• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    bHLH genes polymorphisms and their association with growth traits in the Pacifi c oyster Crassostrea gigas*

    2020-06-08 05:34:46CHENNaLILiLIChenghuaLINZhihuaMENGJieLIUShengSONGKaiBAOYongbo
    Journal of Oceanology and Limnology 2020年3期

    CHEN Na , LI Li , LI Chenghua , LIN Zhihua MENG Jie , LIU Sheng , SONG Kai , BAO Yongbo ,

    1 Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315121, China

    2 School of Marine Sciences, Ningbo University, Ningbo 315211, China

    3 Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China

    Received Mar. 16, 2019; accepted in principle Jul. 2, 2019; accepted for publication Aug. 19, 2019 ? Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

    Abstract The basic helix-loop-helix (bHLH) genes encode a large superfamily of transcription factors in the Pacifi c oyster ( Crassostrea gigas), and play a very important role in regulation of growth and development. To investigate the oyster growth traits and the associations with bHLH genes variations, we analyzed the gene polymorphisms-traits association in a wild population, and confi rmed the results in another independent wild population by targeted gene re-sequencing and SNPshot analysis. After screening the single nucleotide polymorphisms (SNPs) in three candidate genes of the bHLH family (88 bHLH genes in two wild oyster populations in total), we identifi ed the allele CgLoblHLH4-T/G located in the exon of the CgLoblHLH4 gene. This allele is a non-synonymous mutation (Phe/Leu) with an extremely signifi cant association with shell width ( P <0.01) and allele G is benefi cial to shell width. This SNP on the CgLoblHLH4 gene might have a potential value as a genetic marker of growth traits that could be used in breeding in C. gigas in the future.

    Keyword: Crassostrea gigas; basic helix-loop-helix (bHLH); re-sequencing; single nucleotide polymorphism (SNP) shot; growth traits * Supported by the National Key R&D Program of China (No. 2018YFD0901400), the National Natural Science Foundation of China (No. 31672678), the Ningbo Municipal Science and Technology International Cooperation Research Projects (No. 2016D10017), and the Zhejiang Provincial Major Program of Science and Technology (No. 2016C02055-9) ** Corresponding author: bobbao2001@gmail.com

    1 INTRODUCTION

    The Pacifi c oyster Crassostrea gigas is an economically and ecologically important mollusk extensive distribution in many countries, such as China and Japan (She et al., 2015; Qi et al., 2017) and it has one of the highest levels of genomic DNA variation (Zhang et al., 2012). With the rapid development of marker-assisted selection (MAS), genetic improvement of many aquaculture species have been achieved (Lo Presti et al., 2010), which greatly improve the eき ciency and accuracy of selection in breeding schemes. Single nucleotide polymorphisms (SNPs) are highly abundant and a codominant mode of inheritance with ease of highthroughput detection (Qi et al., 2017). This has resulted in widespread use of SNPs in MAS (Morin et al., 2004; Park et al., 2009; Fournier-Level et al., 2011; Gaut, 2012). Therefore, identifi cation of genetic markers associated with growth traits could accelerate C. gigas breeding programs (Cong et al., 2014).

    Only a few genes that are signifi cantly associated with growth are detected, because of insuき cient biological pathways and genetic knowledge involved in bivalve growth regulation. For example, gene TGF-beta I (Guo et al., 2012), an insulin-related peptide, is signifi cantly associated with growth traits of C. gigas, such as shell width, soft mass, and body mass (Cong et al., 2014). The amylase gene of the polymorphism was associated with growth rate in C. gigas (Prudence et al., 2006; Huvet et al., 2008). Furthermore, there are many studies showing that some bHLH genes are associated with growth traits. For example, Lai et al. (2013) found two new mutations in the bHLHe40 gene, and they were signifi cantly correlated with growth traits in cattle. Xue et al. (2011) found a novel SNP in the MyoG gene, and it was signifi cantly correlated with body length in native Chinese cattle breeds. The family of transcription factors bHLH plays an important regulatory role in the process of biological growth and development (Atchley and Fitch, 1997). These genes are involved in regulation of neuronal development, cellular difference erentiation, growth, hematopoiesis, sex determination, bowel development, and apoptosis (Atchley and Fitch, 1997; Ledent and Vervoort, 2001). Meanwhile, many studies have shown that the MyoD1 gene is associated with growth traits in chickens, pigs, ducks, and other animals (Liu et al., 2008; Wu et al., 2012).

    Here we analyzed the bHLH family of genes related to growth traits in oysters, from which we screened a set of candidate genes for association analysis using re-sequencing in a wild population. We then validated the results in an independent population using the SNPshot method. Our research aims to identify the bHLH genes and mutations associated with growth traits, and provide genetic tools for MAS of oysters.

    2 MATERIAL AND METHOD

    2.1 Animals, traits and DNA extraction

    A total of 417 wild C. gigas from Qingdao (QD1), China, were collected for discovery SNP for preliminary association analysis. Moreover, 288 wild C. gigas were randomly sampled from Qingdao (QD2). Shell height, length, and width were measured using an electronic Vernier caliper (0.01 mm accuracy). Body mass and soft-tissue mass were weighed with an electronic balance (0.1 g accuracy).

