• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Behavioral responses to ocean acidifi cation in marine invertebrates: new insights and future directions*

    2020-06-08 05:34:34WANGTingWANGYouji
    Journal of Oceanology and Limnology 2020年3期

    WANG Ting , WANG Youji ,

    1 National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China

    2 International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China

    3 Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China

    Received Apr. 24, 2019; accepted in principle Jun. 17, 2019; accepted for publication Aug. 26, 2019 ? Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

    Abstract Ocean acidifi cation (OA) afference ects marine biodiversity and alters the structure and function of marine populations, communities, and ecosystems. Recently, efference ects of OA on the behavioral responses of marine animals have been given with much attention. While many of previous studies focuses on marine fi sh. Evidence suggests that marine invertebrate behaviors were also be afference ected. In this review, we discussed the efference ects of CO 2-driven OA on the most common behaviors studied in marine invertebrates, including settlement and habitat selection, feeding, anti-predatory, and swimming behaviors, and explored the related mechanisms behind behaviors. This review summarizes how OA afference ects marine invertebrate behavior, and provides new insights and highlights novel areas for future research.

    Keyword: carbon dioxide; global climate change; invertebrate behavior; ocean acidifi cation (OA); pH

    1 INTRODUCTION

    Rapid increase in atmospheric carbon dioxide (CO2) concentration and subsequent ocean acidifi cation (OA) have been reported for having a broad range of biological impacts on marine animals, including efference ects on physiology, growth and development, calcifi cation, and overall survival (Kroeker et al., 2010, 2013 for meta-analytical reviews). More recently, behavioral consequences of OA for marine animals have been of great interest (Brifference a et al., 2012; Clements and Hunt, 2015; Nagelkerken and Munday, 2016). Animal behaviors not only regulate the overall welfare and status of specifi c species and their populations (Sih et al., 2004), but also have a potential evolutionary ability to afference ect ecosystems (Fabry et al., 2008). For example, changes in foraging or feeding behavior have a certain impact on the survival and reproduction of animals, and the prey’s resistance or evasion to predators can afference ect populations and community structures and ultimately ecosystem functions (Persons et al., 2001). It is thus critical to understand the potential efference ects of global change stressors such as ocean acidifi cation on the behavior of marine animals. Here, we provide an updated overview of the behavioral impacts of OA on the most common marine invertebrates, such as settlement and habitat selection, feeding behavior, anti-predator responses, swimming and movement, and explore the potential mechanisms behind behaviors, highlighting new insights and key directions for future research of OA and the behavior.

    2 OVERVIEW OF OCEAN ACIDIFICATION ON INVERTEBRATE BEHAVIORS

    Experimental evidences suggest that near-future ocean acidifi cation can exert impacts on a number of behavioral processes that are important for growth and survival of marine invertebrates (Table 1).

    Table 1 A summary of the impacts of ocean acidifi cation on marine invertebrate behaviors

    To be continued

    Table 1 Continued

    2.1 Settlement and habitat selection

    Most marine invertebrates have a planktonic larval stage. When competent, they settle and metamorphose, switching from a pelagic to benthic lifestyle. This transitionary period has a signifi cant impact on the population dynamics and community structure, as successful settlement is necessary for population recruitment (Rodríguez et al., 1993; Caley et al., 1996). Suitable habitat selection and the avoidance of predators are key for at-settlement and post-settlement success (Gosselin and Qian, 1997; Hunt and Scheibling, 1997). Thus, larvae not only need to locate suitable benthic habitats properly, but also must assess the environmental quality in order to choose an ideal habitat (Igulu et al., 2011, 2013). To do this, settling invertebrate larvae make use of olfactory and visual functions to detect environmental cues and select suitable habitats during settlement (Huijbers et al., 2012). However, difference erent sense functions may exhibit difference erent sensitivities to elevated CO2. For example, animals using visual cues for settlement may be signifi cantly afference ected by elevated CO2(Ferrari et al., 2012). Some animals using visual or other perceptual pathways can compensate for diminished olfactory ability under elevated CO2(Devine et al., 2012). Those difference erential sensitivities may be a compensatory mechanism to overcome efference ects of OA on settlement. Moreover, during larval settlement, some species using multiple sensory pathways to detect and choose habitat have been proved less susceptible to OA efference ects than the species using a single sensory pathway.

