• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A transition method based on Bezier curve for trajectory planning in cartesian space①

    2017-06-27 08:09:23ZhangShaolin張少林JingFengshuiWangShuo
    High Technology Letters 2017年2期
    關(guān)鍵詞:少林

    Zhang Shaolin (張少林), Jing Fengshui, Wang Shuo

    (*The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, P.R.China) (**University of Chinese Academy of Sciences, Beijing 100190, P.R.China)

    A transition method based on Bezier curve for trajectory planning in cartesian space①

    Zhang Shaolin (張少林)***, Jing Fengshui***, Wang Shuo②

    (*The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, P.R.China) (**University of Chinese Academy of Sciences, Beijing 100190, P.R.China)

    In order to smooth the trajectory of a robot and reduce dwell time, a transition curve is introduced between two adjacent curves in three-dimensional space. G2 continuity is guaranteed to transit smoothly. To minimize the amount of calculation, cubic and quartic Bezier curves are both analyzed. Furthermore, the contour curve is characterized by a transition parameter which defines the distance to the corner of the deviation. How to define the transition points for different curves is presented. A general move command interface is defined for receiving the curve limitations and transition parameters. Then, how to calculate the control points of the cubic and quartic Bezier curves is analyzed and given. Different situations are discussed separately, including transition between two lines, transition between a line and a circle, and transition between two circles. Finally, the experiments are carried out on a six degree of freedom (DOF) industrial robot to validate the proposed method. Results of single transition and multiple transitions are presented. The trajectories in the joint space are also analyzed. The results indicate that the method achieves G2 continuity within the transition constraint and has good efficiency and adaptability.

    transition method, Bezier curve, G2 continuity, transition constraint

    0 Introduction

    A robot program consists of several motion commands and each command defines a curve. The most common curves are lines and circles, which are connected head-to-tail in sequence. However, two adjacent curves may be not smooth at the intersection. The robot has to halt at the terminal of a curve to avoid velocity fluctuation. So, it is necessary to introduce a transition part between two curves to smooth the trajectory and reduce the dwell time.

    In PLCopen Motion Control Specifications[1,2], the way of connecting two curves without halt is called blending mode. In this mode, a transition curve is inserted between two adjacent curves. In order to transit smoothly, the transition curve needs to satisfy some smoothness criteria. G2 continuity[3]is usually adopted as the criterion. Furthermore, the transition curve should be characterized to adapt to different applications. For example, smoothness is more important for a transportation robot, and accuracy is more important for a welding robot. So, the smoothness and accuracy should be able to be adjusted for different applications.

    There are already many investigations about transition curves, especially in the field of transition between lines[4-10]. Sencer, et al.[4]proposed a method to transit between adjacent lines with quintic B-splines. G2 continuity was guaranteed and the cornering tolerance could be set by the user. Bi, et al.[5]utilized cubic Bezier curve to transit between adjacent lines. Also, G2 continuity was guaranteed, and the curvature of the transition curve was analyzed. Zhao, et al.[6]utilized a curvature-continuous B-spline with five control points for transition. Hota, et al.[7]proposed a path namedγ-trajectoryfortransition.Theirstudiesshowedthatvariousmethodscouldbeusedtotransitbetweenlines.Buttheydidnotillustratehowtodeterminetheorderofthetransitioncurve.

    Thetransitionincludingcircleshasalsobeeninvestigatedinsomefields[11-14].Habib,etal.[11]describedamethodbasedonasinglecubicBeziercurvetojointwocircles.ThetransitioncurvewasS-shapedorC-shaped,andofG2continuity.Thismethodwasappliedtohighwayandrailwayroutedesign.AsimilarworkwasdonebyAhmadAetal.[12],butquarticBezierspiralwasusedfortransitioninstead.Rashid,etal.[13]proposedanS-shapedtransitioncurvetojointwotangentcirclesofthesamediameter,whichwasusedtodesignaSpurGearTooth.Mostofthestudiesfocusedonplanartransitionindifferentapplications.However,fewstudieshavebeendoneontransitionbetweenadjacentlinesandcircleswithshapecontrol,especiallyinthree-dimensionalspace.

    Inthispaper,atransitionmethodisdevelopedbasedonBeziercurvetoachieveG2continuity.Forefficiencyofthealgorithm,asinglecurveisadoptedfortransition.CubicBeziercurveistriedfirstbecauseitisoflowdegreeandeasilycalculated.IfcubicBeziercurvedoesnotmeetthesmoothnessconstraint,quarticBeziercurvewillbeused.Differentsituationsarediscussedseparately,includingtransitionbetweentwolines,transitionbetweenalineandacircleandtransitionbetweentwocircles.Thelinesandcirclesaresupposedtobeinthree-dimensionalspacewithoutanylimitationsforthecircleradii,andthelengthoflineandcircle.Furthermore,tocharacterizethecontourcurve,atransitionparameter(TP)whichdefinesthedistancetothecornerofthedeviationisadopted.Ifarobotismovingalongacurve,thetransitionwillstartwhentheremaininglengthisshorterthanTP.

    The remaining part of this paper is organized as follows. Section 1 introduces a general transition interface and a planning procedure. How to transit between two adjacent curves is presented in Section 2. The transition method is demonstrated with experiments in Section 3. Finally, conclusions are given in Section 4.

    1 Transition interface and planning procedure

    Transition curve is inserted between two adjacent curves and the speed is re-planned, as shown in Fig.1. Transition planning is a part of trajectory planning. Transition planning reads motion commands from program, and prepares the curves for interpolation. For example, there are three move line (MovL) commands in a robot program. The transition interface for program is shown in Fig.2, the desired trajectory is shown in Fig.3, and the general transition planning procedure is shown in Fig.4.