    Genomic DNA was obtained from adductor muscles of QD1 and QD2 using a genomic DNA isolation kit (Non-centrifugal columnar, Tiangen, Beijing, China). The extracted DNA was examined by 1% agarose gel electrophoresis, and the DNA purity and concentration was quantitatively determined using A NanoDrop spectrophotometer (Thermo Scientifi c, Waltham, MA, USA). When the concentration is ≥30 ng/μL, the purity level (optical density [OD]: OD260/OD280) is 1.7-2.0, which can then be used. The prepared DNA samples were diluted to 10-30 ng/μL with DEPC water and then stored at -80°C.

    2.2 Re-sequencing

    An amount of 5 μg DNA of each individual was sheared into fragments of 200-800 bp using the Covaris system (Life Technologies, Carlsbad, CA). DNA fragments were processed according to the Illumina DNA sample preparation protocol. Fragments were end-repaired, A-tailed, ligated to paired-end adaptors, and amplifi ed by PCR to 400-500 bp inserts for library construction (Qi et al., 2017). Sequencing was performed to generate 100-bp paired-end reads on the HiSeq 2000 platform (Illumina), according to the manufacturer standard protocols.

    2.3 Sequence alignment and genotype calling

    Filtered sequence from all individuals were aligned to the Pacifi c oyster reference genome (GenBank accession number GCA_000297895.1) using the BWA (Burrows-Wheeler Aligner) software and set up parameters ‘mem -M -t 10 -T 20’ (Li and Durbin, 2009). Picard-tools (version 1.117) were used to sort and index the bam alignment fi les. The insertions and deletions (INDELs) in the bam fi les realignment using the Genome Analysis Toolkit (GATK) (McKenna et al., 2010) module RealignerTargetCreator and IndelRealigner and base quality score recalibration was performed using BaseRecalibrator. Population variant calling was processed by HaplotypeCaller module from GATK (Li et al., 2018). Candidate SNPs were fi ltered in multiple steps using several criteria to eliminate possible false-positives, and to distribute SNPs relatively evenly across the bHLH family genes. For each oyster, if a SNP had low genotype quality (GQ<20), or low excessive read coverage (DP<0 or DP>100), the SNP genotype call of the individual was considered to be missing or invalid (Qi et al., 2017).

    2.4 Validation of candidate SNPs

    Screened six SNPs were genotyped using an ABI (Applied Biosystems, Foster City, CA, USA) SNPshot method, according to the manufacturer manual. PCR primers (Table 1) were designed according to candidate genes. The DNA sample was obtained from adductor muscles of QD2. The amplifi cation parameters were 95°C denaturation for 5 min, 94°C for 30 s, 50-55°C for 30 s, 72°C for 45 s for 35 cycles, plus a 72°C extension step of 10 min for both SNPs (Guo et al., 2015). All SNPs reported in this manuscript had a genotyping success rate >98% and accuracy >99%, as judged by random re-genotyping of 20% of the samples in the cohort.

    2.5 Statistical analysis

    The values of oyster related traits were analyzed by SPSS version 16.0, including the number, mean, maximum, minimum, standard deviation, and coeき cient of variation of each trait. SPSS version 16.0 was used to conduct the descriptive statistical analysis of the trait. We also performed a correlation analysis to determine whether SNPs were correlated with shell height, shell length, shell width, body mass, or soft-tissue mass. Growth traits between difference erent genotypes were compared using ANOVA, using SPSS version 16.0.

    3 RESULT

    3.1 Phenotypic statistics

    Five growth index parameters were measured: shell height, shell width, shell length, soft-tissue mass, and body mass (Supplementary Tables S1 & S2); this data were normally distributed ( P >0.05) in QD1 and QD2 wild oysters (Supplementary Figs.S1 & S2).

    Table 1 Primer sets used for analysis of SNPs in candidate genes

    3.2 Re-sequencing and selection of SNPs

    For SNP discovery, we re-sequenced 417 wild oysters with coverage of >20 fold for each individual. After aligning the reads to 88 reference sequences of oyster bHLH through BWA, we identifi ed 4 096 high quality SNPs using Samtools and GATK software. Then, we selected 661 SNPs in candidate genes from the total of bHLH genes (Supplementary Table S3). We identifi ed two genes from the C group of CgAhR and CgLtclockHLH, and one novel CgLoblHLH4 gene. By aligning the reads of the 5.92 kb (Table 2) candidate gene sequence, we identifi ed 62 high quality SNPs from a total of 661 SNPs associated with growth traits ( P <0.05).

    SNPs associated with shell height, shell width, shell length, soft-tissue mass, and body mass that were detected in candidate genes are shown on Manhattan plots (Fig.1). CgLoblHLH4 in chromosome 4 had 12 high quality SNPs associated with growth traits. CgLtclockHLH in chromosome 5 had 21 high quality SNPs associated with growth traits. CgAhR of chromosome 17 had 29 high quality SNPs associated with growth traits. The horizontal blue dashed line is the threshold; SNPs above this line are signifi cantly associated with growth traits ( P <0.05). The horizontal red dashed line is the threshold; SNPs above this line are very signifi cantly associated with growth traits ( P <0.01). A polymorphism can be associated with several growth traits, so there are repeated points.

    3.3 Validation of candidate SNPs

    At the second stage of candidate gene association analysis, using the six SNPs genotyped by the SNPshot method (Table 3), we identifi ed one SNP (CgLoblHLH4-T/G) associated with length ( P <0.05). CgLoblHLH4-T/G was located in the exon of CgLoblHLH4. It was a non-synonymous mutation that changed the amino acid composition of Leu to Phe. In QD1 and QD2, shell widths of oysters with GG allele were wider than that of TT and TG ( P <0.05). The remaining 5 SNPs were not signifi cantly associated with growth traits in this oyster population. The SNP CgAhR-C/A genotype AA and CC are both signifi cantly wider than heterozygote AC in shell length is not analysis in our study.

