• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PI3K/Akt pathway is involved in the activation of RAW 264.7 cells induced by hydroxypropyltrimethyl ammonium chloride chitosan*

    2020-06-08 05:22:30YANGYueXINGRongLIUSongQINYukunLIKechengYUHuahuaLIPengcheng
    Journal of Oceanology and Limnology 2020年3期

    YANG Yue , XING Rong’e , LIU Song QIN Yukun LI Kecheng YU Huahua LI Pengcheng

    1 Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China

    2 Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China

    3 University of Chinese Academy of Sciences, Beijing 100049, China

    Received Jan. 19, 2019; accepted in principle Jun. 28, 2019; accepted for publication Sep. 8, 2019 ? Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

    Abstract We previously demonstrated that 2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC) promoted the production of nitric oxide (NO) and proinfl ammatory cytokines by activating the mitogen-activated protein kinases (MAPK) and Janus kinase (JAK)/STAT pathways in RAW 264.7 cells, indicating good immunomodulatory activity of HACC. In this study, to further investigate the immunomodulatory mechanisms of HACC, we determined the roles of phosphatidylinositol 3-kinase (PI3K)/Akt, activating protein (AP-1) and nuclear factor kappa B (NF-κB) in HACC-induced activation of RAW 264.7 cells by the western blotting. The results suggest that HACC promoted the phosphorylation of p85 and Akt. Furthermore, c-Jun and p65 were also increased after the treatment of RAW 264.7 cells with HACC, indicating the translocation of NF-κB and AP-1 from cytoplasm to nucleus. In addition, as scanning electron microscopy (SEM) analysis shows, the cell morphology changed after HACC treatment. These fi ndings indicate that HACC activated MAPK, JAK/STAT, and PI3K/Akt signaling pathways dependent on AP-1 and NF-κB activation in RAW 264.7 cells, ultimately leading to the increase of NO and cytokines.

    Keyword: hydroxypropyltrimethyl ammonium chloride chitosan; RAW 264.7 cells; PI3K/Akt pathway; nuclear factor-κB; activating protein 1

    1 INTRODUCTION

    Immunity plays vital role in vertebrates. The immune system can broadly be divided into two branches: innate immunity and adaptive immunity (Fang and Zhang, 2016). Macrophages along with dendritic cells are two important innate immune system members. RAW 264.7 cells, a kind of macrophage derived from mouse ascites, are widely utilized as in vitro model to detect immunomodulatory efference ect of foreign substances. Upon activation, RAW 264.7 cells secrete cytokines through the activation of signaling pathways (Sun et al., 2015). The signaling pathways of RAW 264.7 cells have been elucidated by many researchers, among them, phosphoinositide 3-kinases (PI3K)/Akt, sarcoma (Src) family kinases, mitogen-activated protein kinase (MAPK) including p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), Janus kinase/signal transducer and activator of transcription (JAK-STAT), and transcription factors such as activator protein (AP)-1 and nuclear factor (NF)-κB are vital pathways participating immunomodulatory process (Cantley, 2002; Johnson and Lapadat, 2002; Schindler et al., 2007; Youn et al., 2016). The PI3K family consists of four classes of enzymes: IA,IB, II, III (Wymann and Pirola, 1998; Katso et al., 2001). Akt is a direct downstream efference ector of PI3K (Cheever et al., 2001). Akt is a serine/threonine kinase which can be a transducer of signaling pathways initiated by growth factor receptor-activated PI3K (Kao et al., 2005). The role of PI3K/Akt signaling pathway in immunomodulatory efference ect has been implied (Hattori et al., 2003). Therefore, PI3K/Akt pathway is the focus of our study.

    Chitin, which consists of β-(1-4)-poly-N-acetyl-Dglucosamine unit, is a kind of insoluble cationic amino polysaccharide. Chitin is plenteous in nature, it was isolated from mushroom for the fi rst time in 1811 (Liaqat and Eltem, 2018). It also exists in bacterial, fungi, insect cuticles and exoskeleton crustacean shells and fungal cell walls (Pillai et al., 2009). Chitosan as the deacetylation production of chitin, are widely utilized in medical and food industry for its nonallergenic, biodegradable and low toxicity properties (Kurita, 2006; Li et al., 2016). The immunological properties of chitin and chitosan were studied in recent years (Lee et al., 2008). Chitin was found to be able to stimulate innate immunity of host to resist the invasion of viral and bacterial infections for the fi rst time in 1980s (Nishimura et al., 1984). Some studies demonstrated chitin and chitosan activated macrophages and natural kill cells to secrete cytokines like interleukin-1β (IL-1β) and interferons (Chae et al., 2009). Researchers also found that chitin promoted innate and adaptive immune responses in a sizedependent manner (Lee et al., 2008). However, the solubility of chitosan and chitin in neutral environment was not satisfying for application. Therefore, the derivatives of chitin and chitosan were developed and studied by many researchers. Among them, the watersoluble hydroxypropyltrimethyl ammonium chloride chitosan (HACC) has attracted attention because of its high solubility and high charge density.

    Hydroxypropyltrimethyl ammonium chloride chitosan as a derivative of chitosan has been demonstrated as a potential immunopotentiator in our previous study (Yang et al., 2019). We demonstrated that HACC promoted the secretion of nitric oxide (NO), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). We found the activation was partly through the Janus kinase/STAT and MAPK signaling pathway, while the Src tyrosine kinase was not afference ected by HACC. Therefore, in this study, we explored new signaling pathways to reveal the mechanisms of the immunomodulatory efference ects of HACC. We proposed that HACC could activate PI3K/Akt pathway and afference ect the translocation of activating protein 1 (AP-1) and nuclear factor kappa B (NF-κB) and conducted western blot assay and immunofl uorescent staining to verify our hypothesis.