    Fig.1 Velocity diagram for transition

    Fig.3 An example of three lines for transition

    Fig.4 A flow chart for transition planning procedure

    Firstly, the transition planning task reads transition commands. If the “TransitionMode” parameter of the MovL (lineAB) command is “blending”, a transition curve will be inserted between lineABand lineBC. TransitionP1P2startsatpointP1andendsatpointP2.ThelengthoflineP1BandlineBP2aredefinedasAlgorithm1.TPABhereisshortfor“TransitionParameter”parameteroftheMovL(lineAB) command. The lengths of lineP3CandlineCP4arecalculatedsimilarly.

    IfthelengthoflineABand lineBCare both larger than 2·TPAB,thelengthoflineP1BandlineBP2areequaltoTPAB.Otherwise,theyaredefinedintermsofthelengthoflineABand lineBC. So, lineBCmay have two different transition points or two overlapping points. More examples are shown in Fig.5.

    Algorithm1 CalculationofLength(P1B)andLength(BP2)Input:Length(AB),Length(BC),TPABOutput:Length(P1B),Length(BP2)1:if Length(AB)>2·TPAB Length(BC)>2·TPAB then2: Length(P1B)=TPAB3:else4: Length(P1B)=min(Length(AB),Length(BC))/25.endif6. Length(BP2)=Length(P1B)

    Fig.5 The transition points of lines and circles

    After getting the information of the transition points, the transition curve could be calculated, as will be introduced in Section 2. Then, it is ready for interpolation.

    2 A transition method based on a single Bezier curve

    2.1 Preliminaries

    Given spatial control pointsPi(i=0,1,2,…,n),theinterpolationforeachpointontheBeziercurveis

    (1)

    where

    (2)

    TheBeziercurveisaweightedaverageofeachcontrolpoint.ItbeginsatP0andendsatPn.TheBeziercurvehastheconvexhullproperty,whichmeansthatthecurvedoesnot“undulate”morethanthepolygonofitscontrolpoints.ForcubicBeziercurve(n=3),fourcontrolpointsareneeded.Forhigher-ordercurves,theamountofcomputationwillbelargerandmoreintermediatepointsareneeded.

    ThederivativesforaBeziercurveatC(0)andC(1)are

    (3)

    Thesecondderivativesare

    (4)

    ForG2continuity,theadjacentcurvesshareacommontangentdirectionandacommoncenterofcurvatureatthejoinpoint[3].ThecurvatureatC(0)andC(1)shouldbe

    (5)

    SubstitutingEq.(3)andEq.(4)intoEq.(5)yields

    (6)

    u=1 (7)

    2.2Transitionbetweentwolines

    Fig.6showsacaseofacubicBeziercurve(n=3)transitingfromlineABtolineBC.PointP0andpointP3arethetransitionpointssetbyAlgorithm1.

    Fig.6 The transition between two lines

    1) The transition curve should be tangent with lineABandlineBC.

    FromEq.(3),controlpointP1shouldbeonlineAB,andcontrolpointP2shouldbeonlineBC.

    (8)

    2)ThetransitioncurveshouldhavethesamecurvaturewithlineABand lineBC.

    (9)

    From Eqs(6)~(9), pointP1andpointP2shouldoverlapatpointB.Then,thetransitionBeziercurveisgivenbypointP0,pointP1,pointP2,andpointP3.

    2.3Transitionbetweenalineandacircle

    Fig.7showsacaseofacubicBeziercurve(n=3)transitingfromlineABtocircleBC.PointP0andpointP3arethetransitionpointssetbyAlgorithm1.

    Fig.7 The transition between a line and a circle

    1) The transition curve should be tangent with lineABandcircleBC.

    FromEq.(3),controlpointP1shouldbeonlineAB,andcontrolpointP2shouldbeonthetangentlineofcircleBCatpointP3.

    (10)

    (11)

    2)ThetransitioncurveshouldhavethesamecurvaturewithlineABandcircleBC.

    (12)

    whereristheradiusofcircleBC.

    FromEqs(6),(7)andEqs(10)~(12),pointP1andpointP2aredefined.IfpointA,pointB,pointCandpointOarecoplanar,thesolutionisgivenasfollows.Otherwise,thereisnosolution.

    1)PointP2istheintersectionoflineP0P1andlineP3P2.

    2)FromEq.(7)andEq.(12),Eq.(13)isgot.Then,pointP1isgivenbyEq.(10)andEq.(13).

    (13)

    whereα=∠P1P2P3.

    QuarticBeziercurve(n=4)couldmeetthesmoothnessconstraintshere(seeFig.8).PointP0andpointP4arethetransitionpointssetbyAlgorithm1.PointP1,pointP2andpointP3aregivenasfollows:

    Fig.8 The transition between a line and a circle (quartic Bezier curve)

    1) PointP2

    Intuitively, in order to track the given trajectory, pointP2shouldbearoundlineABorcircleBC.Forthesimplicityofcalculation,pointP2issetatpointB.

    2)PointP3

    SimilartoEq.(11),thereexists:

    (14)

    FromEq.(7)andEq.(12),

    (15)

    whereα=∠P2P3P4,θ=∠P2OP4, 0<θ<2pi.

    FromEq.(14)andEq.(15),pointP3isobtained.