    Table 2 The distribution of SNPs for each resequenced genes

    Fig.1 The Manhattan plot of SNPs associated with growth traits

    Table 3 Efference ect of SNPs in the gene on growth traits in QD2

    4 DISCUSSION

    By aligning the reads of the 5.92 kb reference sequence, a SNP calling was made per each 8.93 bp on average, which was suき cient for correlation analysis. It is well known genetic variation is the key to long-term improvement of cultured strains (Zhong et al., 2013; Wang et al., 2014). Therefore, the discovery and efference ective use of genetic variation is essential for the sustainable development of aquaculture (Guo, 2009). In this study, 661 SNPs were identifi ed in the coding study region of the candidate genes, which is consistent with previous study that the oysters have one of the highest levels of genomic polymorphism in animals (Zhang et al., 2012).

    CgLoblHLH4-T/G was located in the exon of the CgLoblHLH4 gene. In QD1 and QD2, individuals with GG shell width were higher than those with TT and TG shell width, and have non-synonymous mutations, resulting in a change of an amino acid in the coding region from Phe to Leu, the Leu allele appears to be associated with an increase in shell width. It is speculated that the encoded amino acid is altered by changing the protein structure and biological activity, lead to oysters have better growth traits. The CgLoblHLH4 gene is a novel gene specifi c for lophotrochozoan. Bao et al. (2017) found that the CgLoblHLH gene family is duplicated in C. gigas, yielding four genes. The expression of these genes in early development, as determined by transcriptome data analysis, is dynamic, it appears to change successively through CgLoblHLH4 in oocytes and cleavage stage embryo, to CgLoblHLH2 in gastrula stages, and to CgLoblHLH1 by the trochophore stage (Bao et al., 2017). These fi ndings have been confi rmed in our current research (unpublished). Therefore, it is reasonable to speculate that the CgLoblHLH4 gene plays an important role in early development stage of C. gigas, and determines the shell width index of C. gigas. However, there are no reports on the regulatory mechanism of CgLoblHLH4 gene for growth regulation in C. gigas, which need for further study.

    5 CONCLUSION

    We detected SNPs in 88 candidate genes from the bHLH family and their association with growth traits. Firstly, 661 SNPs were called by re-sequencing candidate genes in QD1. In the second stage, six SNPs were genotyped by SNPshot method, and fi nally CgLoblHLH4-T/G in the CgLoblHLH4 gene was found to be related to shell width. In addition, the shell of C. gigas with the GG genotype was wider than that of oysters with TT and TG genotypes. Oysters with GG genotype have growth advantages for breeding. These fi ndings not only provide an insight into the genetic basis of C. gigas quality traits, but also provide molecular markers for MAS of oysters.

    6 DATA AVAILABILITY STATEMENT

    The whole-genome re-sequencing and transcriptome datasets are deposited in the Sequence Read Archive (SRA) database under the accession number PRJNA394055.

    References

    Atchley W R, Fitch W M. 1997. A natural classifi cation of the basic helix-loop-helix class of transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 94(10): 5 172-5 176, https://doi.org/10.1073/pnas.94.10.5172.

    Bao Y B, Xu F, Shimeld S M. 2017. Phylogenetics of lophotrochozoan bHLH genes and the evolution of lineage-specifi c gene duplicates. Genome Biology and Evolution, 9(4): 869-886, https://doi.org/10.1093/gbe/evx047.

    Cong R H, Kong L F, Yu H, Li Q. 2014. Association between polymorphism in the insulin receptor -related receptor gene and growth traits in the Pacifi c oyster Crassostrea gigas. Biochemical Systematics and Ecology, 54: 144-149, https://doi.org/10.1016/j.bse.2014.02.003.

    Fournier-Level A, Korte A, Cooper M D, Nordborg M, Schmitt J, Wilczek A M. 2011. A map of local adaptation in Arabidopsis thaliana. Science, 334(6052): 86-89, https://doi.org/10.1126/science.1209271.

    Gaut B. 2012. Arabidopsis thaliana as a model for the genetics of local adaptation. Nature Genetics, 44(2): 115-116, https://doi.org/10.1038/ng.1079.

    Guo H H, Bao Z M, Li J Q, Lian S S, Wnag S, He Y, Fu X T, Zhang L L, Hu X L. 2012. Molecular characterization of TGF-β type I receptor gene (Tgfbr1) in Chlamys farreri, and the association of allelic variants with growth traits. PLoS One, 7(11): e51005, https://doi.org/10.1371/journal.pone.0051005.

    Guo S X, Hu Y H, Ding Y S, Liu J M, Zhang M, Ma R L, Guo H, Wang K, He J, Yan Y Z, Rui D S, Sun F, Mu L T, Niu Q, Zhang J Y, Li S G. 2015. Association between eight functional polymorphisms and haplotypes in the cholesterol ester transfer protein (CETP) gene and dyslipidemia in national minority adults in the far west region of China. International Journal of Environmental Research and Public Health, 12(12): 15 979-15 992, https://doi.org/10.3390/ijerph121215036.

    Guo X M. 2009. Use and exchange of genetic resources in molluscan aquaculture. Reviews in Aquaculture, 1(3-4): 251-259, https://doi.org/10.1111/j.1753-5131.2009.01014.x.

