structure detailed above, the required transformation processing can be completed in a very short time delay using several rows of data processing, which improves the ability for real-time data processing.

    Fig.7 The implementation of 2-D wavelet transformation

    In this study, a 3-level wavelet decomposition method is adopted based on the single level 2-D wavelet transformation mentioned above. This method utilizes a 3-level pipeline structure processing in parallel to guarantee completion of the 3-level wavelet transformation within a specific frame period to achieve real-time processing. The pipeline block scheme of the 3-level 5/3 2-D DWT is shown in Fig.8.

    Fig.8 The pipeline block scheme of the 3-level 5/3 2-D DWT

    2.3 Implementation of adaptive threshold filtering

    The vast majority of signal energy is gathered from a small number of low frequency coefficients, while noise, textures, and edges are scattered on the high frequency coefficients in the wavelet domain of an image. Thus, it is reasonable to set an appropriate threshold in order to remove noise but maintain details effectively. The commonly used processing strategies for thresholds are hard thresholds, soft thresholds, and semi-soft thresholds[18]. The BayesShrink threshold method is an adaptive one combining with the image distribution characteristics of the wavelet domain[19]. Signal intensity is estimated by the average energy of the wavelet sub-band coefficients, after which the threshold is selected adaptively by energy comparison. This method has been widely used in image de-noising.

    Fig.9 presents the de-noising results by spatial mean filtering and the wavelet BayesShrink threshold, respectively. The image with noise is obtained by adding Gaussian noise with a variance of σ=20 to the original image. From the values of peak signal to noise rate (PSNR) of the processed images, it can be concluded that the wavelet BayesShrink threshold de-noising method has a better performance than the spatial mean filtering method in noise removal and details and edge protection.

    Fig.9 Comparisons of image de-noising results: (a) The collected image; (b) The noised image (PSNR= 22.1162dB); (c) Results by spatial mean filtering (PSNR=22.323dB); (d) Results by wavelet BayesShrink de-noising (PSNR= 27.8627dB)

    Threshold computing and shrinkage are merged in the wavelet transformation and reconstruction processes, then the hardware implementation model is established which reduces memory bandwidth consumption and processing time compared to serial processing. It also effectively improves real-time performance, as shown in Fig.10.

    Fig.10 The block scheme of computing the wavelet domain image de-noising threshold

    The wavelet threshold de-noising module can be divided into 4 components: the noisy signal energy calculation, the noise variance estimation, the threshold calculation, and coefficient threshold processing. In order to attain quick hardware implementation, the noise variance constant 0.6745 can be transformed into X/0.6745=X·(1+2^(-1)-2^(-6)). By using a shift-and-add calculation such as “X+(X>>1)-(X>>6)”, the consumption resources can be reduced for division. In noise variance estimation, calculations of the median value of the HH sub-band coefficients are implemented via RAM structure. Based on the statistic method for RAM calculation with a storage depth of 256, absolute values of the HH coefficients (ranging from 0 to 255) are mapped linearly to the addresses of the configured memory. Each address stores the number of coefficients of the corresponding high frequency sub-band. The value of the address mapped to the high frequency is added to the coefficients in the HH sub-band when it is traversed. After data traversing, the data in RAM is added together in ascending order. When the accumulation value arrives at the median of the total number, the corresponding address is deemed the median value of the HH sub-band coefficient. This method avoids the complex sorting and comparison process, and the traversing statistic process can be completed in the coefficient storage step of wavelet decomposition. Moreover, it has the advantage of not adding extra time overhead, which makes it ideal for the high speed and real-time implementation of an FPGA device.

    2.4 Real-time implementation of 5/3 lifting wavelet reconstruction

    The direct level-by-level implementation method for wavelet reconstruction is simple to control and requires minimum resource consumption. However, the number of periods required for the entire 3-level reconstruction is N/16+N/4+N, where N denotes the total pixels of an image. The reconstruction periods increase as N becomes larger. For an image in a 1080P HD-video, N will be more than 2 million pixels, which is difficult for real-time processing. As such, an adaptive paralleled reconstruction structure is utilized for real-time processing, as shown in Fig.11. In order to ensure that the reconstruction is completed within a specified frame period, a pipeline operation is set up (which keeps the correct order for each level’s reconstruction). Furthermore, a reading and writing strategy for the DDR2 controller is established to prevent interruption from the reconstructed data source.