    3)PointP1

    FromEq.(6),Eq.(10)andEq.(12),therearemultiplesolutionsforpointP1.Anoptimizationindexcanbeaddedtoobtaintheoptimalsolution.OneansweristoaddaconstraintasEq.(16).Approximately,εmeansameasureofcurvature.Thustogettheminimumofεmakesthetransitioncurvebendatleast[15].

    (16)

    Letdε/dl1=0,l1=|P1-P0|.SubstitutingEq.(1)intoEq.(16)yields

    (17)

    where

    FromEq.(10)andEq.(17),pointP1isobtained.

    Then,thetransitionBeziercurveisgivenbypointP0,pointP1,pointP2,pointP3andpointP4.

    2.4Transitionbetweentwocircles

    Fig.9showsacaseofacubicBeziercurve(n=3)transitingfromcircleABtocircleBC.PointP0andpointP3arethetransitionpointssetbyAlgorithm1.

    Fig.9 The transition between two circles (cubic Bezier curve)

    1) The transition curve should be tangent with circleABandcircleBC.

    FromEq.(3),controlpointP1shouldbeonthetangentlineofcircleABatpointP0,andcontrolpointP2shouldbeonthetangentlineofcircleBCatpointP3.

    (18)

    (19)

    2)ThetransitioncurveshouldhavethesamecurvaturewithcircleABandcircleBC.

    (20)

    wherer1istheradiusofcircleAB,andr2istheradiusofcircleBC.

    FromEqs(6),(7)andEqs(18)~(20),pointP1andpointP2aredefined.However,itisdifficulttoobtaintheanalyticalsolutionshere.Numericalmethodcanbeusedtosolvethesefunctions,butwithalargeamountofcomputation.

    QuarticBeziercurve(n=4)couldmeetthesmoothnessconstraintshere,seeFig.10.PointP0andpointP4arethetransitionpointssetbyAlgorithm1.PointP1,pointP2andpointP3aregivenasfollows:

    Fig.10 The transition between two circles (quartic Bezier curve)

    1) PointP2

    SimilartoSection2.3,pointP2issetatpointB.

    2)PointP3

    SimilartoEq.(19),thereexists:

    (21)

    FromEq.(7)andEq.(20),

    (22)

    whereα2=∠P2P3P4,θ2=∠P2O2P4, 0<θ2<2pi.

    FromEq.(21)andEq.(22),pointP3isobtained.

    3)PointP1

    SimilartoEq.(21)andEq.(22),thereexist:

    (23)

    (24)

    whereα1=∠P0P1P2,θ1=∠P0O1P2, 0<θ1<2pi.

    FromEq.(23)andEq.(24),pointP1isobtained.

    Then,thetransitionBeziercurveisgivenbypointP0,pointP1,pointP2,pointP3andpointP4.

    Mark 1 Although Figs6~10 illustrate conditions for planning on plane, the transition method is also feasible for spatial planning, as will be shown in Section 3.

    3 Experiments

    The transition method is evaluated by several experiments on a six DOF robot—ER20-C10. The control system is shown in Fig.11. The original motion controller is replaced by an industrial computer CX5130 made by Beckhoff company. In addition to the transition method, some other components are also realized for the experiment, such as robot program interpreter, trajectory planning method for line and circle commands, and forward and inverse kinematics.

    Fig.11 The control system of a six DOF robot

    To verify the feasibility of the transition method, experiments are organized as follows.

    3.1 Transition between two adjacent curves

    A program with two move commands is tested. Each command may be a line or a circle. The first command is set to blending mode with an appropriate TP. In order to guarantee G2 continuity and minimize the amount of calculation, a cubic Bezier curve is used for transition between two lines and a quartic Bezier curve is used for transition involving one or two circles. The sample tests are shown in Figs12~14. The TP parameters are all set to 5. The transition curve with a smaller TP stays closer to the original trajectory which leads to a smaller transition error and a limited smoothness, and vice versa. The method shows good adaptability no matter where the end point of the second command is set.

    3.2 Velocity and acceleration analysis

    Multiple lines and circles are tested in this experiment, as shown in Fig.15. A transition curve is inserted between each pair of adjacent curves. The velocity and acceleration of the trajectory are shown in Fig.16.

    Fig.12 The transition between two lines (cubic Bezier curve)

    Fig.13 The transition between a line and a circle (quartic Bezier curve)

    Fig.14 The transition between two circles (quartic Bezier curve)

    Fig.15 The transition between multiple curves

    Fig.16 The velocity and acceleration of the trajectory with transition

    Fig.17 The velocity and acceleration of the trajectory without transition

    S-curve-type acceleration profile is adopted for the velocity and acceleration planning. The maximum velocity for each curve is 50 mm/s, max acceleration is 100 mm/s2and maximum jerk is set to 200 mm/s3. The whole trajectory takes about 3.57s. The velocity and acceleration of the original trajectory without transition are shown in Fig.17. It is tested with the same velocity, acceleration and jerk constraints, and takes about 5.48s. Obviously, the velocity of the trajectory with transition is smoother and takes less time.

    3.3 Velocities in the joint space

    Since the trajectory of a robot is finally realized in the joint space, the position and velocity of each joint are tested. When the robot moves along the trajectory shown in Fig.15, the position of each joint can be got by inverse kinematics, and the velocity is the differential of position. Figs18~19 show the joint angle and velocity when transition mode is set to blending, and Figs20~21 show those without transition. The same result can be got that the trajectory with transition moves smoother and takes less time.