    OA can also have indirect efference ects on invertebrate settlement. For example, OA can afference ect metamorphosis and settlement of coral larvae by afference ecting the symbiosis of corals and microorganisms (Webster et al., 2013). Nakamura et al. (2011) reported that metamorphosis in the coral Acropora digitifera was hindered under OA conditions, and the delayed metamorphosis indirectly afference ected coral settlement and recruitment, despite sustained larval survival. In addition to coral settlement, OA has also been reported to alter the settlement behavior of other invertebrates as well, including marine molluscs, echinoderms, foraminifera, nematodes, polychaetes, crustaceans, and chaetognaths (Cigliano et al., 2010; Uthicke et al., 2013; Maboloc and Chan, 2017; Pecquet et al., 2017; García et al., 2018). Additionally, recent evidences suggest that OA can alter biogenic habitat (created by plants and animals), which can afference ect the composition of settlement cues and potentially reduce the availability of suitable settlement habitat (Uthicke et al., 2013; Sunday et al., 2017). However, much more work is needed to determine how the combined direct (e.g. sensory interference) and indirect (e.g. delayed metamorphosis, alteration of biogenic habitat, etc.) efference ects of elevated CO2act to alter settlement behavior in marine invertebrates.

    2.2 Feeding behavior

    Food provides the necessary energy to carry out functions for life. Experimental evidences suggest that elevated CO2can afference ect the ability of marine invertebrates to feed, although efference ects are variable. For example, Christmas (2013) reported that there was no signifi cant difference erence in feeding rates of either the dungeness crab Metacarcinus magister or the Pacifi c green shore crab Hemigrapsus oregonensis larvae between the CO2treatments. The predation success rate of the predatory sea snail Conus marmoreus on the tropical conch Gibberulus gibberulus gibbosus was reported to be negatively afference ected by elevated CO2, as predation rates decreased by ~50% under acidifi cation (Watson et al., 2017). The predatory muricid gastropods Morula marginalba consumed higher amount of oysters Saccostrea glomerata from elevated CO2estuarine sites than oysters from reference sites (Amaral et al., 2012). In a predator-prey system containing mussels Brachidontes pharaonic (prey) and predatory crabs Eriphia verrucosa, Dupont et al. (2015) showed that handling time of the crabs was signifi cantly reduced by ~27% when feeding on mussels from elevated CO2conditions. Xu et al. (2017) found that the prey handling time of the muricid gastropod Thais clavigera on the mussel Brachidontes variabilis was decreased signifi cantly while the prey consumption rate was independent of p CO2levels, although the prey searching time was increased signifi cantly at elevated p CO2. These fi ndings indicated that the predator-prey interaction between T. clavigera and B. variabilis was altered under OA, which may have a long-term impact on the population dynamics of the interspecifi c interaction. However, Glaspie et al. (2017) found that the handling time and search time for the crab Callinectes sapidus preying on clams was not impacted by the acidifi ed treatment. Recent evidences emphasized that the ecological outcomes of predator-prey interactions are dependent on the efference ects of elevated CO2on both the predator and the prey (Kroeker et al., 2014 for detailed examples). The potential for near-future OA to afference ect such nuanced ecological interactions requires further research.

    Other than active foraging, fi lter feeding is a quite typical feeding behavior of many sessile invertebrates such as bivalve mollusks. Recent studies have reported that OA could negatively afference ect the feeding of bivalves. For example, Zhao et al. (2017a) demonstrated that clearance rate of the blood clam Tegillarca granosa was signifi cantly suppressed by OA treatment, indicating the feeding activity of the clam was impaired under OA scenarios. In addition, after exposure to OA, the mussel Mytilus coruscus would reduce the feeding rate (Wang et al., 2015), and the Manila clam Ruditapes philippinarum would decrease the food uptake (Xu et al., 2016). The impaired feeding activity may reduce the energy uptake from food sources, infl uence the growth and reproduction of these organisms, and ultimately have population and community consequences.