    Fig.11 The block scheme of paralleled wavelet reconstruction

    In order to meet the requirements described above, and in consideration of the reading and writing characteristics of the external DDR2, as well as the time sequence of the paralleled structures for wavelet domain reconstruction (shown in Fig.12), this study proposes a 3-level folding and paralleled wavelet reconstruction structure based on an FPGA. First, the third level wavelet reconstruction applies for reading wavelet data from the DDR2 SDRAM through the frame buffer control interface using Data Enable3 (which means the data signal is enabled, valid, and at a high level). Next, the second level reconstruction obtains the LL2 from the third level reconstruction and applies for reading data from DDR2 SDRAM through the frame buffer control interface using Data Enable2’ (which means the DDR2 interface cache applied to is enabled, valid, and at a high level). The first level reconstruction can be done in the same way. The proposed method reconstructs 1 frame within 1 frame period, which significantly shortens reconstruction delay compared to the implementation method for reconstruction proposed by Zhong.[20](which was based on a double-path paralleled multi-level structure that required 1.8125 frame periods to reconstruct one frame).

    Fig.12 The time sequence of the 3-level paralleled wavelet reconstruction

    3 Test results

    The Altera Company’s Stratix III EP3SE80 series FPGA platform is chosen in order to test the effectiveness and real-time performance of the proposed de-noising system. In this experiment platform, the input video sources are used from DVI signals with 3 different formats: 1920×1080 at 60Hz, 1280×1024 at 60Hz, and 1024×768 at 60Hz. After acquisition and de-noising process, the 3 video signal outputs are 1920×1080 at 60Hz DVI signals for display.

    Afterwards, Quartus 13.1 is used to compile and synthesize the design codes. The synthesis report is presented in Table 2. As shown in Table 2, the system meets the resource requirements, and the highest operating frequency reaches 178MHz (which is higher than the minimum frequency of 148.5MHz required for 1080p60 HD-video).

    Table 2 System synthesis report

    For actual video applications in video surveillance, the proposed system is able to stably output clear images, and realize dynamic real-time HD-video de-noising.

    4 Conclusion

    A hardware implementation for real-time HD-video de-noising based on an FPGA from the Altera Company’s Stratix III EP3SE80 series device is presented. The system utilizes a 5/3 lifting wavelet de-noising technique and supports frame rate conversion for HD-video, and a frame rate conversion structure, a 3-level paralleled and pipeline structure, a 1-D folding and pipeline structure, and adaptive threshold filtering. Moreover, the system maintains a balance between low resource consumption and high operational efficiency. The system synthesis results show that the operating frequency is able to reach 178MHz, which meets the minimum frequency requirement of 148.5MHz, allowing for real-time de-noising for 1080p60 HD-videos. Furthermore, the implementation system has been successfully applied to an agricultural surveillance system, and meets not only the needs of a variety of input signal sources but also better deals with noise caused by the front-end of the video surveillance.

    [ 1] Shirvaikar M, Bushnaq T. A Comparison between DSP and FPGA platforms for real-time imaging applications. http://spie.org/: SPIE-IS&T, 2009, 7244:724406-1-724406-10

    [ 2] Katona M, Pizurica A, Teslic N, et al. A real-time wavelet-domain video de-noising implementation in FPGA.EurasipJournalonEmbeddedSystems, 2006. 1-12

    [ 3] Ma X Q. The study and design of real time image collection and de-noising system based on FPGA: [M.S dissertation]. Changchun: College of Communication Engineering, Jilin University, 2006. 26-41

    [ 4] Ji Y S, Guo C Z, Fan L L, et al. Real time image processing method of wavelet based on FPGA.Laser&Infrared, 2009, 39(10): 1112-1114

    [ 5] Ning Y H, Guo Y F, Ma T B, et al. Architecture design of 5/3 lifting wavelet in FPGA with dynamic RAMs and its applications.ChineseJournalofLiquidCrystalsandDisplays, 2013, 28(6): 927-932