    2 MATERIAL AND METHOD

    2.1 Material

    α-Chitosan with the molecular weight of 1856 kDa and the degree of deacetylation (DDA) of 86.0% was provided by Qingdao Yunzhou Biochemical Corp. (Qingdao, China). The penicillin-streptomycin was obtained from Gibco BRL (Life Technologies, Shanghai, China). Fetal bovine serum (FBS) and Roswell Park Memorial Institute (RPMI) medium 1640 were provided by HyClone (Thermo Fisher Scientifi c, Logan, Utah, USA). The nuclear protein isolation kits and BCA protein assay kits were from ComWin Biotech (Beijing, China). Primary antibodies to p85, Akt, phospho-specifi c p85, phospho-specifi c Akt, c-fos, c-Jun, p65, and β-actin were provided by the Cell Signaling Technology (Beverly, MA, USA). Horseradish peroxidase-labeled (HRP-labeled) antibodies were provided by Abcam (Cambridge, MA, USA). The donkey anti-rabbit IgG H&L (Alexa Fluor?4647) secondary antibody were purchased from the Cell Signaling Technology (Beverly, MA, USA). Glycidyl trimethylammonium chloride was from Dongying Guofeng Fine Chemical Co. Ltd. (Shandong, China).

    2.2 Preparation of 2-hydroxypropyltrimethyl ammonium chloride chitosan

    The preparation of HACC was followed by the methods previous reported (Yang et al., 2019). Briefl y, glycidyl trimethylammonium chloride and chitosan powder are added in a three-necked bottomed fl ask with distilled water at 80°C for 24 h, and then the products are dialyzed, concentrated, and lyophilized to powder.

    2.3 Cell culture

    RAW 264.7 macrophages were provided by American Type Culture Collection (Manassas, VA, USA). After inactivated by heating, fetal bovine serum (FBS) was added to RPMI 1640 medium to the concentration of 10%. The antibiotics and glutamine were also added in the medium. Then the cells were cultured in the medium in an incubator with 5% CO2at 37°C.

    Fig.1 Efference ect of hydroxypropyltrimethyl ammonium chloride chitosan (HACC) on PI3k/Akt signaling pathway

    2.4 Western blotting

    To determine the expression levels of proteins in signaling pathways, RAW 264.7 cells (5×106cells/well) were plated and incubated in 6-well plates. After 24 h, HACC (50 μg/mL) were added to each well except the blank control. After the treatment with HACC for indicated time points, the cells were respectively collected and lysed by the lysis bufference er (ComWin Biotech, Beijing, China), and then the Roche complete protease inhibitor cocktail (Roche Diagnostics Ltd., Mannheim, Germany) were used to extract total proteins of cells. The nuclear protein isolation kits were used to extract nuclear proteins, and then BCA protein assay kits were utilized to determine the protein concentration. Equal amounts of supernatants were separated by SDS-PAGE and transferred onto polyvinylidene fl uoride membranes, and then primary antibodies and HRP-labeled secondary antibodies were added, incubated and washed. The bands were fi nally visualized using ECL reagents. The densities of the bands were quantifi ed by Quantity One software (Bio-Rad, Munich, Germany). Data were presented as mean±SD ( n=3) from independent experiments.

    2.5 Immunofl uorescent staining

    To determine the efference ect of HACC on p65 nuclear translocation, RAW 264.7 cells (1×106cells/mL) were seeded onto glass coverslips and incubated for 18 h in petri dishes. After pretreated with HACC (50 μg/mL), cells were washed by PBS and immobilized by paraformaldehyde. After washing three times with PBS, 0.5% Triton X-100 was added to permeabilize for 10 min, and then the slides were blocked with 3% BSA for 1 h. After washing with PBS, the monoclonal p65 antibody was introduced and incubated for 2 h. After another washing for three times, the slides were incubated with Donkey Anti-Rabbit IgG H&L secondary antibody and DAPI. The stained slides were observed using laser scanning confocal microscope (LSM 700, Zeiss, Jena, Germany).

    2.6 Scanning electron microscopy (SEM)

    To observe the morphologic change of cells after treated with HACC, cells were seeded and cultured in petri dishes for 18 h. Then the cells were treated with HACC (50 μg/mL), fi xed with glutaraldehyde, and washed three times with PBS. At last, cells were dewatered twice by 30% to 100% ethanol gradients and observed using SEM (FEI Quanta 450 FEG, Hillsboro, USA).

    3 RESULT

    3.1 HACC activated the PI3K/Akt pathway

    Based on our previous study, we chose HACC with the molecular weight of 5003 Da to explore whether HACC activated PI3K/Akt pathway. The phosphorylation levels of p85, Akt and PDK1 were determined. Cells were pretreated with HACC (50 μg/mL) for 0, 30, 60, 180, and 360 min. As shown in Fig.1, the phosphorylation levels of PDK1 increased in a time-dependent manner. While the phosphorylation level of p85 increased within 60 min and remained for 360 min. The phosphorylated Akt levels were also determined by the western blotting. The results show that the expression of p-Akt peaked at 60 min and decreased gradually during 360 min.

    Fig.2 Efference ects of the HACC (50 μg/mL) on the translocation of AP-1 and NF-κB

    3.2 Efference ects of HACC on the transcriptional activation

    To reveal the molecular mechanism of HACC in RAW 264.7 cells, the levels of two vital transcription factors, nuclear factor (NF)-κB and AP-1 were investigated. Figure 2 shows that HACC promoted the translocation of p65 (NF-κB subnit). Furthermore, the translocation of c-Jun (AP-1 subnit) was also promoted by HACC after 60 min. However, the immunoblotting results indicate that the translocation c-Fos was not afference ected by HACC in 360 min. These results indicate that HACC induced the nuclear translocation of AP-1 and NF-κB.

    3.3 Immunofl uorescence staining

    To visualize the translocation of NF-κB, immunofl uorescence staining was conducted. The results (Fig.3) show that p65 obviously translocated from cytoplasm to nucleus and accumulated after pretreatment with HACC (50 μg/mL).

    3.4 Efference ects of HACC on RAW 264.7 cells morphology

    To observe the morphology variation of RAW 264.7 cells after treated with HACC, SEM analysis was conducted. As shown in Fig.4a, untreated cells are round in shape and have smooth surface, while the HACC-treated cells were activated and the morphology was obviously altered. As shown in Fig.4b, cell difference erentiation is observed; the cells became polygon with projections, increased in size and are easier to detach from culture dishes.