    Fig.18 The joint angle corresponding to the trajectory with transition in Fig.15 (axis 1; axis 2; axis 3; axis 4; axis 5; axis 6)

    Fig.19 The joint angle velocity corresponding to the trajectory with transition in Fig.15 (axis 1; axis 2; axis 3; axis 4; axis 5; axis 6)

    Fig.20 The joint angle corresponding to the trajectory without transition in Fig.15 (axis 1; axis 2; axis 3; axis 4; axis 5; axis 6)

    4 Conclusions

    It has been demonstrated that a single Bezier curve can be utilized to transit between lines and circles in three-dimensional space. In the transition between two lines, a cubic Bezier curve could satisfy the G2 continuity. In the transition between a line and a circle, if the line is coplanar with the circle, a cubic Bezier curve is able to transit smoothly. Otherwise, a quartic Bezier curve is needed. A curvature constraint is added to obtain the optimal solution in this case. In the transition between two circles, a cubic curve is hard to get the analytical solutions. So, a quartic Bezier curve is used instead. All the three situations guarantee G2 continuity with transition curve adjustable. The amount of calculation is taken into consideration in the algorithms. This method is applicable to different situations of transition between lines and circles. The velocity and acceleration of the trajectory with transition is smoother and takes less time. The same result can be got from the experiments of joint angle and joint angle velocity. Finally, future work will take more factors into consideration to get the optimal solutions for the three transition cases.

    Fig.21 The joint angle velocity corresponding to the trajectory without transition in Fig.15 (axis 1; axis 2; axis 3; axis 4; axis 5; axis 6)

    [ 1] PLCopen T C. Safety Software Technical Specification, Version 2.0, Part 1: Basics and Part 2-Extensions. PLCopen, Germany. 2011

    [ 2] POLCopen. PLCopen Motion Control. http://www.plcopen.org/pages/tc2_motion_control: PLCopen, 2011

    [ 3] Barsky B A, Derose T D. Geometric continuity of parametric curves: three equivalent characterizations.IEEEComputerGraphics&Applications, 1989, 9(6):60-69

    [ 4] Sencer B, Ishizaki K, Shamoto E. A curvature optimal sharp corner smoothing algorithm for high-speed feed motion generation of NC systems along linear tool paths.InternationalJournalofAdvancedManufacturingTechnology, 2014, 76(9):1977-1992

    [ 5] Bi Q, Wang Y, Zhu L, et al. A Practical continuous-curvature Bézier transition algorithm for high-speed machining of linear tool path. In: Proceedings of the 2011 International Conference on Intelligent Robotics and Applications, Aachen, Germany, 2011. 465-476

    [ 6] Zhao H, Zhu L M, Ding H. A real-time look-ahead interpolation methodology with curvature-continuous B-spline transition scheme for CNC machining of short line segments.InternationalJournalofMachineTools&Manufacture, 2013, 65(2):88-98

    [ 7] Hota S, Ghose D. Optimal transition trajectory for waypoint following. In: Proceedings of the 2013 IEEE International Conference on Control Applications, Hyderabad, India, 2013. 1030-1035

    [ 8] Fan W, Lee C H, Chen J H. A realtime curvature-smooth interpolation scheme and motion planning for CNC machining of short line segments.InternationalJournalofMachineTools&Manufacture, 2015, 96:27-46

    [ 9] Bi Q Z, Shi J, Wang Y H, et al. Analytical curvature-continuous dual-Bézier corner transition for five-axis linear tool path.InternationalJournalofMachineTools&Manufacture, 2015, 130: 96-108

    [10] Ziatdinov R, Yoshida N, Kim T W. Fitting G2 multispiral transition curve joining two straight lines.Computer-AidedDesign, 2012, 44(6):591-596

    [11] Habib Z, Sakai M. G2, cubic transition between two circles with shape control.JournalofComputational&AppliedMathematics, 2009, 223(1):133-144

    [12] Ahmad A, Gobithasan R, Ali J M. G2 Transition curve using Quartic Bézier curve. In: Proceedings of the 2007 International Conference on Computer Graphics, Imaging and Visualization, Bangkok, Thailand, 2007. 223-228

    [13] Rashid A, Habib Z. Gear tooth designing with cubic Bézier transition curve. In: Proceedings of the Graduate Colloquium on Computer Sciences, Lahore, Pakistan, 2010. 4:17

    [14] Cai H H, Wang G J. A new method in highway route design: joining circular arcs by a single C-Bézier curve with shape parameter.JournalofZhejiangUniversity-ScienceA:AppliedPhysics&Engineering, 2009, 10(4):562-569

    [15] Barr A H, Currin B, Gabriel S, et al. Smooth interpolation of orientations with angular velocity constraints using quaternions.AcmSiggraphComputerGraphics, 1997, 26(2):873-877

    Zhang Shaolin, born in 1988. He is a Ph.D student in Institute of Automation, Chinese Academy of Sciences. He received his B.S and M.S degrees in Huazhong University of Science and Technology in 2010 and 2013 respectively. His research interests include the intelligent robotics and motion control technology.

    10.3772/j.issn.1006-6748.2017.02.004

    ①Supported by the National Natural Science Foundation of China (No. 61573358) and Research and Development of Large Multi-function Demolition Equipment in Disaster Site(No. 2015BAK06B00).