    Huvet A, Jefference roy F, Fabioux C, Daniel J Y, Quillien V, Van Wormhoudt A, Moal J, Samain J F, Boudry P, Pouvreau S. 2008. Association among growth, food consumptionrelated traits and amylase gene polymorphism in the Pacifi c oyster Crassostrea gigas. Animal Genetics, 39(6): 662-665, https://doi.org/10.1111/j.1365-2052.2008.01776.x.

    Lai X S, Zhang C G, Wang J, Wang C, Lan X Y, Lei C Z, Chen H. 2013. Developmental expression patterns and association study with growth traits of bovine Bhlhe 40 gene. Molecular Biology, 47(5): 674-680, https://doi.org/10.1134/s0026893313050105.

    Ledent V, Vervoort M. 2001. The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. Genome Research, 11(5): 754-770, https://doi.org/10.1101/gr.177001.

    Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14): 1 754-1 760, https://doi.org/10.1093/bioinformatics/btp324.

    Li L, Li A, Song K, Meng J, Guo X M, Li S M, Li C Y, De Wit P, Que H Y, Wu F C, Wang W, Qi H G, Xu F, Cong R H, Huang B Y, Li Y X, Wang T, Tanh X Y, Liu S, Li B S, Shi R H, Liu Y L, Bu C, Zhang C, He W M, Zhao S C, Li H J, Zhang S D, Zhang L L, Zhang G F. 2018. Divergence and plasticity shape adaptive potential of the Pacifi c oyster. Nature Ecology & Evolution, 2(11): 1 751-1 760, https://doi.org/10.1038/s41559-018-0668-2.

    Liu M, Peng J, Xu D Q, Zheng R, Li F E, Li J L, Zuo B, Lei M G, Xiong Y Z, Deng C Y, Jiang S W. 2008. Association of MYF5 and MYOD1 gene polymorphisms and meat quality traits in large white × meishan F2 pig populations. Biochemical Genetics, 46(11-12): 720-732, https://doi.org/10.1007/s10528-008-9187-1.

    Lo Presti R, Lisa C, Di Stasio L. 2010. Molecular genetics in aquaculture. Italian Journal of Animal Science, 8(3): 299-313, https://doi.org/10.4081/ijas.2009.299.

    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. 2010. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9): 1 297-1 303, https://doi.org/10.1101/gr.107524.110.

    Morin P A, Luikart G, Wayne R K, the SNP Workshop Group. 2004. SNPs in ecology, evolution and conservation. Trends in Ecology & Evolution, 19(4): 208-216, https://doi.org/10.1016/j.tree.2004.01.009.

    Park Y J, Lee J K, Kim N S. 2009. Simple sequence repeat polymorphisms (SSRPs) for evaluation of molecular diversity and germplasm classifi cation of minor crops. Molecules, 14(11): 4 546-4 569, https://doi.org/10.3390/molecules14114546.

    Prudence M, Moal J, Boudry P, Daniel J Y, Quéré C, Jefference roy F, Mingant C, Ropert M, Bédier E, Van Wormhoudt A, Samain J F, Huvet A. 2006. An amylase gene polymorphism is associated with growth difference erences in the Pacifi c cupped oyster Crassostrea gigas. Animal Genetics, 37(4): 348-351, https://doi.org/10.1111/j.1365-2052.2006.01481.x.

    Qi H G, Song K, Li C Y, Wang W, Li B S, Li L, Zhang G F. 2017. Construction and evaluation of a high-density SNP array for the Pacifi c oyster ( Crassostrea gigas). PLoS One, 12(3): e0174007, https://doi.org/10.1371/journal.pone.0174007.

    She Z C, Li L, Qi H G, Song K, Que H Y, Zhang G F. 2015. Candidate gene polymorphisms and their association with glycogen content in the pacifi c oyster Crassostrea gigas. PLoS One, 10(5): e0124401, https://doi.org/10.1371/journal.pone.0124401.

    Wang J F, Qi H G, Li L, Que H Y, Wang D, Zhang G F. 2014. Discovery and validation of genic single nucleotide polymorphisms in the Pacifi c oyster Crassostrea gigas. Molecular Ecology Resources, 15(1): 123-135, https://doi.org/10.1111/1755-0998.12278.

    Wu Y, Pi J S, Pan A L, Pu Y J, Du J P, Shen J, Liang Z H, Zhang J R. 2012. An SNP in the MyoD1 gene intron 2 associated with growth and carcass traits in three duck populations. Biochemical Genetics, 50(11-12): 898-907, https://doi.org/10.1007/s10528-012-9530-4.

    Xue M, Zan L S, Gao L, Wang H B. 2011. A novel polymorphism of the myogenin gene is associated with body measurement traits in native Chinese breeds. Genetics & Molecular Research, 10(4): 2 721-2 728, https://doi.org/10.4238/ 2011.November.4.6.

    Zhang G F, Fang X D, Guo X M, Li L, Luo R B, Xu F, Yang P C, Zhang L L, Wang X T, Qi H G, Xiong Z Q, Que H Y, Xie Y L, Holland P W H, Paps J, Zhu Y P, Wu F C, Chen Y X, Wang J F, Peng C F, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z Y, Zhu Q H, Feng Y, Mount A, Hedgecock D, Xu Z, Liu Y J, Domazet-Lo?o T, Du Y S, Sun X Q, Zhang S D, Liu B H, Cheng P Z, Jiang X T, Li J, Fan D D, Wang W, Fu W J, Wang T, Wang B, Zhang J B, Peng Z Y, Li Y, Li N, Wang J P, Chen M S, He Y, Tan F J, Song X R, Zheng Q M, Huang R L, Yang H L, Du X D, Chen L, Yang M, Gafference ney P M, Wang S, Luo L H, She Z C, Ming Y, Huang W, Zhang S, Huang B Y, Zhang Y, Qu T, Ni P X, Miao G Y, Wang J Y, Wang Q, Steinberg C E W, Wang H Y, Li N, Qian L M, Zhang G J, Li Y R, Yang H M, Liu X, Wang J, Yin Y, Wang J. 2012. The oyster genome reveals stress adaptation and complexity of shell formation. Nature, 490(7418): 49-54, https://doi.org/10.1038/nature11413.