    [ 6] Tang Y, Cao J Z, Liu B, et al. FPGA design of wavelet transform in spatial aircraft image compression.ComputerScience, 2010, 37(9): 261-263

    [ 7] Guo J, Wu C K, Li Y S, et al. High-performance and low-memory architecture of wavelet transform for JPEG2000.JournalofSouthChinaUniversityofTechnology(NaturalScienceEdition), 2009, 37(5): 38-42

    [ 8] Wang K Y, Liu K, Guo J, et al. A line-based, real-time VLSI architecture for 2D lifting integer-to-integer wavelet transform.JournalofCircuitsandSystems, 2010, 15(2): 122-127 (In Chinese)

    [ 9] Wang J X, Zhu E. A high-throughput VLSI design for JPEG2000 9 /7 discrete wavelet transform.JournalofSoutheastUniversity(EnglishEdition) , 2015, 31(1): 19-24

    [10] Liao H Y. Efficient architectures for 1-D and 2-D lifting-based wavelet transform.IEEETransactionsonSignalProcessing, 2004, 52(5): 1315-1326

    [11] Wu B F, Lin C F. A high-performance and memory-efficient pipeline architectures for the 5/3 and 9/7 discrete wavelet transform of JPEG2000 codec.IEEETransCircuitsSystVideoTechnology, 2005, 15(12): 1615-1628

    [12] Shi G M, Liu W F, Zhang L, Li F. An efficient folded architecture for lifting-based discrete wavelet transform.IEEETransactionsonCircuitsandSystemsII:ExpressBriefs, 2009, 56(4): 290-294

    [13] Wu Z G. Pipelined architecture for FPGA implementation of lifting-based DWT. In: Proceedings of the International Conference on Electric Information and Control Engineering, Wuhan, China, 2011. 1535-1538

    [14] Chen Z L, Jin L X, Tao H J, et al. Optimization algorithm of 5/3 lifting wavelet based on FPGA.VideoEngineering, 2015, 39(11): 113-116

    [15] Todkar S, Shastry P V S. Flipping based high performance pipelined VLSI architecture for 2-D discrete wavelet transform. In: Proceedings of the 2015 International Conference on Applied and Theoretical Computing and Communication Technology, Karnataka, India, 2015. 832-836

    [16] Wen L H, Xie J, Wang G X. Design and implementation for 2-D IWT using parallel computing units.Microelectronics&Computer, 2013, 30(7): 47-50

    [17] Daubechies I, Sweldens W. Factoring wavelet transforms into lifting steps.JournalofFourierAnalysis&Applications, 1998, 4(3): 247-269

    [18] Chang S G, Yu B, Vetterli M. Adaptive wavelet thresholding for image de-noising and compression.IEEETransactionsonImageProcessing, 2000, 9(9): 1532-1546

    [19] Moulin P, Liu J. Analysis of multi-resolution image de-noising schemes using generalized Gaussian and complexity Priors.IEEETransactionsInformationTheory, 1999, 45(3): 909-919

    [20] Zhong Y D. A design of the core module of high-speed satellite image decoding system based on wavelet transform: [M.S degree dissertation]. Xi’an: School of Mechanic-Electronic Engineering, Xidian University, 2009. 23-27

    10.3772/j.issn.1006-6748.2017.02.014

    ①Supported by the Spark Program of China (No. 2013GA780007) ,and Key Scientific Research Project of Guandong Agriculture Industry Business Polytechnic(No. xyzd1604).

    ②To whom correspondence should be addressed. E-mail: qjhuang@gdaib.edu.cn

    on Apr. 22, 2016

    ojie, born in 1981. She received her B.S. and M.S. degrees from South China University of Technology in 2005 and 2008 respectively. Her research interests include digital image processing and computer communications.