    ②To whom correspondence should be addressed. E-mail: shuo.wang@ia.ac.cn

    on May 17, 2016***

    猜你喜歡
    少林
    歡迎訂閱2023年度《少林與太極》
    少林與太極(2023年6期)2023-08-25 02:10:26
    少林武術(shù)文化系列之二 少林武術(shù)與中醫(yī)養(yǎng)生
    少林與太極(2023年4期)2023-07-14 07:47:18
    少林小羅漢拳(十)
    少林與太極(2020年3期)2020-07-14 08:41:21
    少林小羅漢拳(八)
    少林與太極(2020年1期)2020-07-14 02:32:49
    漂洋過(guò)海赴少林 一文不名求真功從少林洋弟子到一國(guó)外長(zhǎng)
    少林小羅漢拳(五)
    少林小羅漢拳茵(四)
    少林與太極(2019年8期)2019-10-08 05:40:55
    少林武術(shù)之技術(shù)體系
    少林與太極(2017年3期)2017-04-21 09:48:26
    翻譯
    讀者(2016年11期)2016-05-11 08:38:18
    張少林詩(shī)詞選
    美女被艹到高潮喷水动态| 深爱激情五月婷婷| 一区福利在线观看| 国产精品久久久久久亚洲av鲁大| 夜夜看夜夜爽夜夜摸| 亚洲最大成人中文| 亚洲国产日韩欧美精品在线观看| 久久精品国产鲁丝片午夜精品| 狂野欧美白嫩少妇大欣赏| 成人午夜高清在线视频| 久久人人爽人人爽人人片va| 3wmmmm亚洲av在线观看| 精品人妻偷拍中文字幕| 成人综合一区亚洲| 麻豆乱淫一区二区| 在线免费十八禁| 午夜福利在线观看吧| 国产黄片视频在线免费观看| 69人妻影院| 亚洲av男天堂| 国产私拍福利视频在线观看| 男女做爰动态图高潮gif福利片| 1000部很黄的大片| 国产精品综合久久久久久久免费| 国产高潮美女av| 夫妻性生交免费视频一级片| 国产精品人妻久久久久久| 最近最新中文字幕大全电影3| 欧美成人免费av一区二区三区| 在线免费观看不下载黄p国产| 国产亚洲精品久久久com| 天天躁日日操中文字幕| 欧美一区二区亚洲| 淫秽高清视频在线观看| 91麻豆精品激情在线观看国产| 午夜福利高清视频| 国产一级毛片七仙女欲春2| 岛国毛片在线播放| 免费观看精品视频网站| 级片在线观看| 国产精品久久久久久久久免| 日本黄色片子视频| 免费在线观看成人毛片| 好男人在线观看高清免费视频| 观看美女的网站| 99九九线精品视频在线观看视频| 91久久精品国产一区二区三区| 淫秽高清视频在线观看| 舔av片在线| 综合色av麻豆| 又粗又硬又长又爽又黄的视频 | 亚洲精品久久久久久婷婷小说 | 久久久a久久爽久久v久久| 蜜桃亚洲精品一区二区三区| 久久久国产成人精品二区| 一级黄片播放器| 国产淫片久久久久久久久| 日韩欧美精品免费久久| 亚洲aⅴ乱码一区二区在线播放| 噜噜噜噜噜久久久久久91| 久久久久久久久久黄片| 久久久久久久久大av| 日日撸夜夜添| 97超视频在线观看视频| 国产精品免费一区二区三区在线| 国产精品久久久久久精品电影| 国产蜜桃级精品一区二区三区| 亚洲真实伦在线观看| 国产高潮美女av| 亚洲真实伦在线观看| 日本与韩国留学比较| 18禁黄网站禁片免费观看直播| 哪个播放器可以免费观看大片| 久久99精品国语久久久| 2022亚洲国产成人精品| 最好的美女福利视频网| 日韩中字成人| 在线免费观看的www视频| 99在线人妻在线中文字幕| 久久久久久久午夜电影| 国产一区二区三区在线臀色熟女| 综合色丁香网| 男女视频在线观看网站免费| 午夜精品在线福利| 国产人妻一区二区三区在| 夜夜夜夜夜久久久久| 欧美成人精品欧美一级黄| 高清毛片免费看| 国产av一区在线观看免费| 老女人水多毛片| av专区在线播放| 色5月婷婷丁香| 黄色一级大片看看| 国产一级毛片七仙女欲春2| 在线观看av片永久免费下载| 人人妻人人澡欧美一区二区| 一区福利在线观看| 国产精品,欧美在线| 少妇的逼好多水| 欧美日韩乱码在线| 国模一区二区三区四区视频| 欧美3d第一页| 国产精品电影一区二区三区| 日韩国内少妇激情av| 亚洲av二区三区四区| 成年女人看的毛片在线观看| 波多野结衣高清无吗| 深夜a级毛片| 亚洲综合色惰| 国产精品国产三级国产av玫瑰| 欧美潮喷喷水| 亚洲人成网站在线播| 久久精品国产亚洲av天美| 天堂网av新在线| 亚洲,欧美,日韩| 中文亚洲av片在线观看爽| 22中文网久久字幕| 男女下面进入的视频免费午夜| 亚洲精品粉嫩美女一区| 淫秽高清视频在线观看| 