    Zhong X X, Li Q, Yu H, Kong L F. 2013. Development and Validation of single-nucleotide polymorphism markers in the pacifi c oyster, Crassostrea gigas, using high-resolution melting analysis. Journal of the World Aquaculture Society, 44(3): 455-465, https://doi.org/10.1111/jwas.12044.

    亚洲自偷自拍图片 自拍| 9热在线视频观看99| 免费日韩欧美在线观看| 丝袜在线中文字幕| 精品亚洲成国产av| 国产一卡二卡三卡精品| 日韩熟女老妇一区二区性免费视频| 久久精品国产亚洲av高清一级| 一级,二级,三级黄色视频| 麻豆国产av国片精品| 99热网站在线观看| 亚洲avbb在线观看| 亚洲精品av麻豆狂野| 在线 av 中文字幕| 韩国精品一区二区三区| 热99久久久久精品小说推荐| 日韩欧美免费精品| 青草久久国产| 可以免费在线观看a视频的电影网站| 欧美国产精品一级二级三级| 9191精品国产免费久久| 一区二区三区激情视频| av线在线观看网站| 精品人妻在线不人妻| 男女无遮挡免费网站观看| 日本精品一区二区三区蜜桃| 纵有疾风起免费观看全集完整版| 欧美日韩福利视频一区二区| 高清在线国产一区| 亚洲专区字幕在线| 三上悠亚av全集在线观看| 国产亚洲精品第一综合不卡| 伦理电影免费视频| 欧美精品啪啪一区二区三区| 亚洲免费av在线视频| 国产精品偷伦视频观看了| 欧美日韩亚洲综合一区二区三区_| 国产精品二区激情视频| avwww免费| 国产精品麻豆人妻色哟哟久久| 一区二区三区激情视频| 91大片在线观看| 大片电影免费在线观看免费| 一区二区三区精品91| 国产精品秋霞免费鲁丝片| av网站在线播放免费| 精品欧美一区二区三区在线| 免费在线观看日本一区| 午夜激情av网站| 久久久久久久国产电影| 黄片小视频在线播放| 欧美激情高清一区二区三区| 亚洲国产av影院在线观看| 久久久精品94久久精品| 精品少妇久久久久久888优播| 国产老妇伦熟女老妇高清| 亚洲精品中文字幕在线视频| 老熟女久久久| 岛国毛片在线播放| 这个男人来自地球电影免费观看| 老司机午夜十八禁免费视频| 丁香六月欧美| 国产成人啪精品午夜网站| 怎么达到女性高潮| 757午夜福利合集在线观看| 美女视频免费永久观看网站| 女人被躁到高潮嗷嗷叫费观| 国产一卡二卡三卡精品| 电影成人av| 18禁裸乳无遮挡动漫免费视频| 国产精品一区二区免费欧美| 少妇 在线观看| 亚洲三区欧美一区| 国产又爽黄色视频| 天天添夜夜摸| 人人妻人人澡人人看| 高清在线国产一区| 少妇猛男粗大的猛烈进出视频| 少妇 在线观看| 精品亚洲成国产av| 国产精品.久久久| 日本黄色日本黄色录像| 久久亚洲真实| 99热国产这里只有精品6| 色尼玛亚洲综合影院| 黑人操中国人逼视频| 丰满饥渴人妻一区二区三| 国产精品亚洲一级av第二区| 新久久久久国产一级毛片| 国产欧美日韩精品亚洲av| 亚洲av日韩精品久久久久久密| 男人操女人黄网站| 男女高潮啪啪啪动态图| a级毛片黄视频| 12—13女人毛片做爰片一| 91麻豆精品激情在线观看国产 | 国产精品一区二区免费欧美| 不卡av一区二区三区| 12—13女人毛片做爰片一| 一进一出好大好爽视频| 欧美精品人与动牲交sv欧美| 亚洲成a人片在线一区二区| 黄色怎么调成土黄色| 少妇 在线观看| 久久久久久久国产电影| 久久久久精品国产欧美久久久| netflix在线观看网站| 国产一区二区在线观看av| 午夜激情久久久久久久| 亚洲欧洲日产国产| 18禁裸乳无遮挡动漫免费视频| 高清毛片免费观看视频网站 | 亚洲午夜理论影院| 国产精品 欧美亚洲| 欧美久久黑人一区二区| 五月天丁香电影| 欧美日韩黄片免| 波多野结衣av一区二区av| 久久久久久久国产电影| 日本欧美视频一区| 1024香蕉在线观看| 露出奶头的视频| 最新的欧美精品一区二区| 日本vs欧美在线观看视频| www.