    欧美色欧美亚洲另类二区| 精品一区二区三区av网在线观看| 国产精品98久久久久久宅男小说| 啦啦啦免费观看视频1| 视频区欧美日本亚洲| 久久性视频一级片| 午夜成年电影在线免费观看| 久久久久国产精品人妻aⅴ院| 亚洲 国产 在线| 欧美黑人欧美精品刺激| 免费看十八禁软件| 国产片内射在线| 又黄又爽又免费观看的视频| 精华霜和精华液先用哪个| 国产精品九九99| 91国产中文字幕| 色尼玛亚洲综合影院| av电影中文网址| 精品电影一区二区在线| 一进一出好大好爽视频| 中国美女看黄片| 成年女人毛片免费观看观看9| 亚洲中文日韩欧美视频| 伊人久久大香线蕉亚洲五| 亚洲精品色激情综合| 麻豆av在线久日| 性欧美人与动物交配| 韩国av一区二区三区四区| 999久久久国产精品视频| 日本精品一区二区三区蜜桃| 久9热在线精品视频| 91大片在线观看| 不卡av一区二区三区| www.自偷自拍.com| 丝袜美腿诱惑在线| 久久草成人影院| av电影中文网址| 国产野战对白在线观看| 狠狠狠狠99中文字幕| 桃色一区二区三区在线观看| 级片在线观看| 久久国产精品人妻蜜桃| 日本a在线网址| 91国产中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 精品国产国语对白av| 久久精品91蜜桃| 久久精品夜夜夜夜夜久久蜜豆 | 欧美乱色亚洲激情| 亚洲专区国产一区二区| 久久久久久九九精品二区国产 | 亚洲人成77777在线视频| 国产成人影院久久av| 国产欧美日韩一区二区精品| 亚洲精品国产一区二区精华液| 看片在线看免费视频| 国产精品乱码一区二三区的特点| 18禁观看日本| 久久精品国产清高在天天线| 欧美成人性av电影在线观看| 99精品久久久久人妻精品| 丰满人妻熟妇乱又伦精品不卡| 国产精品亚洲美女久久久| 少妇 在线观看| 久久欧美精品欧美久久欧美| 免费在线观看完整版高清| 亚洲aⅴ乱码一区二区在线播放 | 亚洲人成电影免费在线| 欧美性猛交黑人性爽| www.999成人在线观看| 精品国产乱码久久久久久男人| 在线观看午夜福利视频| 免费在线观看成人毛片| svipshipincom国产片| 免费一级毛片在线播放高清视频| 757午夜福利合集在线观看| 欧美日韩黄片免| 波多野结衣av一区二区av| 日韩欧美三级三区| www.www免费av| 国产人伦9x9x在线观看| 一区二区三区高清视频在线| 欧美性猛交╳xxx乱大交人| 99久久精品国产亚洲精品| 国产亚洲精品av在线| 亚洲专区中文字幕在线| 日韩欧美一区二区三区在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 欧美性长视频在线观看| 欧美性长视频在线观看| 麻豆久久精品国产亚洲av| 国产成人系列免费观看| 亚洲国产欧洲综合997久久, | 色av中文字幕| 亚洲欧洲精品一区二区精品久久久| 男男h啪啪无遮挡| 国产视频一区二区在线看| 精华霜和精华液先用哪个| 国产一区二区在线av高清观看| 午夜免费激情av| 亚洲人成网站高清观看| 国产成人欧美| 国产精品日韩av在线免费观看| 日本撒尿小便嘘嘘汇集6| 一本综合久久免费| 国产精品久久久人人做人人爽| 在线观看午夜福利视频| 99久久99久久久精品蜜桃| 91成人精品电影| 搡老妇女老女人老熟妇| 男女那种视频在线观看| 男人舔奶头视频| 叶爱在线成人免费视频播放| 欧美日韩亚洲国产一区二区在线观看| 黑人巨大精品欧美一区二区mp4| 国产成年人精品一区二区| 可以在线观看的亚洲视频| 亚洲av片天天在线观看| 在线观看一区二区三区| 久久九九热精品免费| 