    4 DISCUSSION

    RAW 264.7 macrophages were derived from a tumor in BAB/14 mouse inoculated with Abelson murine leukemia virus (MuLV) about 30 years ago (Raschke et al., 1978). The cells have been commonly accepted as a model to study the immune regulation of candidates (Hartley et al., 2008; Ma et al., 2011; Yu et al., 2017). Therefore, we used RAW 264.7 cells as the in vitro model to further explore the mechanisms of HACC.

    In our previous study (Yang et al., 2019), we demonstrated that HACC promoted the production of NO and proinfl ammatory cytokines by inducing the phosphorylation of ERK, JNK, p38, and STAT proteins in RAW 264.7 cells. However, the roles of other signaling pathways have not been explored. Therefore, we used HACC of 5003 Da to reveal the molecular mechanisms.

    Fig.3 Efference ects of HACC on p65 nuclear translocation in RAW 264.7 cells

    Fig.4 Morphology of RAW 264.7 cell morphology visualized by SEM analysis

    NF-κB is a eukaryotic transcription factor composed of RelA (p65), p50/p105 (NF-κB1), p52/p100 (NFκB2), c-Rel, and RelB (Nyati et al., 2017; Wen et al., 2018; Zhang and Igwe, 2018). It has been reported that NF-κB is related to the secretion of various proinfl ammatory cytokines such as TNF-α, iNOS and IL-1β (Gukovsky et al., 1998; Chen et al., 2005; Zhang et al., 2017). Furthermore, it has been reported that NF-κB is activated by many cellular kinases including MAPK (Guha and Mackman, 2001). Our previous results showed that HACC activated the MAPK signaling pathway which resulted in the production of NO and TNF-α, therefore we explored the role of NFκB in the HACC-induced activation of RAW 264.7 cells. P65 is a vital subunit of NF-κB complex, it is a vital signal for the initiation of the changes of NF-κB (Liang et al., 2018). The western blot analysis results showed that p65 participated the activation of cells which was consistent with the above reports. The confocal micrograph results (Fig.3) exhibited the increase of p65 in nucleus, which is consistent with the western blotting results. Li et al. (2014) also performed immunofl uorescence assay to determine the nuclear translocation of NF-κB (p65). Upon activation, NFκB was translocated to cell nucleus and regulated the transcription of proinfl ammatory cytokines (Gugasyan et al., 2000; Li et al., 2018; Zhang and Igwe, 2018). Additional to NF-κB, AP-1 is another vital transcription factor regulating the immune responses (Poltorak et al., 1998). It is composed of c-Jun and c-Fos family (Karin et al., 1997; Shen et al., 2013). It has been demonstrated that AP-1 could be regulated by MAPK pathway (Musti et al., 1997). As our previous results (Yang et al., 2019) show, HACC activated MAPK pathway, and we determined the variation of AP-1 in the activation of RAW 264.7 cells. The results (Fig.2) show that c-Jun was also promoted by HACC, but c-Fos was not afference ected by HACC, these results demonstrated that AP-1 was also afference ected by HACC.

    PI3K has been reported to play vital functions because of the signifi cance of cellular movement and membrane traき cking in the efference ector functions of immune cells (Koyasu, 2003). To determine the role of PI3K in the HACC-induced activation of RAW 264.7 cells, immunoblotting was conducted. The results (Fig.1) indicate that PI3K activation is involved in the activation process of RAW 264.7 and the production of cytokines release. However, the difference erent timedependent efference ects between Akt and p85 may be caused by two reasons. First, Akt could be activated through various signaling pathways in cells (Kao et al., 2005). Second, other subunits of PI3K such as p55, p50 also activated the downstream Akt. Our result is in accordance with the study in which PI3K was found involved in the signal transduction and resulted in the expression of iNOS and NO release induced by lipoteichoic acid (Kao et al., 2005). Tang et al. (2017) reported that the Akt phosphorylation was regulated by NF-κB; therefore, the phosphorylation level of Akt was also determined by the western blotting assay, and the results suggest that the phosphorylation of Akt was promoted by HACC. PDK1, the upstream protein of Akt, was also induced to phosphorylate by HACC (Fig.1). Taken together, our results are consistent with the study reporting that PI3K activation resulted in the downstream activation of Akt, thus leading to the NO expression in macrophages (Hattori et al., 2003). The SEM results (Fig.4) are in accordance with the results of the western blotting and further demonstrated that RAW 264.7 cells were activated by HACC.

    5 CONCLUSION

    In this paper, we further studied the molecular mechanisms of HACC-induced activation of RAW 264.7 cells. The results show that HACC promoted the production of NO and proinfl ammatory cytokines by activating PI3K-Akt signaling pathway. Furthermore, the western blotting and immunofl uorescence staining results demonstrated the activation was dependent on AP-1 and NF-κB activation. These results were helpful for providing the basis and illustrating the mechanisms for the immunostimulatory efference ect of HACC as an immunopotentiator.

    6 DATA AVAILABILITY STATEMENT

    The data that support the fi ndings of this study are available from the corresponding author upon reasonable request.

    7 ACKNOWLEDGMENT

    We gratefully acknowledge Dr. Weicheng HU for proving cell culture room in Huaiyin Normal University (Jiangsu, China).

    References

    Cantley L C. 2002. The phosphoinositide 3-kinase pathway. Science, 296(5573): 1 655-1 657.

    Chae H S, Kang O H, Lee Y S, Choi J G, Oh Y C, Jang H J, Kim M S, Kim J H, Jeong S I, Kwon D Y. 2009. Inhibition of LPS-induced iNOS, COX-2 and infl ammatory mediator expression by paeonol through the MAPKs inactivation in RAW 264.7 cells. Am. J. Chinese Med., 37(1): 181-194.

    Cheever M L, Sato T K, de Beer T, Kutateladze T G, Emr S D, Overduin M. 2001. Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes. Nature Cell Biology, 3(7): 613-618.