熟女人妻精品国产| xxxhd国产人妻xxx| 在线十欧美十亚洲十日本专区| 丝袜在线中文字幕| 国产精品国产av在线观看| 日本精品一区二区三区蜜桃| 国产av一区二区精品久久| 久久精品人人爽人人爽视色| 在线观看免费日韩欧美大片| av又黄又爽大尺度在线免费看| 一本久久精品| 好男人电影高清在线观看| 日韩欧美一区二区三区在线观看 | 18在线观看网站| 女性生殖器流出的白浆| 露出奶头的视频| 视频区欧美日本亚洲| 18禁美女被吸乳视频| 亚洲性夜色夜夜综合| 精品国产乱码久久久久久男人| 中文字幕人妻丝袜一区二区| 天天添夜夜摸| 欧美精品人与动牲交sv欧美| 在线观看免费午夜福利视频| 香蕉国产在线看| 亚洲伊人久久精品综合| 一级片'在线观看视频| 亚洲国产欧美网| 免费在线观看影片大全网站| 人妻一区二区av| 亚洲人成电影观看| 国精品久久久久久国模美| 亚洲熟女毛片儿| 蜜桃国产av成人99| 日韩视频在线欧美| 女性生殖器流出的白浆| 中亚洲国语对白在线视频| 亚洲综合色网址| 两性午夜刺激爽爽歪歪视频在线观看 | 精品人妻在线不人妻| 国产伦人伦偷精品视频| 大片电影免费在线观看免费| 亚洲一区中文字幕在线| 亚洲视频免费观看视频| 69精品国产乱码久久久| 人人妻人人添人人爽欧美一区卜| 丰满饥渴人妻一区二区三| tube8黄色片| 女性生殖器流出的白浆| 国产成人欧美在线观看 | av天堂久久9| 久久精品国产综合久久久| 麻豆成人av在线观看| 久久亚洲精品不卡| 视频在线观看一区二区三区| 欧美大码av| 国产精品久久久久久精品电影小说| 国产又爽黄色视频| 亚洲一区二区三区欧美精品| 免费在线观看日本一区| 欧美精品亚洲一区二区| 女人高潮潮喷娇喘18禁视频| 叶爱在线成人免费视频播放| 国产黄频视频在线观看| www.熟女人妻精品国产| 国产精品亚洲一级av第二区| 91麻豆精品激情在线观看国产 | 老司机靠b影院| 宅男免费午夜| 欧美乱妇无乱码| 天堂8中文在线网| 超碰97精品在线观看| 男女床上黄色一级片免费看| aaaaa片日本免费| 夜夜骑夜夜射夜夜干| 无遮挡黄片免费观看| 91av网站免费观看| 多毛熟女@视频| 欧美 亚洲 国产 日韩一| tube8黄色片| 久久人妻福利社区极品人妻图片| 精品欧美一区二区三区在线| 激情在线观看视频在线高清 | 悠悠久久av| 久久av网站| 成人黄色视频免费在线看| 亚洲精品乱久久久久久| 黄色视频在线播放观看不卡| av视频免费观看在线观看| 精品国产一区二区三区久久久樱花| 无人区码免费观看不卡 | 亚洲欧美色中文字幕在线| 亚洲精品中文字幕一二三四区 | 久久久国产欧美日韩av| 纵有疾风起免费观看全集完整版| 高清av免费在线| 亚洲欧美精品综合一区二区三区| 日韩欧美一区视频在线观看| 国产精品成人在线| 脱女人内裤的视频| 亚洲专区中文字幕在线| 丝袜美腿诱惑在线| 日韩中文字幕视频在线看片| 青青草视频在线视频观看| 国产亚洲精品一区二区www | 国产视频一区二区在线看| av视频免费观看在线观看| 十八禁人妻一区二区| 精品国产乱子伦一区二区三区| 国产成人欧美| 国产精品av久久久久免费| 可以免费在线观看a视频的电影网站| 999精品在线视频| 久久精品人人爽人人爽视色| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品在线美女| 国产精品 国内视频| 在线观看免费高清a一片| 一进一出好大好爽视频| 国产男女内射视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产极品粉嫩免费观看在线| 国产精品1区2区在线观看. | av超薄肉色丝袜交足视频| 午夜福利视频精品| 99国产精品免费福利视频| 中文字幕色久视频| 黑人巨大精品欧美一区二区蜜桃| 69精品国产乱码久久久| 精品国产亚洲在线| 日韩大码丰满熟妇| 曰老女人黄片| 国产有黄有色有爽视频| 亚洲精品久久午夜乱码| 国产91精品成人一区二区三区 | 欧美老熟妇乱子伦牲交| 亚洲avbb在线观看| 亚洲第一av免费看| 亚洲成a人片在线一区二区| 超碰97精品在线观看| 啪啪无遮挡十八禁网站| 亚洲自偷自拍图片 自拍| 亚洲精品美女久久久久99蜜臀| 熟女少妇亚洲综合色aaa.| av线在线观看网站| bbb黄色大片| 亚洲精品成人av观看孕妇| 91av网站免费观看| 亚洲中文日韩欧美视频| 国产一区二区激情短视频| 丰满人妻熟妇乱又伦精品不卡| 无遮挡黄片免费观看| 亚洲人成电影免费在线| 亚洲熟女毛片儿| 男女下面插进去视频免费观看| 国产av国产精品国产| 狠狠精品人妻久久久久久综合| 亚洲精品久久成人aⅴ小说| aaaaa片日本免费| 咕卡用的链子| 不卡一级毛片| 国产不卡av网站在线观看| 亚洲精华国产精华精| 男人操女人黄网站| 最新美女视频免费是黄的| 中文字幕av电影在线播放| 亚洲精品国产区一区二| 精品国产乱码久久久久久男人| 一区二区三区乱码不卡18| 亚洲精品成人av观看孕妇| 