久久青草综合色| 日韩欧美国产一区二区入口| 色精品久久人妻99蜜桃| 免费在线观看日本一区| 久久国产精品男人的天堂亚洲| 亚洲黑人精品在线| 级片在线观看| 此物有八面人人有两片| 18美女黄网站色大片免费观看| 久久热在线av| 人人妻人人澡欧美一区二区| 日韩高清综合在线| 脱女人内裤的视频| videosex国产| 亚洲第一欧美日韩一区二区三区| 日韩中文字幕欧美一区二区| 成在线人永久免费视频| 国产精品永久免费网站| 久久久久亚洲av毛片大全| 日日干狠狠操夜夜爽| svipshipincom国产片| 一区二区三区激情视频| 久久久精品欧美日韩精品| 成年女人毛片免费观看观看9| 黄色成人免费大全| 十八禁网站免费在线| 在线观看免费午夜福利视频| 国产免费男女视频| 一进一出好大好爽视频| 人人妻人人澡人人看| 中文字幕精品免费在线观看视频| 岛国视频午夜一区免费看| 最近在线观看免费完整版| 国产1区2区3区精品| 无遮挡黄片免费观看| 99久久无色码亚洲精品果冻| www.熟女人妻精品国产| www日本在线高清视频| 91成人精品电影| 国产精品爽爽va在线观看网站 | 国产1区2区3区精品| 在线观看www视频免费| 日韩欧美一区二区三区在线观看| 欧美色视频一区免费| 9191精品国产免费久久| 国产欧美日韩一区二区三| 欧美色视频一区免费| 亚洲一区二区三区不卡视频| 午夜福利一区二区在线看| 香蕉国产在线看| 色播在线永久视频| 精品国产一区二区三区四区第35| 国产精华一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 国产精品久久久久久精品电影 | 国产又色又爽无遮挡免费看| 美女 人体艺术 gogo| 天天一区二区日本电影三级| 国产精品一区二区三区四区久久 | 好男人电影高清在线观看| 一夜夜www| 久久国产精品人妻蜜桃| 国产亚洲精品第一综合不卡| 久久久国产成人免费| 国产成+人综合+亚洲专区| 91麻豆精品激情在线观看国产| 中文字幕人妻熟女乱码| 国产亚洲av高清不卡| 精品久久久久久久毛片微露脸| 欧美另类亚洲清纯唯美| 人人妻,人人澡人人爽秒播| 一个人观看的视频www高清免费观看 | av在线播放免费不卡| 亚洲色图 男人天堂 中文字幕| 9191精品国产免费久久| 亚洲,欧美精品.| 97超级碰碰碰精品色视频在线观看| 又紧又爽又黄一区二区| 久久中文字幕人妻熟女| 啦啦啦观看免费观看视频高清| 精品久久久久久,| 成人手机av| 搡老熟女国产l中国老女人| 亚洲激情在线av| 久久久精品国产亚洲av高清涩受| 亚洲精品在线美女| 啪啪无遮挡十八禁网站| 黑人操中国人逼视频| 国产蜜桃级精品一区二区三区| 在线观看免费午夜福利视频| 一区二区三区激情视频| 母亲3免费完整高清在线观看| 啦啦啦韩国在线观看视频| 国产真人三级小视频在线观看| 成年人黄色毛片网站| 日本熟妇午夜| 亚洲精品美女久久久久99蜜臀| 女人被狂操c到高潮| 黑人巨大精品欧美一区二区mp4| 听说在线观看完整版免费高清| 欧美国产日韩亚洲一区| 人人妻人人澡欧美一区二区| 国产真实乱freesex| 女性被躁到高潮视频| www.999成人在线观看| 色综合欧美亚洲国产小说| 在线观看免费视频日本深夜| 91麻豆精品激情在线观看国产| 桃红色精品国产亚洲av| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av片天天在线观看| 韩国精品一区二区三区| 午夜福利免费观看在线| 免费在线观看黄色视频的| 免费观看精品视频网站| 又紧又爽又黄一区二区| 欧美在线黄色| 香蕉丝袜av| 