    Chen J J, Huang W C, Chen C C. 2005. Transcriptional regulation of cyclooxygenase-2 in response to proteasome inhibitors involves reactive oxygen species-mediated signaling pathway and recruitment of CCAAT/enhancerbinding protein δ and CREB-binding protein. Mol. Biol. Cell, 16(12): 5 579-5 591.

    Fang R H, Zhang L F. 2016. Nanoparticle-based modulation of the immune system. Annu. Rev. Chem. Biomol. Eng., 7(1): 305-326.

    Gugasyan R, Grumont R, Grossmann M, Nakamura Y, Pohl T, Nesic D, Gerondakis S. 2000. Rel/NF-κB transcription factors: key mediators of B-cell activation. Immunol. Rev., 176(1): 134-140.

    Guha M, Mackman N. 2001. LPS induction of gene expression in human monocytes. Cellular Signalling, 13(2): 85-94.

    Gukovsky I, Gukovskaya A S, Blinman T A, Zaninovic V, Pandol S J. 1998. Early NF-κB activation is associated with hormone-induced pancreatitis. Am. J. Physiol., 275(6): G1 402-G1 414.

    Hartley J W, Evans L H, Green K Y, Naghashfar Z, Macias A R, Zerfas P M, Ward J M. 2008. Expression of infectious murine leukemia viruses by RAW264.7 cells, a potential complication for studies with a widely used mouse macrophage cell line. Retrovirology, 5: 1.

    Hattori Y, Hattori S, Kasai K. 2003. Lipopolysaccharide activates Akt in vascular smooth muscle cells resulting in induction of inducible nitric oxide synthase through nuclear factor-kappa B activation. European Journal of Pharmacology, 481(2-3): 153-158.

    Johnson G L, Lapadat R. 2002. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 298(5600): 1 911-1 912.

    Kao S J, Lei H C, Kuo C T, Chang M S, Chen B C, Chang Y C, Chiu W T, Lin C H. 2005. Lipoteichoic acid induces nuclear factor-kappaB activation and nitric oxide synthase expression via phosphatidylinositol 3-kinase, Akt, and p38 MAPK in RAW 264.7 macrophages. Immunology, 115(3): 366-374.

    Karin M, Liu Z G, Zandi E. 1997. AP-1 function and regulation. Curr. Opin. Cell Biol., 9(2): 240-246.

    Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfi eld M D. 2001. Cellular function of phosphoinositide 3-kinases: implications for development, immunity, homeostasis, and cancer. Annual Review of Cell and Developmental Biology, 17(1): 615-675.

    Koyasu S. 2003. The role of PI3K in immune cells. Nat. Immunol., 4(4): 313-319.

    Kurita K. 2006. Chitin and chitosan: functional biopolymers from marine crustaceans. Mar. Biotechno., 8(3): 203-226.

    Lee C G, Da Silva C A, Lee J Y, Hartl D, Elias J A. 2008. Chitin regulation of immune responses: an old molecule with new roles. Curr. Opin. Immunol., 20(6): 684-689.

    Li K K, Shen S S, Deng X Y, Shiu H T, Siu W S, Leung P C, Ko C H, Cheng B H. 2018. Dihydrofi setin exerts its antiinfl ammatory efference ects associated with suppressing ERK/p38 MAPK and Heme Oxygenase-1 activation in lipopolysaccharide-stimulated RAW 264.7 macrophages and carrageenan-induced mice paw edema. International Immunopharmacology, 54: 366-374.

    Li L, Wang L Y, Wu Z Q, Yao L J, Wu Y H, Huang L, Liu K, Zhou X, Gou D M. 2014. Anthocyanin-rich fractions from red raspberries attenuate infl ammation in both RAW264.7 macrophages and a mouse model of colitis. Sci. Rep., 4: 6 234.

    Li Y, Qin Y K, Liu S, Li P C, Xing R E. 2016. Preparation, characterization, and antifungal activity of hymexazollinked chitosan derivatives. Chinese Journal of Oceanology and Limnology, 35(5): 1 079-1 085.

    Liang N, Sang Y X, Liu W H, Yu W L, Wang X H. 2018. Anti-Infl ammatory efference ects of gingerol on lipopolysaccharidestimulated RAW 264.7 cells by inhibiting NF-κB signaling pathway. Infl ammation, 41(3): 835-845.

    Liaqat F, Eltem R. 2018. Chitooligosaccharides and their biological activities: a comprehensive review. Carbohydr. Polym., 184: 243-259.

    Ma P, Liu H T, Wei P, Xu Q S, Bai X F, Du Y G, Yu C. 2011. Chitosan oligosaccharides inhibit LPS-induced overexpression of IL-6 and TNF-α in RAW264.7 macrophage cells through blockade of mitogen-activated protein kinase (MAPK) and PI3K/Akt signaling pathways. Carbohydr. Polym., 84(4): 1 391-1 398.

    Musti A M, Treier M, Bohmann D. 1997. Reduced ubiquitindependent degradation of c-Jun after phosphorylation by MAP Kinases. Science, 275(5298): 400-402.

    Nishimura K, Nishimura S, Nishi N, Saiki I, Tokura S, Azuma I. 1984. Immunological activity of chitin and its derivatives. Vaccine, 2(1): 93-99.

    Nyati K K, Masuda K, Zaman M M U, Dubey P K, Millrine D, Chalise J P, Higa M, Li S L, Standley D M, Saito K, Hanieh H, Kishimoto T. 2017. TLR4-induced NF-κB and MAPK signaling regulate the IL-6 mRNA stabilizing protein Arid5a. Nucleic Acids Res., 45(5): 2 687-2 703.

    Pillai C K S, Paul W, Sharma C P. 2009. Chitin and chitosan polymers: chemistry, solubility and fi ber formation. Progress in Polymer Science, 34(7): 641-678.

    Poltorak A, He X L, Smirnova I, Liu M Y, van Hufference el C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science, 282(5396): 2 085-2 088.

    Raschke W C, Baird S, Ralph P, Nakoinz I. 1978. Functional macrophage cell lines transformed by abelson leukemia virus. Cell, 15(1): 261-267.