亚洲精品粉嫩美女一区| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久久久免费视频了| 波多野结衣av一区二区av| 免费人妻精品一区二区三区视频| 日日爽夜夜爽网站| 99re在线观看精品视频| 国产av又大| 国产高清videossex| 黄色 视频免费看| 黄频高清免费视频| 久久久精品国产亚洲av高清涩受| 久久 成人 亚洲| av电影中文网址| 国产高清视频在线播放一区| 91麻豆精品激情在线观看国产 | 久久久久网色| 91麻豆精品激情在线观看国产 | 天天影视国产精品| 久久性视频一级片| 一本大道久久a久久精品| 国产av一区二区精品久久| 国产成人av教育| 美女国产高潮福利片在线看| 一本一本久久a久久精品综合妖精| 亚洲国产欧美一区二区综合| 久久影院123| 亚洲 国产 在线| 欧美在线一区亚洲| 日本av手机在线免费观看| 精品亚洲成a人片在线观看| 精品国产乱码久久久久久男人| 黄色丝袜av网址大全| 成人av一区二区三区在线看| 91av网站免费观看| 搡老乐熟女国产| 天天躁夜夜躁狠狠躁躁| 狠狠狠狠99中文字幕| 久久久久久久久免费视频了| 亚洲少妇的诱惑av| 久久久久国内视频| 黑人操中国人逼视频| 蜜桃在线观看..| 日本撒尿小便嘘嘘汇集6| 亚洲成人免费电影在线观看| 国产欧美日韩精品亚洲av| 国产人伦9x9x在线观看| 久久天堂一区二区三区四区| svipshipincom国产片| h视频一区二区三区| 狂野欧美激情性xxxx| 99国产极品粉嫩在线观看| 操出白浆在线播放| 久久久精品区二区三区| 亚洲色图 男人天堂 中文字幕| 丰满饥渴人妻一区二区三| 十八禁人妻一区二区| 在线观看66精品国产| 男女免费视频国产| 欧美性长视频在线观看| 狠狠狠狠99中文字幕| 热99国产精品久久久久久7| 免费女性裸体啪啪无遮挡网站| 2018国产大陆天天弄谢| 黑人操中国人逼视频| 久久毛片免费看一区二区三区| 国产单亲对白刺激| 女人被躁到高潮嗷嗷叫费观| 亚洲av第一区精品v没综合| 最新美女视频免费是黄的| 国产日韩欧美亚洲二区| 成人手机av| 五月天丁香电影| 亚洲中文av在线| 国产男女内射视频| 免费在线观看影片大全网站| 一夜夜www| 久久99热这里只频精品6学生| 免费少妇av软件| 制服诱惑二区| 五月天丁香电影| 国产一区二区激情短视频| 欧美中文综合在线视频| 亚洲国产成人一精品久久久| 国产福利在线免费观看视频| 啦啦啦视频在线资源免费观看| 两个人免费观看高清视频| 菩萨蛮人人尽说江南好唐韦庄| 国产精品98久久久久久宅男小说| 日韩三级视频一区二区三区| 夫妻午夜视频| 乱人伦中国视频| 欧美日韩成人在线一区二区| 高清欧美精品videossex| 国产成人精品在线电影| 我要看黄色一级片免费的| 一夜夜www| 成年人午夜在线观看视频| 国产成人精品无人区| 老司机在亚洲福利影院| 欧美精品人与动牲交sv欧美| 亚洲成人免费电影在线观看| 午夜精品久久久久久毛片777| 黄色 视频免费看| 一区在线观看完整版| 老熟妇仑乱视频hdxx| 99久久国产精品久久久| 女人高潮潮喷娇喘18禁视频| 欧美成人免费av一区二区三区 | 亚洲视频免费观看视频| 黄色怎么调成土黄色| 黄色视频不卡| 精品卡一卡二卡四卡免费| 国产一区二区三区在线臀色熟女 | 国产成人av激情在线播放| 国产欧美日韩精品亚洲av| 啦啦啦视频在线资源免费观看| 国产成人精品在线电影| 国产精品熟女久久久久浪| 国产成人精品久久二区二区91| 97人妻天天添夜夜摸| 丝袜人妻中文字幕| 亚洲精品国产区一区二| 久久这里只有精品19| 久久久国产欧美日韩av| 一级片'在线观看视频| 久久久精品免费免费高清| 高清在线国产一区| 一二三四社区在线视频社区8| 精品少妇久久久久久888优播| av有码第一页| 超碰成人久久| 久久久久国内视频| 亚洲精品中文字幕在线视频| 国产麻豆69| 欧美av亚洲av综合av国产av| 欧美成人免费av一区二区三区 | 久久av网站| 成人18禁高潮啪啪吃奶动态图| 欧美黑人欧美精品刺激| 中文字幕av电影在线播放| 成人亚洲精品一区在线观看| 欧美日韩国产mv在线观看视频| 俄罗斯特黄特色一大片| 下体分泌物呈黄色| 满18在线观看网站| 丝袜美足系列| 午夜福利,免费看| 超碰成人久久| 亚洲成人免费av在线播放| 国产精品久久久久久人妻精品电影 | 国产av又大| 亚洲一区中文字幕在线| 丝袜美腿诱惑在线| 91老司机精品| 新久久久久国产一级毛片| 一区福利在线观看| 国产成人免费观看mmmm| 免费在线观看影片大全网站| 欧美亚洲 丝袜 人妻 在线| 欧美乱妇无乱码| 