亚洲国产精品成人综合色| 91久久精品国产一区二区成人| 中文精品一卡2卡3卡4更新| 国产高清视频在线观看网站| 日日啪夜夜撸| 精品人妻视频免费看| 久久亚洲精品不卡| 九色成人免费人妻av| 九九热线精品视视频播放| 免费搜索国产男女视频| 久久精品夜色国产| 久久精品国产99精品国产亚洲性色| 99热这里只有精品一区| 亚洲欧美日韩高清在线视频| 欧美激情国产日韩精品一区| 插逼视频在线观看| 男女啪啪激烈高潮av片| 国产一区二区三区av在线 | 少妇熟女欧美另类| av黄色大香蕉| 麻豆成人av视频| 成人特级黄色片久久久久久久| 男人舔奶头视频| 精品国产三级普通话版| 国产国拍精品亚洲av在线观看| 少妇裸体淫交视频免费看高清| 丝袜美腿在线中文| 国产真实乱freesex| 九九爱精品视频在线观看| 可以在线观看毛片的网站| 日韩国内少妇激情av| 国产高清不卡午夜福利| 久久精品人妻少妇| 亚洲av.av天堂| 18禁在线播放成人免费| 少妇猛男粗大的猛烈进出视频 | 少妇人妻精品综合一区二区 | av天堂中文字幕网| 一区二区三区高清视频在线| 男女下面进入的视频免费午夜| 国产男人的电影天堂91| 国产黄a三级三级三级人| 欧美zozozo另类| 免费观看的影片在线观看| 亚洲精品456在线播放app| 可以在线观看毛片的网站| 一个人看的www免费观看视频| 人人妻人人澡欧美一区二区| 波多野结衣高清作品| 久久韩国三级中文字幕| 精品欧美国产一区二区三| 非洲黑人性xxxx精品又粗又长| 精品人妻一区二区三区麻豆| 欧美高清成人免费视频www| 一个人看的www免费观看视频| 国产精品福利在线免费观看| 国产男人的电影天堂91| 在线观看美女被高潮喷水网站| 国产淫片久久久久久久久| 免费黄网站久久成人精品| 国产免费男女视频| 国产爱豆传媒在线观看| 久久精品久久久久久噜噜老黄 | 欧美性猛交黑人性爽| 午夜免费激情av| 亚洲精品乱码久久久v下载方式| 精品久久久久久久人妻蜜臀av| av天堂中文字幕网| 亚洲自拍偷在线| 又粗又硬又长又爽又黄的视频 | 国产精品蜜桃在线观看 | 大型黄色视频在线免费观看| 最新中文字幕久久久久| or卡值多少钱| 国产精品一区www在线观看| 午夜福利成人在线免费观看| 小蜜桃在线观看免费完整版高清| 国产成人精品久久久久久| 婷婷六月久久综合丁香| 噜噜噜噜噜久久久久久91| 国产人妻一区二区三区在| 国产 一区 欧美 日韩| 国产成人freesex在线| 又粗又爽又猛毛片免费看| 亚洲熟妇中文字幕五十中出| 欧美成人一区二区免费高清观看| 国产精品伦人一区二区| 国产亚洲精品av在线| 亚洲精品自拍成人| 长腿黑丝高跟| 最近手机中文字幕大全| 久久久久久久久久久丰满| 国产成人一区二区在线| 男的添女的下面高潮视频| 在线免费观看的www视频| 精品久久久久久久末码| 亚洲人成网站在线播| 亚洲最大成人中文| 又粗又爽又猛毛片免费看| 国产男人的电影天堂91| 我的女老师完整版在线观看| 日韩中字成人| 国产成人福利小说| 久久久久久久午夜电影| 夜夜爽天天搞| 国产一级毛片在线| 麻豆成人av视频| 蜜臀久久99精品久久宅男| 国产精品三级大全| 精品欧美国产一区二区三| 亚洲在线观看片| 欧美日韩综合久久久久久| 男女做爰动态图高潮gif福利片| 91在线精品国自产拍蜜月| 久久人人爽人人片av| 啦啦啦韩国在线观看视频| 精品熟女少妇av免费看| 22中文网久久字幕| 亚洲av二区三区四区| 最近视频中文字幕2019在线8| 午夜福利在线观看吧| 少妇熟女aⅴ在线视频| 热99re8久久精品国产| 色尼玛亚洲综合影院| 成人午夜精彩视频在线观看| 麻豆成人av视频| 日韩一本色道免费dvd| 亚洲精品粉嫩美女一区| 性色avwww在线观看| 久久精品国产鲁丝片午夜精品| 内射极品少妇av片p| 蜜臀久久99精品久久宅男| 最近视频中文字幕2019在线8| 热99re8久久精品国产| 麻豆一二三区av精品| 一级黄色大片毛片| 日日撸夜夜添| 日韩av在线大香蕉| 极品教师在线视频| 国产免费男女视频| 亚洲精品成人久久久久久| av在线播放精品| 欧美极品一区二区三区四区| 亚洲,欧美,日韩| 亚洲精品久久久久久婷婷小说 | 免费看光身美女| 男人舔奶头视频| 久久久精品欧美日韩精品| 在线免费观看不下载黄p国产| 青春草视频在线免费观看| 欧美日韩一区二区视频在线观看视频在线 | 春色校园在线视频观看| 中文字幕人妻熟人妻熟丝袜美| 天天一区二区日本电影三级| 精华霜和精华液先用哪个| 日韩av在线大香蕉| 内地一区二区视频在线| 大香蕉久久网| 久久精品国产亚洲av香蕉五月| 免费人成视频x8x8入口观看| 亚洲久久久久久中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 