    Wu et al. (2017) reported that food selectivity of Japanese shore crab Charybdis japonica, was unaltered by elevated CO2, while foraging and feeding time were increased under elevated CO2, and the same situation was also found in the brown crab Cancer pagurus (Wang et al., 2018). The lack of selectivity efference ect may have resulted from that the weaker periwinkle shell under OA ofference sets the weaker crab claw on crushing prey (Landes and Zimmer, 2012). Wright et al. (2018a) demonstrated that the endemic whelk Tenguella marginalba showed no preference between native preys (the Sydney rock oyster Saccostrea glomerate and the mussel Trichomya hirsuta) and invasive Pacifi c oyster Crassostrea gigas. However, when both oysters and whelks were kept under elevated p CO2, the whelk T. marginalba consumed more oysters C. gigas than S. glomerate (Wright et al., 2018b). Elevated p CO2may increase the energy requirements of the predatory whelks to maintain homoeostasis, and thus the prey consumption by the predator increased (Wright et al., 2018b). Under acidifi cation conditions, the nutritional quality of the brown alga Durvillea antarctica was decreased, and the amphipod Orchestoidea tuberculate showed lower preference for these algae compared with normal D. antarctica (Duarte et al., 2016). However, this amphipod grazed more OA exposed algae compared with normal D. antarctica under no-food choice conditions (Duarte et al., 2016). In a later study, both juvenile and adult O. tuberculate consumed more algae cultured under normal pH than algae cultured under low pH when there was a food choice (Benítez et al., 2016). However, when they were fed with only one type algae (i.e. no food choice), juveniles consumed signifi cantly more algae exposed to low pH compared with algae cultured under normal pH, while adults consumed more algae maintained at normal pH level (Benítez et al., 2016). These results highlight the efference ects of OA on algae and subsequently the ontogenetic variability (i.e. juvenile and adult) in the feeding behavior of amphipods.

    Altered feeding behaviors have been investigated, and some potential mechanisms need to be assessed. For example, neurological function has been linked to ciliary beating in marine bivalves, which is an important behavior in bivalve feeding. More specifi cally, serotonin and dopamine have been linked to ciliary beating in the gills of bivalve molluscs and GABA plays a major inhibitory role in regulating the actions of serotonin on ciliary beating (e.g., Catapane et al., 1978, 1979, 2016; Carroll et al., 2007). The elevated CO2is known to infl uence neurological function (GABAAreceptor functioning and associated behaviors) in marine invertebrates (Watson et al., 2014; Clements et al., 2017), neurological efference ects of elevated CO2may afference ect ciliary beating and thus alter fi lter feeding behavior. Given the likelihood that numerous mechanistic drivers may act to alter invertebrate feeding behavior under elevated CO2, future studies would benefi t from teasing out the respective contributions of mechanistic CO2efference ects to better understand how elevated CO2afference ects difference erent modes of feeding at multiple life history stages in a wide range of invertebrate taxa.