中文字幕高清在线视频| 亚洲九九香蕉| 精品福利观看| 波多野结衣一区麻豆| 国产欧美日韩一区二区三区在线| 18禁裸乳无遮挡动漫免费视频| 一区二区日韩欧美中文字幕| 国产日韩一区二区三区精品不卡| 久久久国产精品麻豆| 欧美性长视频在线观看| 大香蕉久久成人网| 欧美+亚洲+日韩+国产| 免费不卡黄色视频| 国产av一区二区精品久久| 怎么达到女性高潮| 91av网站免费观看| 在线观看免费视频日本深夜| 精品熟女少妇八av免费久了| 国产一区有黄有色的免费视频| 国产精品久久电影中文字幕 | 国产欧美亚洲国产| 亚洲专区字幕在线| 高清毛片免费观看视频网站 | 真人做人爱边吃奶动态| 亚洲欧美一区二区三区黑人| 动漫黄色视频在线观看| 99久久精品国产亚洲精品| 欧美在线黄色| 久久热在线av| 国产av精品麻豆| 一边摸一边抽搐一进一出视频| a在线观看视频网站| 久久久久久人人人人人| 老司机午夜福利在线观看视频 | 亚洲avbb在线观看| 99精品欧美一区二区三区四区| 精品高清国产在线一区| 人成视频在线观看免费观看| 成人av一区二区三区在线看| 久久久久国产一级毛片高清牌| 国产一卡二卡三卡精品| 99久久99久久久精品蜜桃| 夜夜爽天天搞| 天天躁夜夜躁狠狠躁躁| 午夜久久久在线观看| 欧美黑人欧美精品刺激| 国产成+人综合+亚洲专区| 最近最新免费中文字幕在线| 中文字幕制服av| 婷婷丁香在线五月| 捣出白浆h1v1| 757午夜福利合集在线观看| 青草久久国产| tube8黄色片| 欧美久久黑人一区二区| 久久人妻福利社区极品人妻图片| 精品少妇一区二区三区视频日本电影| 热99re8久久精品国产| 国产主播在线观看一区二区| 窝窝影院91人妻| 亚洲国产精品一区二区三区在线| 精品国产亚洲在线| 一本色道久久久久久精品综合| av视频免费观看在线观看| 日日爽夜夜爽网站| 欧美精品一区二区大全| 免费在线观看影片大全网站| 欧美成人免费av一区二区三区 | 天天添夜夜摸| 女同久久另类99精品国产91| 99久久国产精品久久久| 欧美变态另类bdsm刘玥| 亚洲av成人一区二区三| 18在线观看网站| 精品亚洲乱码少妇综合久久| 黄色丝袜av网址大全| 露出奶头的视频| 在线观看66精品国产| 国产麻豆69| 一进一出好大好爽视频| 91九色精品人成在线观看| 亚洲av日韩在线播放| 国产精品熟女久久久久浪| 51午夜福利影视在线观看| 岛国在线观看网站| 亚洲精华国产精华精| 蜜桃国产av成人99| 久久这里只有精品19| 亚洲成人免费av在线播放| 国产激情久久老熟女| 久久av网站| 午夜日韩欧美国产| 亚洲七黄色美女视频| 免费在线观看视频国产中文字幕亚洲| 母亲3免费完整高清在线观看| 成人特级黄色片久久久久久久 | 欧美日韩国产mv在线观看视频| 国产亚洲精品久久久久5区| 9热在线视频观看99| 如日韩欧美国产精品一区二区三区| 91字幕亚洲| 性少妇av在线| 国产高清激情床上av| 国产精品一区二区免费欧美| 十八禁网站网址无遮挡| 王馨瑶露胸无遮挡在线观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲一区中文字幕在线| 又大又爽又粗| 久热爱精品视频在线9| 久久免费观看电影| 蜜桃国产av成人99| 日本wwww免费看| videos熟女内射| 婷婷丁香在线五月| 99re在线观看精品视频| 伦理电影免费视频| 捣出白浆h1v1| 午夜91福利影院| 免费观看av网站的网址| 精品福利观看| 青草久久国产| 自线自在国产av| 狂野欧美激情性xxxx| 亚洲国产看品久久| 伦理电影免费视频| 久久久水蜜桃国产精品网| 成人精品一区二区免费| 男女之事视频高清在线观看| 变态另类成人亚洲欧美熟女 | 成人18禁在线播放| 99精品欧美一区二区三区四区| 美女福利国产在线| 亚洲av第一区精品v没综合| 黑人巨大精品欧美一区二区mp4| 久久久国产成人免费| 男女午夜视频在线观看| 日韩中文字幕视频在线看片| 欧美日韩国产mv在线观看视频| 精品亚洲成a人片在线观看| 精品国产一区二区久久| 婷婷成人精品国产| 69精品国产乱码久久久| 97在线人人人人妻| 成年女人毛片免费观看观看9 | 法律面前人人平等表现在哪些方面| 国产真人三级小视频在线观看| 久久这里只有精品19| 日韩制服丝袜自拍偷拍| 男女边摸边吃奶| 日韩中文字幕欧美一区二区| 午夜精品久久久久久毛片777| 欧美在线黄色| 亚洲欧美日韩高清在线视频 | 不卡av一区二区三区| 黄片大片在线免费观看| 老汉色∧v一级毛片| 一本色道久久久久久精品综合| 久久久欧美国产精品| 美女福利国产在线|