    Schindler C, Levy D E, Decker T. 2007. JAK-STAT signaling: from interferons to cytokines. J. Biol. Chem., 282(28): 20 059-20 063.

    Shen T, Yang W S, Yi Y S, Sung G H, Rhee M H, Poo H, Kim M Y, Kim K W, Kim J H, Cho J Y. 2013. AP-1/IRF-3 targeted anti-Infl ammatory activity of andrographolide isolated from Andrographis paniculata. Evid. Based Complement Alternat. Med., 2013( 4): 210 736.

    Sun H X, Zhang J, Chen F Y, Chen X F, Zhou Z H, Wang H. 2015. Activation of RAW264.7 macrophages by the polysaccharide from the roots of Actinidia eriantha and its molecular mechanisms. Carbohydr. Polym., 121: 388-402.

    Tang B, Li X, Ren Y, Wang J, Xu D, Hang Y, Zhou T, Li F, Wang L. 2017. MicroRNA-29a regulates lipopolysaccharide (LPS)-induced infl ammatory responses in murine macrophages through the Akt1/ NFkappaB pathway. Exp. Cell Res., 360(2): 74-80.

    Wen Q, Mei L Y, Ye S, Liu X, Xu Q, Miao J F, Du S H, Chen D F, Li C, Li H. 2018. Chrysophanol demonstrates antiinfl ammatory properties in LPS-primed RAW 264.7 macrophages through activating PPAR-γ. International Immunopharmacology, 56: 90-97.

    Wymann M P, Pirola L. 1998. Structure and function of phosphoinositide 3-kinases. BBA- Mol. Cell. Biol. Lipids, 1436(1-2): 127-150.

    Yang Y, Xing R E, Liu S, Qin Y K, Li K C, Yu H H, Li P C. 2019. Hydroxypropyltrimethyl ammonium chloride chitosan activates RAW 264.7 macrophages through the MAPK and JAK-STAT signaling pathways. Carbohydr. Polym., 205: 401-409.

    Youn G S, Lee K W, Choi S Y, Park J. 2016. Overexpression of HDAC6 induces pro-infl ammatory responses by regulating ROS-MAPK-NF-κB/AP-1 signaling pathways in macrophages. Free Radical Biology and Medicine, 97: 14-23.

    Yu Y, Shen M Y, Wang Z J, Wang Y X, Xie M Y, Xie J H. 2017. Sulfated polysaccharide from Cyclocarya paliurus enhances the immunomodulatory activity of macrophages. Carbohydr. Polym., 174: 669-676.

    Zhang Q, Wang L R, Chen B H, Zhuo Q, Bao C Y, Lin L. 2017. Propofol inhibits NF-κB activation to ameliorate airway infl ammation in ovalbumin (OVA)-induced allergic asthma mice. International Immunopharmacology, 51: 158-164.

    Zhang Y, Igwe O J. 2018. Exogenous oxidants activate nuclear factor kappa B through Toll-like receptor 4 stimulation to maintain infl ammatory phenotype in macrophage. Biochem. Pharmacol., 147: 104-118.