    2.3 Anti-predatory behavior

    Anti-predatory defenses are the reactions that prey produced when they detected the predation risk (Smee and Weissburg, 2016). These responses are very individual for difference erent species. Of the current review, 53% of the relevant anti-predator behaviors showed negative responses to OA. Anti-predator escape responses of the gastropod Gibberulus gibberulus gibbosus, which has a strong foot to escape predators by jumping, were impaired under elevated p CO2as the number of leaping individuals halved and the jumping latency increased (Watson et al., 2014). Under elevated CO2, self-righting (i.e., re-orientation after dislodgement) time was doubled in the Chilean abalone Concholepas concholepas in the presence of the predatory crab Acanthocyclus hassleri (Manríquez et al., 2013). The ability to escape from predators in this abalone had also been reported to decrease under elevated CO2(Manríquez et al., 2014). Defensive behaviors in response to visual predator cues in the squid Idiosepius pygmaeus can be impacted by low pH, as activity levels increased by 19%-25%, movement (number of line crosses) increased threefold, and the possibility of activating inkjet defense strategy had a two-fold increase under elevated CO2conditions (Spady et al., 2014). Byssus thread, a proteinous material, is secreted by the byssal gland at the base of the foot of mussels for anchorage on hard substratum. Enhanced byssus production can reduce the probabilities of being dislodged from the substratum and consumed by their predators. It serves as anti-predatory responses when mussels are exposed to predators. The number of byssus (attachment threads) produced by the mussel Mytilus coruscus was found to decrease under low pH (Sui et al., 2015), it may be explained by the decreased byssusassociated proteins (Sui et al., 2017). Both mechanical performance (such as strength and extensibility) and the numbers of byssal threads produced by M. coruscus were signifi cantly reduced by OA (Zhao et al., 2017b). However, the presence of predators Charybdis japonica resulted in an increase in byssus production for M. corsucus, indicating that enhanced anti-predation ability occurred under elevated CO2when there is a threat of predation (Li et al., 2015). Ocean acidifi cation is also reported to negatively infl uence morphological defenses in the form of shell thickness. The intertidal gastropod Littorina littorea can produce thicker shells in response to predation of crab, but this response was limited at low pH (Bibby et al., 2007). At the same time, L. littorea also increase avoidance behavior (percentage of time a snail spent above or at the water surface in trials) to response to the stress (Bibby et al., 2007). A recent study has found elevated p CO2did not afference ect the ability of whelks Tenguella marginalba to detect a predator, although there were signifi cant efference ects on their antipredatory defense including a reduction in growth and the time spent in refuge (Jellison et al., 2016). In the case of adult deep-sea hermit crab Pagurus tanneri, the time taken to re-emerge from shells after a simulated predatory attack was not infl uenced by OA (Kim and Barry, 2016). Self-righting in adult toad crab Hyas araneus was unafference ected by elevated CO2conditions (Zittier et al., 2013). Similar results were also found in juvenile sea star Asterias rubens (Appelhans et al., 2014). These above results suggest that ontogeny may play a key role in behavioral efference ects, whereby adults and juveniles are likely more tolerant to elevated CO2conditions than larvae.

    2.4 Movement and swimming behavior

    The population dynamics of marine invertebrate species is largely infl uenced by dispersion, movement and pre-and-post settlement (the periods before and after initial settlement through to adulthood, Pilditch et al. 2015), and the behaviors enumerated above have been reported to be afference ected by elevated CO2. For example, Domenici et al. (2017) found that the keystone gastropod Concholepas concholepas would increase the movement duration and decision-making time under elevated p CO2conditions, while Manríquez et al. (2016) demonstrated this kind of gastropod was nearly still under high p CO2conditions, possibly by reducing metabolic activity to meet the high energy requirements associated with attachment.