国内少妇人妻偷人精品xxx网站| 亚洲av男天堂| 男人的好看免费观看在线视频| 99久久成人亚洲精品观看| 波野结衣二区三区在线| 亚洲av男天堂| 男插女下体视频免费在线播放| 精品人妻一区二区三区麻豆| 免费观看在线日韩| 91麻豆精品激情在线观看国产| 99久国产av精品国产电影| 真实男女啪啪啪动态图| 插逼视频在线观看| 亚洲自偷自拍三级| 1024手机看黄色片| 国产在线男女| 国产精品久久久久久亚洲av鲁大| 一级毛片电影观看 | 国产成人精品婷婷| 国产精品久久久久久精品电影小说 | 日日啪夜夜撸| 最近视频中文字幕2019在线8| 美女 人体艺术 gogo| 久久久久免费精品人妻一区二区| 日日啪夜夜撸| 偷拍熟女少妇极品色| 国产69精品久久久久777片| 日本熟妇午夜| 精品国产三级普通话版| 成人无遮挡网站| 亚洲av成人精品一区久久| 欧美精品一区二区大全| 亚洲内射少妇av| 久久99热6这里只有精品| 久久久久久久久中文| 欧美日本亚洲视频在线播放| 搡老妇女老女人老熟妇| 亚洲人成网站在线播| 插逼视频在线观看| 亚州av有码| 99在线视频只有这里精品首页| 可以在线观看毛片的网站| 免费看a级黄色片| av在线播放精品| 国产av一区在线观看免费| 国产成人精品久久久久久| 一级毛片电影观看 | 久久久精品94久久精品| 女人被狂操c到高潮| 波野结衣二区三区在线| 亚洲av.av天堂| 久久精品夜色国产| 国产又黄又爽又无遮挡在线| 尤物成人国产欧美一区二区三区| 国产激情偷乱视频一区二区| 日韩av不卡免费在线播放| 深夜a级毛片| 我要搜黄色片| 欧美极品一区二区三区四区| 成人亚洲欧美一区二区av| 爱豆传媒免费全集在线观看| 少妇人妻精品综合一区二区 | 亚洲精品久久久久久婷婷小说 | 色噜噜av男人的天堂激情| 久久午夜福利片| 天堂网av新在线| 日本五十路高清| 天天躁日日操中文字幕| 久久久a久久爽久久v久久| 大型黄色视频在线免费观看| 久久精品综合一区二区三区| 国产日本99.免费观看| 亚洲最大成人中文| 免费电影在线观看免费观看| 国产真实乱freesex| av在线亚洲专区| 久久这里只有精品中国| 久久久国产成人免费| 久久久久久久久久成人| 精品国产三级普通话版| 久久久久网色| 伊人久久精品亚洲午夜| 高清日韩中文字幕在线| 能在线免费观看的黄片| av在线亚洲专区| 一区福利在线观看| 午夜爱爱视频在线播放| 久久鲁丝午夜福利片| 爱豆传媒免费全集在线观看| 国产精品一二三区在线看| 在线a可以看的网站| a级毛片a级免费在线| 日本在线视频免费播放| 亚洲一区二区三区色噜噜| 舔av片在线| 国产 一区 欧美 日韩| 大型黄色视频在线免费观看| 亚洲av第一区精品v没综合| 天堂网av新在线| 97人妻精品一区二区三区麻豆| 精品一区二区三区视频在线| 大香蕉久久网| 国产黄a三级三级三级人| 成熟少妇高潮喷水视频| 两个人的视频大全免费| 日本av手机在线免费观看| 精品久久久久久久久久免费视频| 午夜福利在线在线| 亚洲五月天丁香| 国产在线男女| 男女做爰动态图高潮gif福利片| 日韩亚洲欧美综合| 国产成人一区二区在线| 日韩三级伦理在线观看| 蜜桃亚洲精品一区二区三区| 国产午夜福利久久久久久| 欧美性猛交╳xxx乱大交人| 一本精品99久久精品77| av在线观看视频网站免费| 一区二区三区免费毛片| 午夜视频国产福利| 热99在线观看视频| 简卡轻食公司| 亚洲欧美日韩东京热| 亚洲av免费在线观看| 精品日产1卡2卡| 国产女主播在线喷水免费视频网站 | 桃色一区二区三区在线观看| 人体艺术视频欧美日本| 我要看日韩黄色一级片| 中文字幕久久专区| 日韩精品有码人妻一区| 18禁在线无遮挡免费观看视频| 天堂网av新在线| 久久国产乱子免费精品| 国内精品宾馆在线| 日韩国内少妇激情av| 久久精品综合一区二区三区| 99久久成人亚洲精品观看| 日产精品乱码卡一卡2卡三| 99久国产av精品国产电影| 亚洲在久久综合| 国国产精品蜜臀av免费| 高清在线视频一区二区三区 | 看十八女毛片水多多多| 成人特级av手机在线观看| 国产 一区 欧美 日韩| 精品人妻视频免费看| 毛片女人毛片| 白带黄色成豆腐渣| 中文字幕熟女人妻在线| 精品久久久久久久久久免费视频| av国产免费在线观看| 亚洲国产精品成人久久小说 | 亚洲aⅴ乱码一区二区在线播放| 成人欧美大片| 美女国产视频在线观看| 晚上一个人看的免费电影| 欧美+亚洲+日韩+国产| 日本一二三区视频观看| 国产成人freesex在线| 久久久精品94久久精品| 国内精品久久久久精免费| 久久99热这里只有精品18| 色视频www国产| 22中文网久久字幕| 禁无遮挡网站| 亚洲色图av天堂| 