    亚洲第一av免费看| 亚洲色图 男人天堂 中文字幕| av片东京热男人的天堂| 国产1区2区3区精品| 最近的中文字幕免费完整| 亚洲少妇的诱惑av| 国产成人精品在线电影| 欧美精品一区二区免费开放| 男女高潮啪啪啪动态图| 777久久人妻少妇嫩草av网站| 新久久久久国产一级毛片| 国产欧美亚洲国产| 午夜av观看不卡| av一本久久久久| 色婷婷久久久亚洲欧美| 男女无遮挡免费网站观看| 欧美日韩综合久久久久久| 少妇被粗大猛烈的视频| 最近中文字幕高清免费大全6| 国产黄色视频一区二区在线观看| 国产av一区二区精品久久| 精品免费久久久久久久清纯 | 亚洲色图 男人天堂 中文字幕| 国产精品三级大全| 欧美精品亚洲一区二区| 国产午夜精品一二区理论片| 国产精品久久久久久人妻精品电影 | 久久97久久精品| 久热爱精品视频在线9| 无遮挡黄片免费观看| 国产在线免费精品| 亚洲国产av新网站| 王馨瑶露胸无遮挡在线观看| 999久久久国产精品视频| 国产成人一区二区在线| av在线观看视频网站免费| 欧美日韩亚洲国产一区二区在线观看 | 日本av免费视频播放| 欧美少妇被猛烈插入视频| 亚洲自偷自拍图片 自拍| 日韩制服丝袜自拍偷拍| 在线精品无人区一区二区三| 制服诱惑二区| 高清不卡的av网站| 国产乱人偷精品视频| 国产不卡av网站在线观看| 国产高清不卡午夜福利| 久久精品久久久久久噜噜老黄| 国产片内射在线| 国产 精品1| 国产一区有黄有色的免费视频| 国产男女超爽视频在线观看| 精品一区二区三区四区五区乱码 | 天天添夜夜摸| 男女边摸边吃奶| 中文字幕色久视频| 女性被躁到高潮视频| 国产精品麻豆人妻色哟哟久久| 亚洲成人av在线免费| 日本色播在线视频| 黄色怎么调成土黄色| 秋霞在线观看毛片| 91精品三级在线观看| 亚洲色图 男人天堂 中文字幕| 国产人伦9x9x在线观看| 久久人人爽人人片av| 久久精品aⅴ一区二区三区四区| 老司机影院毛片| 久久久久精品久久久久真实原创| 国产99久久九九免费精品| 我要看黄色一级片免费的| 伊人久久大香线蕉亚洲五| 岛国毛片在线播放| 国产成人免费观看mmmm| 热99国产精品久久久久久7| 少妇精品久久久久久久| 国产女主播在线喷水免费视频网站| 国产精品秋霞免费鲁丝片| 国产1区2区3区精品| 久久久久久久国产电影| 精品国产乱码久久久久久男人| 少妇人妻久久综合中文| 老司机深夜福利视频在线观看 | 在线亚洲精品国产二区图片欧美| 国产高清不卡午夜福利| 免费久久久久久久精品成人欧美视频| 精品国产超薄肉色丝袜足j| 欧美激情 高清一区二区三区| 十八禁人妻一区二区| 美女扒开内裤让男人捅视频| av女优亚洲男人天堂| 巨乳人妻的诱惑在线观看| 一级毛片黄色毛片免费观看视频| 亚洲国产中文字幕在线视频| 国产精品国产三级国产专区5o| 国产伦理片在线播放av一区| 视频区图区小说| 久久韩国三级中文字幕| 新久久久久国产一级毛片| 免费女性裸体啪啪无遮挡网站| 久久久久视频综合| 亚洲精品日本国产第一区| 在线观看一区二区三区激情| 一级,二级,三级黄色视频| 久久久久精品国产欧美久久久 | 久久ye,这里只有精品| 在线观看www视频免费| 看免费成人av毛片| 99热网站在线观看| 国产精品一区二区精品视频观看| 欧美人与善性xxx| 哪个播放器可以免费观看大片| 人人妻人人添人人爽欧美一区卜| 亚洲av在线观看美女高潮| 午夜福利免费观看在线| 啦啦啦在线观看免费高清www| 欧美 亚洲 国产 日韩一| 亚洲专区中文字幕在线 | 在现免费观看毛片| 欧美激情 高清一区二区三区| 波多野结衣一区麻豆| 啦啦啦在线免费观看视频4| 老熟女久久久| 天堂中文最新版在线下载| 高清av免费在线| 日韩 亚洲 欧美在线| 亚洲精华国产精华液的使用体验| 成人黄色视频免费在线看| 黄色毛片三级朝国网站| 精品视频人人做人人爽| 日本色播在线视频| 午夜福利影视在线免费观看| 午夜福利乱码中文字幕| av福利片在线| 美国免费a级毛片| 国产一区有黄有色的免费视频| 老鸭窝网址在线观看| 搡老乐熟女国产| 另类精品久久| 国产有黄有色有爽视频| 男女边吃奶边做爰视频| 国产爽快片一区二区三区| 欧美日韩综合久久久久久| 一级片'在线观看视频| 97精品久久久久久久久久精品| 亚洲久久久国产精品| bbb黄色大片| 高清不卡的av网站| 日韩制服丝袜自拍偷拍| 交换朋友夫妻互换小说| av在线播放精品| 亚洲图色成人| 亚洲一码二码三码区别大吗| 久久久久久久精品精品| 国产一区有黄有色的免费视频| 日韩av不卡免费在线播放| 欧美日韩视频高清一区二区三区二| 熟妇人妻不卡中文字幕| 亚洲一区二区三区欧美精品| 午夜福利视频精品| 人妻 亚洲 视频| 免费观看a级毛片全部| 日韩欧美精品免费久久| 1024香蕉在线观看| av片东京热男人的天堂| 精品国产超薄肉色丝袜足j| 99re6热这里在线精品视频| 人人妻人人澡人人看| 中文字幕精品免费在线观看视频| 精品少妇黑人巨大在线播放| 日韩中文字幕视频在线看片| 婷婷色av中文字幕| 精品国产一区二区三区久久久樱花| 狂野欧美激情性xxxx| 亚洲欧美中文字幕日韩二区| 亚洲第一青青草原| 91aial.com中文字幕在线观看| 好男人视频免费观看在线| 无遮挡黄片免费观看| 视频在线观看一区二区三区| 精品国产国语对白av| 男人添女人高潮全过程视频| av免费观看日本| 人妻人人澡人人爽人人| 欧美激情 高清一区二区三区| 一区二区av电影网| 9热在线视频观看99| 人妻一区二区av| 国产一区二区在线观看av| 亚洲精品久久午夜乱码| 久久狼人影院| 波多野结衣一区麻豆| netflix在线观看网站| 伊人久久国产一区二区| 日本av免费视频播放| 最近手机中文字幕大全| a级片在线免费高清观看视频| 婷婷色综合大香蕉| 国产精品99久久99久久久不卡 | 免费日韩欧美在线观看| 美女高潮到喷水免费观看| 