    Larval swimming speed in the two crabs, Metacarcinus magister and Hemigrapsus oregonensis, appeared to increase under elevated CO2(Christmas, 2013). Under elevated CO2, the swimming speed of brittle star Amphiura fi liformis larvae was reduced (Chan et al., 2016), but the purple sea urchin Strongylocentrotus purpuratus larvae appeared to be unafference ected (Chan et al., 2015). The observed difference erences between species may be related to preexposure in their natural habitats, as A. fi liformis naturally resides in stable environmental pH conditions, while S. purpuratus tend to live in the upwelling region (Droebak, Norway) where low pH may occur (Chan et al., 2015). Although the efference ects of near-future OA on the swimming behavior of larval invertebrates have been documented, few studies have taken into account such efference ects on larval dispersal (but see Chan et al., 2015). Coupled with larval development rates, the direction and speed of larval movements can infl uence where a given larva ends up after it is released into the water column. It is diき cult to measure directly larval dispersal models incorporating larval development and mortality rates, active larval movements, and local hydrodynamics can provide a useful tool to estimate the dispersal potential of larvae (Quinn, 2014). Given that elevated CO2can have impacts on the movement behavior of marine invertebrates, as well as larval mortality and development (Dupont et al., 2008; Brennand et al., 2010), studies assessing the ecological efference ects of acidifi cation would benefi t from incorporating these efference ects into larval drift/dispersal models to better understand the efference ects of near-future acidifi cation on dispersal potential and population connectivity. Furthermore, such studies should take local adaptation into account (Vargas et al., 2017), as the environmental conditions at a given source can determine the impact of climate change stressors on larval development and subsequent dispersal (Quinn and Rochette, 2015).

    Given that sperm can actively swim and seek out an egg, they can be considered to be engaging in an active behavior (Elgeti et al., 2015). In the context of OA, a number of studies have reported that the swimming behavior of marine invertebrate spermatozoa can be altered by elevated CO2. Schlegel et al. (2015) observed the sea urchin Centrosteanus rodgersii sperm motility was slightly altered by OA. Sperm motility and velocity in the crown-of-thorns starfi sh Acanthaster planci has also been reported to decrease under elevated CO2, and the subsequent fertilization rate was decreased (Uthicke et al., 2013). OA also negatively infl uenced the sperm motility of the blood clam Tegillarca granosa (Shi et al., 2017a, b). The percentage of active spermatozoa and swimming speed of sea urchin Heliocidaris erythrogramma was decreased signifi cantly at pH 7.80, and the fertility success rate was 24% lower than the normal pH 8.10 (Havenhand et al., 2008). However, it has been reported that the sperm motility rate of mussel Mytilus galloprovincialis signifi cantly increased under elevated CO2(Eads et al., 2016). Also no signifi cant difference erence in sperm motility and viability of Crassostrea gigas was observed between OA (pH 7.80) and control (pH 8.15) conditions (Havenhand and Schlegel, 2009). Sinking is used by pteropod for predator evasion, and altered speeds and increased visibility could increase the susceptibility of pteropods to predation. Bergan et al. (2017) found that sinking speeds were signifi cantly slower for the pteropod Limacina retroversa exposed to OA in comparison to the ambient pH.

    Migratory behaviors in many marine animals are often driven by sensory perception (Lohmann et al. 2008; Charpentier and Cohen, 2016). While longdistance migrations are less common in marine invertebrates, invertebrate species can exhibit regular and predictable migratory behaviors. For example, larval invertebrates often exhibit diel vertical migrations in the water column, which can serve to avoid predation while maintaining metabolic function (Ohman et al., 1983). Alongside vertical migrations, some benthic invertebrates undergo larger-scale migrations as well. These processes are diき cult to quantify, and emerging technologies are making them possible to be tested regarding larger-scale invertebrate migrations under elevated CO2conditions. For example, satellite tags can document large-scale movements in situ (González-Gurriarán et al., 2002; Morse and Rochette, 2016). The direct efference ect of acidifi cation on an individual’s ability to perceive cues could be tested by rearing animals under elevated CO2conditions in the lab, releasing them into the fi eld, and tracking their movements over time. Acoustic telemetry can also be used to understand other behaviors of juvenile and adult invertebrates, such as the sheltering behavior, diel movement and activity patterns (e.g., Morse and Rochette, 2016).