最近视频中文字幕2019在线8| 老女人水多毛片| 91av网一区二区| 欧美xxxx性猛交bbbb| 九九在线视频观看精品| 狠狠狠狠99中文字幕| 国产精品人妻久久久久久| 国产精品人妻久久久影院| 亚洲美女搞黄在线观看| 国产亚洲5aaaaa淫片| 最近的中文字幕免费完整| 看黄色毛片网站| 美女国产视频在线观看| 国产一级毛片在线| 天天躁夜夜躁狠狠久久av| 97热精品久久久久久| 精品少妇黑人巨大在线播放 | 久久人人爽人人爽人人片va| 中文字幕免费在线视频6| 又粗又爽又猛毛片免费看| 亚洲精品国产av成人精品| 婷婷精品国产亚洲av| av在线播放精品| 中国美白少妇内射xxxbb| 国产一区二区激情短视频| 久久久a久久爽久久v久久| 日韩精品有码人妻一区| 国产日本99.免费观看| 国内精品美女久久久久久| 中国美女看黄片| 黄色配什么色好看| 欧美性猛交╳xxx乱大交人| 国产伦精品一区二区三区四那| av免费在线看不卡| 国产精品久久电影中文字幕| 亚洲自拍偷在线| 久久久久性生活片| 日本-黄色视频高清免费观看| 午夜老司机福利剧场| 九草在线视频观看| 久久综合国产亚洲精品| 国产精品野战在线观看| 97超视频在线观看视频| 亚洲国产精品久久男人天堂| 少妇人妻一区二区三区视频| 青春草国产在线视频 | 亚洲av成人av| 国产 一区 欧美 日韩| avwww免费| 久久久国产成人精品二区| 波多野结衣高清无吗| 久久久国产成人免费| 亚洲电影在线观看av| 国产成人a∨麻豆精品| 国产精品99久久久久久久久| 亚洲无线在线观看| 可以在线观看毛片的网站| 日韩三级伦理在线观看| 国产在视频线在精品| 最新中文字幕久久久久| 蜜桃亚洲精品一区二区三区| 国产精品久久久久久亚洲av鲁大| 好男人在线观看高清免费视频| 在线观看免费视频日本深夜| 69av精品久久久久久| 日韩,欧美,国产一区二区三区 | 成人午夜高清在线视频| 搞女人的毛片| 青青草视频在线视频观看| 亚洲欧美成人精品一区二区| 丰满乱子伦码专区| 成人午夜精彩视频在线观看| 男女边吃奶边做爰视频| 一级毛片aaaaaa免费看小| 亚洲精品色激情综合| 最近最新中文字幕大全电影3| 菩萨蛮人人尽说江南好唐韦庄 | 在线观看午夜福利视频| 小说图片视频综合网站| 一边摸一边抽搐一进一小说| 日韩,欧美,国产一区二区三区 | 精品久久久久久久末码| 国产精品一区二区三区四区免费观看| 天美传媒精品一区二区| 内射极品少妇av片p| 日本av手机在线免费观看| 久久精品国产亚洲av涩爱 | 日韩在线高清观看一区二区三区| a级毛片免费高清观看在线播放| 亚洲丝袜综合中文字幕| 国产亚洲91精品色在线| 国产成人a区在线观看| 亚洲一级一片aⅴ在线观看| 99热这里只有是精品50| 亚洲国产欧美在线一区| 亚洲在线观看片| 又粗又硬又长又爽又黄的视频 | 大型黄色视频在线免费观看| 狂野欧美白嫩少妇大欣赏| 国产三级中文精品| 日本撒尿小便嘘嘘汇集6| 男女啪啪激烈高潮av片| 欧美xxxx性猛交bbbb| 日本五十路高清| 男人狂女人下面高潮的视频| 少妇人妻一区二区三区视频| 女人被狂操c到高潮| 日本与韩国留学比较| 久久草成人影院| 久久精品夜夜夜夜夜久久蜜豆| 色尼玛亚洲综合影院| 色吧在线观看| 黄色欧美视频在线观看| 国产精品三级大全| 久久久欧美国产精品| 青青草视频在线视频观看| 伊人久久精品亚洲午夜| 日韩av在线大香蕉| 欧美区成人在线视频| 男人和女人高潮做爰伦理| av.在线天堂| 午夜爱爱视频在线播放| 日韩人妻高清精品专区| 精品无人区乱码1区二区| 国产av在哪里看| 亚洲精品456在线播放app| 一区福利在线观看| 欧美高清性xxxxhd video| 日韩欧美一区二区三区在线观看| 亚洲国产精品久久男人天堂| 99久久中文字幕三级久久日本| 十八禁国产超污无遮挡网站| 国产成人精品婷婷| 午夜视频国产福利| 日本av手机在线免费观看| 久久久久久久久久久免费av| 日韩欧美精品免费久久| 国产一级毛片七仙女欲春2| 乱系列少妇在线播放| 只有这里有精品99| 欧美成人精品欧美一级黄| 久久久成人免费电影| 日韩欧美国产在线观看| 亚洲国产欧洲综合997久久,| 免费一级毛片在线播放高清视频| 我要看日韩黄色一级片| 亚洲在久久综合| 亚洲五月天丁香| 精品熟女少妇av免费看| 三级毛片av免费| 国产真实伦视频高清在线观看| 中文字幕免费在线视频6| 亚洲综合色惰| 中文在线观看免费www的网站| 波多野结衣高清作品| 在线国产一区二区在线| 国产黄片视频在线免费观看| av天堂中文字幕网| 麻豆成人午夜福利视频| 久久99精品国语久久久| 免费黄网站久久成人精品| 免费av毛片视频| 久久久久久久亚洲中文字幕| 亚洲无线在线观看| 久久精品国产亚洲av涩爱 |