可以免费在线观看a视频的电影网站 | 19禁男女啪啪无遮挡网站| 在线观看三级黄色| 亚洲美女搞黄在线观看| 婷婷色麻豆天堂久久| 少妇猛男粗大的猛烈进出视频| 日韩 欧美 亚洲 中文字幕| 波多野结衣一区麻豆| 日本欧美国产在线视频| 精品少妇黑人巨大在线播放| 欧美国产精品一级二级三级| 精品亚洲成a人片在线观看| 十八禁人妻一区二区| 亚洲国产最新在线播放| 亚洲久久久国产精品| 狂野欧美激情性xxxx| 啦啦啦啦在线视频资源| 永久免费av网站大全| 校园人妻丝袜中文字幕| 亚洲第一av免费看| 日韩不卡一区二区三区视频在线| 亚洲精品第二区| 国产高清不卡午夜福利| 久久97久久精品| 欧美黑人精品巨大| 国产麻豆69| 亚洲欧美激情在线| 51午夜福利影视在线观看| 校园人妻丝袜中文字幕| 欧美黑人精品巨大| 精品午夜福利在线看| 亚洲av综合色区一区| 中文字幕另类日韩欧美亚洲嫩草| 亚洲 欧美一区二区三区| 国产淫语在线视频| 操美女的视频在线观看| 黄网站色视频无遮挡免费观看| 在线天堂最新版资源| 精品第一国产精品| 丝袜喷水一区| 成人国产麻豆网| 日韩 亚洲 欧美在线| 久久女婷五月综合色啪小说| 国产成人av激情在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 婷婷色综合大香蕉| 国产精品一区二区精品视频观看| 亚洲欧美一区二区三区黑人| 咕卡用的链子| 亚洲av日韩精品久久久久久密 | 啦啦啦中文免费视频观看日本| 精品国产一区二区三区四区第35| 极品人妻少妇av视频| 亚洲精品成人av观看孕妇| 90打野战视频偷拍视频| 色婷婷av一区二区三区视频| av天堂久久9| a级毛片黄视频| 18禁动态无遮挡网站| 你懂的网址亚洲精品在线观看| 色视频在线一区二区三区| 亚洲第一av免费看| bbb黄色大片| 秋霞在线观看毛片| 永久免费av网站大全| 精品卡一卡二卡四卡免费| 国产成人一区二区在线| 搡老乐熟女国产| 免费少妇av软件| 亚洲美女黄色视频免费看| 在现免费观看毛片| 大陆偷拍与自拍| 久久人人爽av亚洲精品天堂| 考比视频在线观看| 成人三级做爰电影| 一级爰片在线观看| av片东京热男人的天堂| 成年av动漫网址| 又大又爽又粗| 99久国产av精品国产电影| 欧美激情极品国产一区二区三区| 综合色丁香网| 亚洲国产精品999| 啦啦啦在线观看免费高清www| 亚洲av成人不卡在线观看播放网 | 狠狠婷婷综合久久久久久88av| 精品一区二区三区av网在线观看 | 一级毛片 在线播放| 亚洲国产欧美日韩在线播放| 1024视频免费在线观看| 成年人午夜在线观看视频| 最近中文字幕2019免费版| av在线播放精品| 亚洲成人国产一区在线观看 | av不卡在线播放| 岛国毛片在线播放| 久久97久久精品| 久久av网站| 一边亲一边摸免费视频| 精品亚洲乱码少妇综合久久| 中文字幕人妻熟女乱码| 婷婷色av中文字幕| 91aial.com中文字幕在线观看| 狂野欧美激情性bbbbbb| 电影成人av| 99久国产av精品国产电影| 免费高清在线观看日韩| 大片免费播放器 马上看| 久久av网站| 欧美另类一区| 久久狼人影院| 免费久久久久久久精品成人欧美视频| 男女无遮挡免费网站观看| 成人国语在线视频| 精品人妻一区二区三区麻豆| 精品国产一区二区久久| 亚洲av综合色区一区| 丝袜人妻中文字幕| 亚洲一区二区三区欧美精品| 午夜日韩欧美国产| 亚洲中文av在线| 亚洲情色 制服丝袜| 久久精品aⅴ一区二区三区四区| 久久久久视频综合| videos熟女内射| 美女主播在线视频| 免费黄色在线免费观看| 国产精品 国内视频| 最近手机中文字幕大全| 香蕉丝袜av| 91精品伊人久久大香线蕉| 人人妻人人爽人人添夜夜欢视频| 国产精品女同一区二区软件| 欧美黑人欧美精品刺激| 亚洲国产中文字幕在线视频| 亚洲国产毛片av蜜桃av| 亚洲国产欧美在线一区| 美女中出高潮动态图| 一级毛片 在线播放| 亚洲伊人色综图| 精品国产乱码久久久久久小说| 性色av一级| 麻豆av在线久日| 五月天丁香电影| 在线天堂最新版资源| 欧美日韩国产mv在线观看视频| 黄色一级大片看看| 看免费av毛片| 久热这里只有精品99| 日本猛色少妇xxxxx猛交久久| 日韩视频在线欧美| 午夜久久久在线观看| 国产淫语在线视频| 久久久国产一区二区| 国产日韩欧美亚洲二区| 久久久久精品久久久久真实原创| 午夜精品国产一区二区电影| 亚洲熟女精品中文字幕| 亚洲国产欧美日韩在线播放| 日本一区二区免费在线视频| 成年av动漫网址| 久久久久精品久久久久真实原创| 99久久人妻综合| 国产欧美日韩综合在线一区二区| 三上悠亚av全集在线观看| 亚洲色图 男人天堂 中文字幕| 久久精品久久久久久久性| 日韩大码丰满熟妇| 国产亚洲一区二区精品| 老鸭窝网址在线观看| 777久久人妻少妇嫩草av网站| 交换朋友夫妻互换小说| www日本在线高清视频| 国产av精品麻豆| 欧美日韩视频高清一区二区三区二| 国产毛片在线视频| 久久久久久久精品精品| 看免费成人av毛片| 久久综合国产亚洲精品| 日韩,欧美,国产一区二区三区| 国产99久久九九免费精品| 看免费成人av毛片| netflix在线观看网站| 大陆偷拍与自拍| 王馨瑶露胸无遮挡在线观看| av.