亚洲免费av在线视频| 搡老熟女国产l中国老女人| 午夜福利在线在线| 午夜亚洲福利在线播放| 老司机午夜福利在线观看视频| 欧美激情久久久久久爽电影| 日本 av在线| 日本 欧美在线| 成人亚洲精品av一区二区| 日本免费一区二区三区高清不卡| 成年人黄色毛片网站| 日韩精品中文字幕看吧| 久久中文字幕人妻熟女| 男男h啪啪无遮挡| 亚洲成人国产一区在线观看| 亚洲avbb在线观看| 无遮挡黄片免费观看| 一级作爱视频免费观看| 一区二区三区激情视频| 视频在线观看一区二区三区| 亚洲国产精品合色在线| 极品教师在线免费播放| 亚洲av片天天在线观看| 国产亚洲欧美在线一区二区| 91老司机精品| 精品乱码久久久久久99久播| 国产av一区在线观看免费| 午夜影院日韩av| 久久香蕉激情| 精品国产亚洲在线| 老鸭窝网址在线观看| 亚洲国产欧美网| 91麻豆精品激情在线观看国产| 久久久久国产一级毛片高清牌| 国产精品综合久久久久久久免费| 91国产中文字幕| 欧美不卡视频在线免费观看 | 99久久国产精品久久久| 国产爱豆传媒在线观看 | 欧美一级a爱片免费观看看 | 麻豆国产av国片精品| 国语自产精品视频在线第100页| 国产精品av久久久久免费| 18禁国产床啪视频网站| 中文字幕精品免费在线观看视频| 成在线人永久免费视频| 色播在线永久视频| 90打野战视频偷拍视频| 日日爽夜夜爽网站| 中文字幕人妻丝袜一区二区| 天堂影院成人在线观看| 在线永久观看黄色视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲真实伦在线观看| 这个男人来自地球电影免费观看| 777久久人妻少妇嫩草av网站| 免费观看人在逋| 中文字幕av电影在线播放| 亚洲激情在线av| 一卡2卡三卡四卡精品乱码亚洲| 亚洲真实伦在线观看| 欧美日韩一级在线毛片| 成人av一区二区三区在线看| 欧美成人一区二区免费高清观看 | 波多野结衣巨乳人妻| 日本精品一区二区三区蜜桃| 人人澡人人妻人| 精品国产美女av久久久久小说| 免费看日本二区| 一区二区三区高清视频在线| 两性夫妻黄色片| 国产精品98久久久久久宅男小说| 国产精品 国内视频| 国产精品乱码一区二三区的特点| 亚洲av第一区精品v没综合| 欧美日本视频| 久久久精品欧美日韩精品| 成人欧美大片| 亚洲熟妇中文字幕五十中出| 亚洲成a人片在线一区二区| 免费无遮挡裸体视频| 国产精品免费一区二区三区在线| 日日夜夜操网爽| 精品久久久久久,| 一区二区三区精品91| 无限看片的www在线观看| 国产在线观看jvid| 可以在线观看的亚洲视频| 欧美激情久久久久久爽电影| 亚洲av成人av| 亚洲成国产人片在线观看| 在线观看免费视频日本深夜| or卡值多少钱| 国产精品永久免费网站| 97碰自拍视频| 麻豆av在线久日| 在线观看舔阴道视频| 黄片小视频在线播放| 精品无人区乱码1区二区| 欧美日韩精品网址| 黄色视频不卡| 美女 人体艺术 gogo| 婷婷精品国产亚洲av| 久久香蕉国产精品| www.精华液| 自线自在国产av| 人成视频在线观看免费观看| 中文字幕av电影在线播放| 国产不卡一卡二| 中文字幕精品亚洲无线码一区 | 不卡av一区二区三区| 日韩欧美三级三区| aaaaa片日本免费| 欧美精品亚洲一区二区| 亚洲国产欧洲综合997久久, | 少妇粗大呻吟视频| 国产黄色小视频在线观看| 国产成人av激情在线播放| 人人妻,人人澡人人爽秒播| 日韩高清综合在线| 久久精品国产综合久久久| 国产欧美日韩一区二区三| 亚洲欧美激情综合另类| 黑人巨大精品欧美一区二区mp4| 一个人免费在线观看的高清视频| 