    3 THE MECHANISMS BEHIND BEHAVIORS

    Sensory impairment under elevated CO2has been observed in an array of marine invertebrates, and has been identifi ed as a vulnerable biological attribute to near-future OA (Brifference a et al., 2012; Clements and Hunt, 2015; Ashur et al., 2017). Indeed, many of the behavioral efference ects of elevated CO2on marine invertebrates described above are a direct consequence of sensory impairment. Sensory systems are critical for animals to perceive their external environment. For example, chemoreception (organismal response to chemical stimuli; e.g., taste, smell) relies on both an animal’s ability to receive and interpret stimuli, as well as the particular chemical composition of a given cue. In this sense, elevated CO2can exert morphological or chemical efference ects on the sensory organs of a given organism (Tierney and Atema, 1988). Additionally, elevated CO2may afference ect some aspect of the chemical structure of a cue. While the former remains undescribed, the latter has been reported in a single study for signaling molecules associated with chemosensory behavior in the crab Carcinus maenas, whereby elevated CO2altered the charge, electrostatic properties, and physical composition of three peptide signaling molecules, and that a higher cue concentration was subsequently required to elicit a behavioral response from crabs (Roggatz et al., 2016). Interestingly, physiological alterations under elevated CO2play less of a role than cue alterations in driving crab behavior. Ultimately, more work is required to understand the independent and combined efference ects of CO2on sensory organs and production and transmission of chemical cues.

    Although alterations to sensory organs and chemical cues may afference ect marine invertebrate capacity to engage in sensory perception under elevated CO2condition, neurological (particularly GABAAneuroreceptor interference) has been given far more attention. GABA is the primary inhibitory neurotransmitter found in the nervous systems of vertebrates (central and peripheral) and some invertebrates (peripheral) (Jessen et al., 1979; Lunt, 1991), and the GABAAneuroreceptor has a specifi c conductance for chloride (Cl-) and bicarbonate (HCO3ˉ) ions. During periods of environmental stress that can invoke acidosis, GABAAneuroreceptors have reversing ability to maintain internal acid-base balance and thus proper cellular and physiological functioning (Boron, 1987; Widdicombe and Spicer, 2008). When GABA binds to the GABAAreceptor under optimal conditions, the ionic gradient at the receptor is such that Cl-and HCO3ˉ ions fl ow into the cell, thus preventing depolarization and resulting in a negative membrane potential and reduced neural activity (Nilsson et al., 2012). Under elevated CO2, however, HCO3ˉ are accumulated and Cl-are pumped out of the cell in order to maintain acid-base balance and avoid acidosis, ultimately resulting in an outfl ow (rather than an infl ow) of ions (Heuer and Grosell, 2014). This reversed ionic gradient can potentially lead to membrane depolarization, neural pathway excitation, and altered behavior.

    Treating animals with gabazine provides a simple and elegant method to determine whether or not GABAAinterference acts as the mechanism behind CO2-associated behavioral impairments. The gabazine method has been used in a number of marine fi shes (Nilsson et al., 2012; Hamilton et al., 2013; Chivers et al., 2014; Chung et al., 2014; Lai et al., 2015; Ou et al., 2015); however the role of GABAAinterference in driving invertebrate behavioral responses to elevated CO2is less well known. In a pioneering study using an epifaunal snail, Watson et al. (2013) reported that gabazine-treated individuals reared under elevated CO2conditions exhibited predator avoidance behaviors on par with those of individuals reared under control CO2conditions. Clements and Hunt (2017) reported that gabazine-treated clams Mya arenaria burrowed into acidifi ed sediments in proportions similar to control sediments, while gabazine-untreated clams showed reduced burrowing proportions in acidifi ed sediments. Similar results also appeared in the razor clam Sinonovacula constricta (Peng et al., 2017). Ren et al. (2018) showed GABA expression of the larval crab Portunus trituberculatus was upregulated after OA exposure. Be accompanied, are anxiety-like behaviors, such as the increased average speed, preference for dark environment and fast exploration (Ren et al., 2018). Charpentier and Cohen (2016) indicated that for Asian shore crab Hemigrapsus sanguineus larvae, GABA receptor might not dominate pH efference ects to sensation and behavior. The above results indicate that GABA might be involved in the interactions of GABA receptors and elevated-CO2in seawater, but further studies on GABA acting mechanism in marine animals are needed for clarifi cation.