在线天堂| 欧美国产精品va在线观看不卡| 欧美日韩一区二区视频在线观看视频在线| 女性被躁到高潮视频| 天天操日日干夜夜撸| 五月天丁香电影| 亚洲精品aⅴ在线观看| 成年人午夜在线观看视频| 中文天堂在线官网| 侵犯人妻中文字幕一二三四区| 日韩av不卡免费在线播放| 亚洲五月色婷婷综合| 1024视频免费在线观看| 亚洲精品国产区一区二| 日本wwww免费看| 老熟女久久久| 大码成人一级视频| 秋霞伦理黄片| 久久久久人妻精品一区果冻| 亚洲精华国产精华液的使用体验| 女人精品久久久久毛片| 如何舔出高潮| 色精品久久人妻99蜜桃| 啦啦啦在线免费观看视频4| 日韩视频在线欧美| 狂野欧美激情性xxxx| 狠狠精品人妻久久久久久综合| 大话2 男鬼变身卡| 亚洲国产精品一区三区| 国产精品久久久av美女十八| 亚洲美女视频黄频| 老司机亚洲免费影院| 日韩欧美一区视频在线观看| 人人妻人人澡人人看| 久久人人爽人人片av| 亚洲av电影在线进入| 黑人欧美特级aaaaaa片| 国产免费又黄又爽又色| 亚洲欧洲国产日韩| 天堂俺去俺来也www色官网| 国产免费福利视频在线观看| 国产免费视频播放在线视频| 亚洲视频免费观看视频| 一级片'在线观看视频| 国产日韩欧美在线精品| 各种免费的搞黄视频| 91成人精品电影| 亚洲伊人久久精品综合| 天天躁夜夜躁狠狠躁躁| 久久久久精品久久久久真实原创| 999久久久国产精品视频| 最黄视频免费看| 亚洲精品国产av蜜桃| 久久久久精品久久久久真实原创| 中文字幕亚洲精品专区| av免费观看日本| 国产成人欧美| 亚洲熟女精品中文字幕| 亚洲精品国产区一区二| 亚洲精品日韩在线中文字幕| 在现免费观看毛片| 日韩不卡一区二区三区视频在线| 午夜福利影视在线免费观看| 九草在线视频观看| 国产日韩一区二区三区精品不卡| av视频免费观看在线观看| 国产男人的电影天堂91| av线在线观看网站| 婷婷色综合大香蕉| 啦啦啦啦在线视频资源| 亚洲人成电影观看| 99热全是精品| 麻豆av在线久日| 日韩中文字幕欧美一区二区 | av片东京热男人的天堂| 99久久人妻综合| 少妇人妻 视频| 中文字幕亚洲精品专区| 亚洲熟女精品中文字幕| 国产无遮挡羞羞视频在线观看| 电影成人av| 老司机在亚洲福利影院| 亚洲七黄色美女视频| 国语对白做爰xxxⅹ性视频网站| 大香蕉久久网| 啦啦啦视频在线资源免费观看| 午夜福利,免费看| 国产一区二区 视频在线| 亚洲成人国产一区在线观看 | 美女国产高潮福利片在线看| 国产成人精品久久二区二区91 | 99国产精品免费福利视频| 观看美女的网站| 亚洲精品美女久久久久99蜜臀 | 在线免费观看不下载黄p国产| 1024视频免费在线观看| 天堂俺去俺来也www色官网| 在线精品无人区一区二区三| 亚洲欧洲日产国产| 在线观看一区二区三区激情| 日韩大片免费观看网站| 免费黄频网站在线观看国产| 777米奇影视久久| 午夜福利一区二区在线看| 久久影院123| 欧美黑人欧美精品刺激| 国精品久久久久久国模美| 国产精品.久久久| 国语对白做爰xxxⅹ性视频网站| 免费观看av网站的网址| www日本在线高清视频| 欧美精品人与动牲交sv欧美| 久久人人爽人人片av| 欧美精品一区二区免费开放| 男人爽女人下面视频在线观看| 在线天堂中文资源库| 午夜福利视频精品| 黄色一级大片看看| 亚洲国产精品一区三区| 日本欧美视频一区| 色综合欧美亚洲国产小说| 欧美97在线视频| 免费久久久久久久精品成人欧美视频| 热99久久久久精品小说推荐| 日韩成人av中文字幕在线观看| 看十八女毛片水多多多| 一本大道久久a久久精品| 男的添女的下面高潮视频| 国产亚洲av高清不卡| 黄片无遮挡物在线观看| 飞空精品影院首页| 性少妇av在线| 亚洲欧美色中文字幕在线| 国产精品三级大全| 午夜福利,免费看| 91精品伊人久久大香线蕉| 肉色欧美久久久久久久蜜桃| 成年人午夜在线观看视频| 国产极品天堂在线| 纯流量卡能插随身wifi吗| 国产一区二区在线观看av| 国产xxxxx性猛交| 免费av中文字幕在线| 一本一本久久a久久精品综合妖精| 丁香六月欧美| 国产av精品麻豆| 老司机在亚洲福利影院| 中文欧美无线码| 三上悠亚av全集在线观看| 桃花免费在线播放| 一区福利在线观看| 精品一区二区三区av网在线观看 | 国产黄频视频在线观看| 国产爽快片一区二区三区| 成人国产麻豆网| 日韩视频在线欧美| 丁香六月欧美| a级毛片在线看网站| 亚洲美女搞黄在线观看| 国产亚洲最大av| 欧美日韩综合久久久久久| 亚洲欧美激情在线| 国产精品亚洲av一区麻豆 | 天天躁日日躁夜夜躁夜夜| 一级,二级,三级黄色视频| 乱人伦中国视频| 国产精品一区二区在线不卡| 你懂的网址亚洲精品在线观看| 妹子高潮喷水视频| 爱豆传媒免费全集在线观看| 亚洲精品久久午夜乱码| 国产福利在线免费观看视频| 亚洲精品国产av蜜桃| 国产亚洲午夜精品一区二区久久| 人人妻人人澡人人爽人人夜夜| 国产精品一区二区精品视频观看| 精品一区二区三区四区五区乱码 | 成人亚洲精品一区在线观看| 亚洲五月色婷婷综合| 女人精品久久久久毛片| 在线精品无人区一区二区三| 亚洲一区中文字幕在线| 少妇被粗大猛烈的视频| 两个人免费观看高清视频| 9191精品国产免费久久| 这个男人来自地球电影免费观看 | 中文字幕最新亚洲高清| 在线天堂最新版资源| 999精品在线视频| 亚洲精品国产一区二区精华液| videosex国产| 少妇人妻精品综合一区二区| 最新在线观看一区二区三区 | 国产熟女欧美一区二区| 蜜桃国产av成人99| 亚洲国产中文字幕在线视频| 免费高清在线观看日韩| 热re99久久精品国产66热6| 成人三级做爰电影| 成人亚洲精品一区在线观看| 国产精品一二三区在线看| 18禁裸乳无遮挡动漫免费视频| 国产一区二区三区综合在线观看| 国产精品99久久99久久久不卡 | av视频免费观看在线观看| 咕卡用的链子| 波多野结衣一区麻豆| 一区二区日韩欧美中文字幕| 欧美日韩国产mv在线观看视频| 香蕉国产在线看| 男人添女人高潮全过程视频| 大片免费播放器 马上看| 91国产中文字幕| 精品视频人人做人人爽| 精品国产国语对白av| 午夜av观看不卡| 一区二区日韩欧美中文字幕| 人妻人人澡人人爽人人| 美女主播在线视频| 亚洲视频免费观看视频| 2021少妇久久久久久久久久久| 国产极品粉嫩免费观看在线| 成人午夜精彩视频在线观看| 美国免费a级毛片| 少妇被粗大猛烈的视频| 亚洲欧美成人精品一区二区| 在现免费观看毛片| 国产麻豆69| 国产探花极品一区二区|