制服人妻中文乱码| 午夜福利在线在线| 91国产中文字幕| 不卡av一区二区三区| 制服丝袜大香蕉在线| 韩国av一区二区三区四区| 国产精品精品国产色婷婷| 精品卡一卡二卡四卡免费| 露出奶头的视频| 成人精品一区二区免费| 国内毛片毛片毛片毛片毛片| 久久久久国产精品人妻aⅴ院| 国产成人精品无人区| 日本熟妇午夜| 男女视频在线观看网站免费 | 91麻豆精品激情在线观看国产| 中文在线观看免费www的网站 | 后天国语完整版免费观看| 丝袜在线中文字幕| 老鸭窝网址在线观看| 国产亚洲精品av在线| 亚洲成人国产一区在线观看| 美女 人体艺术 gogo| 免费无遮挡裸体视频| 一个人免费在线观看的高清视频| 国产伦一二天堂av在线观看| 久久久久久久精品吃奶| 亚洲精品一卡2卡三卡4卡5卡| 国产精品久久视频播放| 久久久久久免费高清国产稀缺| 香蕉国产在线看| 日韩欧美 国产精品| 国产极品粉嫩免费观看在线| 婷婷精品国产亚洲av在线| 桃色一区二区三区在线观看| 美女午夜性视频免费| www.精华液| 国产又色又爽无遮挡免费看| 国产视频内射| 欧美亚洲日本最大视频资源| 国产黄色小视频在线观看| 欧美日本视频| 亚洲av美国av| 色综合欧美亚洲国产小说| 女人高潮潮喷娇喘18禁视频| 十八禁人妻一区二区| 老熟妇乱子伦视频在线观看| 长腿黑丝高跟| 可以免费在线观看a视频的电影网站| 午夜影院日韩av| 久久久久国产一级毛片高清牌| 国产精品香港三级国产av潘金莲| www.熟女人妻精品国产| www.999成人在线观看| 亚洲精品av麻豆狂野| av有码第一页| 国产免费男女视频| 久久精品91无色码中文字幕| 老汉色∧v一级毛片| 久久香蕉激情| 91成人精品电影| 色综合欧美亚洲国产小说| 午夜福利一区二区在线看| 欧美久久黑人一区二区| 亚洲av日韩精品久久久久久密| 欧美乱码精品一区二区三区| 色播亚洲综合网| 国产精品免费视频内射| 99在线视频只有这里精品首页| 韩国精品一区二区三区| 欧美成人免费av一区二区三区| 久久婷婷人人爽人人干人人爱| 九色国产91popny在线| 黄色视频不卡| 国产免费男女视频| 亚洲精品久久国产高清桃花| 国产爱豆传媒在线观看 | 国产亚洲精品综合一区在线观看 | 成人亚洲精品av一区二区| 国产精品久久久久久精品电影 | 国产视频一区二区在线看| 在线观看午夜福利视频| 欧美一区二区精品小视频在线| 99久久精品国产亚洲精品| 日韩 欧美 亚洲 中文字幕| 国产av一区在线观看免费| 99精品欧美一区二区三区四区| 免费在线观看日本一区| 香蕉丝袜av| av免费在线观看网站| 一区二区三区精品91| 亚洲专区中文字幕在线| 婷婷丁香在线五月| 欧美午夜高清在线| 亚洲 欧美一区二区三区| 欧美性猛交╳xxx乱大交人| 美女国产高潮福利片在线看| 1024视频免费在线观看| 国产成人欧美| 国产麻豆成人av免费视频| 国产亚洲精品第一综合不卡| 国产精品久久电影中文字幕| 深夜精品福利| 人人妻人人看人人澡| av视频在线观看入口| 亚洲五月色婷婷综合| 在线观看日韩欧美| 久久人人精品亚洲av| 国产精品 欧美亚洲| 一二三四社区在线视频社区8| 一级毛片高清免费大全| 91av网站免费观看| 欧美不卡视频在线免费观看 | 两个人看的免费小视频| 国产一区二区在线av高清观看| 久久精品亚洲精品国产色婷小说| 最近最新免费中文字幕在线| 丝袜在线中文字幕| 国产亚洲欧美98| 午夜a级毛片| 精品国产乱子伦一区二区三区| 国产精品精品国产色婷婷| 精品福利观看| 久久久久国内视频| 少妇 在线观看| 国产精品久久久久久人妻精品电影| 国产亚洲精品一区二区www| 