    Alternatively, CO2may have negatively afference ected sensory processes through other pathways than the GABAergic. Alongside sensory impairment, alterations to morphological structures associated with elevated CO2can afference ect marine invertebrate behaviors. As mentioned previously, the efference ects of elevated CO2on the feeding structures of predators (e.g. crab claws, snail radulas) and the defence structures of prey (e.g. shell thickness, foot musculature) can interact in complex ways to determine the outcome of predator-prey interactions (Landes and Zimmer, 2012; Sanford et al., 2014). Such morphological changes can also afference ect other behaviors that have gone largely ignored in the OA literature, such as inter- and intra-specifi c contests/confl icts. Shell deformation in larval bivalves may also hinder proper feeding under elevated CO2(Talmage and Gobler, 2010; Gray et al., 2017). Although efference ects of CO2stress on cellular function may also drive difference erences in feeding rates, some behavioral changes can be adaptive. For example, sea urchin larvae Strongylocentrotus droebachiensis exposed to elevated CO2expressed a high level of morphological plasticity associated with changes in swimming behavior (Chan et al., 2015), implying changes in swimming biomechanics despite a delay in development due to increased physiological costs. The above observations highlight a strong evolutionary pressure to maintain swimming in a varying environment.

    4 MOVING FORWARD

    The existing studies have largely confi rmed the efference ects of acidifi cation on marine invertebrate behaviors, although signifi cant knowledge gaps remain. Based on recent advances, we suggest that future studies streamline efference orts toward a number of key questions including (i) multiple sensory pathways (e.g., the efference ects on GABAA, chemical composition of cues, and sensory organs and structures); (ii) the ecological outcomes of behaviors such as feeding (i.e., predator-prey interactions and other feeder-food systems) in which both the feeder and the food are reared under elevated CO2; (iii) a range of difference erent feeding behaviors (e.g. involving ciliary action); (iv) larval dispersal and invertebrate movements. As highlighted in previous reviews, our current understanding of the OA efference ects on invertebrate behavior relies heavily on laboratory experiments, and constant acidifi cation was usually chosen to conduct the environment. However, in the fi eld, seawater pH tends to be fl uctuated; current research method may not refl ect the actual environment appropriately. Technologies such as electronic tagging, telemetry, and hall efference ect sensors can enable a shift from observing behavior in the lab to the fi eld. Finally, studies incorporating multiple stressors, natural variability, and potential evolutionary efference ects (i.e., transgenerational and local acclimation and adaptation) will substantially increase predictive power with respect to understanding marine invertebrate behavior and associated ecological functioning under projected future ocean conditions.

    5 DATA AVAILABILITY STATEMENT

    Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

    6 ACKNOWLEDGMENT

    We are grateful to Dr. Jefference Clements, Dr. Sam Dupont, and two anonymous reviewers for their valuable comments and revisions for this review.

    References

    Albright R, Langdon C. 2011. Ocean acidifi cation impacts multiple early life history processes of the Caribbean coral Porites astreoides. Global Change Biol., 17(7): 2 478-2 487, https://doi.org/10.1111/j.1365-2486.2011.02404.x.

    Albright R, Mason B, Langdon C J. 2008. Efference ect of aragonite saturation state on settlement and post-settlement growth of Porites astreoides larvae. Coral Reefs, 27(3): 485-490, https://doi.org/10.1007/s00338-008-0392-5.

    Albright R, Mason B, Miller M, Langdon C. 2010. Ocean acidifi cation compromises recruitment success of the threatened Caribbean coral Acropora palmata. Proc. Natl. Acad. Sci. USA, 107(47): 20 400-20 404, https://doi.org/10.1073/pnas.1007273107.

    Alenius B, Munguia P. 2012. Efference ects of pH variability on the intertidal isopod, Paradella dianae. Mar. Freshw. Behav. Physiol., 45(4): 245-259, https://doi.org/10.1080/102362 44.2012.727235.