成在线人永久免费视频| 在线国产一区二区在线| 90打野战视频偷拍视频| 真人做人爱边吃奶动态| 久久香蕉国产精品| 国产精品野战在线观看| 国产精品日韩av在线免费观看| 日日夜夜操网爽| 国产精品日韩av在线免费观看| 中文字幕av电影在线播放| 黄色视频不卡| 国产激情偷乱视频一区二区| 欧美日韩中文字幕国产精品一区二区三区| 可以在线观看毛片的网站| 国产一卡二卡三卡精品| 日韩欧美在线二视频| 国产蜜桃级精品一区二区三区| 久久久久久久久免费视频了| a级毛片a级免费在线| 777久久人妻少妇嫩草av网站| 99精品久久久久人妻精品| 美女免费视频网站| 亚洲在线自拍视频| 免费观看人在逋| 一区二区三区激情视频| 两人在一起打扑克的视频| 丰满的人妻完整版| 日日摸夜夜添夜夜添小说| 性色av乱码一区二区三区2| 欧美三级亚洲精品| aaaaa片日本免费| 一进一出好大好爽视频| 亚洲av片天天在线观看| 麻豆av在线久日| 日韩精品青青久久久久久| 国产精品 欧美亚洲| 亚洲av日韩精品久久久久久密| 免费无遮挡裸体视频| 免费在线观看黄色视频的| av欧美777| 啦啦啦韩国在线观看视频| av视频在线观看入口| 99久久久亚洲精品蜜臀av| www国产在线视频色| 久久中文看片网| 香蕉久久夜色| 国产精华一区二区三区| 久久国产乱子伦精品免费另类| 欧美久久黑人一区二区| 中文字幕另类日韩欧美亚洲嫩草| 熟女电影av网| 国产日本99.免费观看| 18禁国产床啪视频网站| 国产亚洲精品一区二区www| 黄片大片在线免费观看| 亚洲自拍偷在线| 成人18禁高潮啪啪吃奶动态图| 俄罗斯特黄特色一大片| 日韩中文字幕欧美一区二区| 亚洲一区高清亚洲精品| 中文字幕人妻丝袜一区二区| 亚洲最大成人中文| 久久久国产成人免费| 男女下面进入的视频免费午夜 | 岛国视频午夜一区免费看| 亚洲国产日韩欧美精品在线观看 | 婷婷精品国产亚洲av在线| 午夜久久久久精精品| 黑丝袜美女国产一区| 亚洲 欧美 日韩 在线 免费| 成年女人毛片免费观看观看9| 国产欧美日韩精品亚洲av| 亚洲一区中文字幕在线| 人人妻人人澡人人看| 国产精品久久久久久精品电影 | 这个男人来自地球电影免费观看| 免费看a级黄色片| 亚洲人成网站高清观看| 久久精品国产亚洲av高清一级| 国产精品综合久久久久久久免费| 亚洲国产精品久久男人天堂| 日韩视频一区二区在线观看| 女同久久另类99精品国产91| 免费在线观看成人毛片| 99热只有精品国产| 日本熟妇午夜| 亚洲成人久久爱视频| 一进一出好大好爽视频| 久久精品亚洲精品国产色婷小说| 好男人在线观看高清免费视频 | 国产激情欧美一区二区| 日本 欧美在线| 人人妻人人澡欧美一区二区| 欧美一级a爱片免费观看看 | 黄色丝袜av网址大全| 天天添夜夜摸| 欧美日韩黄片免| 国产精品久久电影中文字幕| 久久久精品欧美日韩精品| 亚洲电影在线观看av| 老司机午夜十八禁免费视频| 精品国产一区二区三区四区第35| 伦理电影免费视频| 日本精品一区二区三区蜜桃| 亚洲 欧美一区二区三区| a级毛片a级免费在线| 女人爽到高潮嗷嗷叫在线视频| 成人午夜高清在线视频 | 亚洲精品久久国产高清桃花| 99久久久亚洲精品蜜臀av| xxxwww97欧美| 婷婷六月久久综合丁香| 欧美最黄视频在线播放免费| 亚洲九九香蕉| 午夜激情av网站| 欧美色视频一区免费| 欧美日本亚洲视频在线播放| 日韩欧美在线二视频| 国产欧美日韩精品亚洲av| 女人爽到高潮嗷嗷叫在线视频| 日本 欧美在线| 午夜视频精品福利| 久久久久国产一级毛片高清牌| 免费电影在线观看免费观看| 国产激情欧美一区二区|