    Amaral V, Cabral H N, Bishop M J. 2012. Efference ects of estuarine acidifi cation on predator-prey interactions. Mar. Ecol. Prog. Ser., 445: 117-127, https://doi.org/10.3354/meps09487.

    Anlauf H, D’Croz L, O’Dea A. 2011. A corrosive concoction: the combined efference ects of ocean warming and acidifi cation on the early growth of a stony coral are multiplicative. J. Exp. Mar. Biol. Ecol., 397(1): 13-20, https://doi.org/10.1016/j.jembe.2010.11.009.

    Appelhans Y S, Thomsen J, Opitz S, Pansch C, Melzner F, Wahl M. 2014. Juvenile sea stars exposed to acidifi cation decrease feeding and growth with no acclimation potential. Mar. Ecol. Prog. Ser., 509: 227-239, https://doi.org/10.3354/meps10884 .

    Appelhans Y S, Thomsen J, Pansch C, Melzner F, Wahl M. 2012. Sour times: seawater acidifi cation efference ects on growth, feeding behaviour and acid-base status of Asterias rubens and Carcinus maenas. Mar. Ecol. Prog. Ser., 459: 85-98, https://doi.org/10.3354/meps09697.

    Ashur M M, Johnston N K, Dixson D L. 2017. Impacts of ocean acidifi cation on sensory function in marine organisms. Integr. Comp. Biol., 57(1): 63-80, https://doi.org/10.1093/icb/icx010.

    Barry J P, Lovera C, Buck K R, Peltzer E T, Taylor J R, Walz P, Whaling P J, Brewer P G. 2014. Use of a free ocean CO2enrichment (FOCE) system to evaluate the efference ects of ocean acidifi cation on the foraging behavior of a deep-sea urchin. Environ. Sci. Technol., 48(16): 9 890-9 897, https://doi.org/10.1021/es501603r.

    Benítez S, Duarte C, López J, Manríquez P H, Navarro J M, Bonta C C, Torres R, Quijón P A. 2016. Ontogenetic variability in the feeding behavior of a marine amphipod in response to ocean acidifi cation. Mar. Pollut. Bull., 112(1-2): 375-379, https://doi.org/10.1016/j.marpolbul.2016.07.016.

    Benítez S, Lagos N A, Osores S, Opitz T, Duarte C, Navarro J M, Lardies M A. 2018. High p CO2levels afference ect metabolic rate, but not feeding behavior and fi tness, of farmed giant mussel Choromytilus chorus. Aquac. Environ. Interact., 10: 267-278, https://doi.org/10.3354/aei00271.

    Bergan A J, Lawson G L, Maas A E, Wang Z A. 2017. The efference ect of elevated carbon dioxide on the sinking and swimming of the shelled pteropod Limacina retroversa. ICES J. Mar. Sci., 74(7): 1 893-1 905, https://doi.org/10. 1093/icesjms/fsx008.

    Bibby R, Cleall-Harding P, Rundle S, Widdicombe S, Spicer J. 2007. Ocean acidifi cation disrupts induced defences in the intertidal gastropod Littorina littorea. Biol. Lett., 3(6): 699-701, https://doi.org/10.1098/rsbl.2007.0457.

    Boron W F. 1987. Intracellular pH regulation. In: Andreoli T E, Hofference man J F, Fanestil D D, Schultz S G eds. Membrane Transport Processes in Organized Systems. Springer, Boston, MA. p.39-51, https://doi.org/10.1007/978-1-4684-5404-8_3.

    Brennand H S, Soars N, Dworjanyn S A, Davis A R, Byrne M. 2010. Impact of ocean warming and ocean acidifi cation on larval development and calcifi cation in the sea urchin Tripneustes gratilla. PLoS One, 5(6): e11372, https://doi.org/10.1371/journal.pone.0011372.

    Brifference a M, De La Haye K, Munday P L. 2012. High CO2and marine animal behaviour: potential mechanisms and ecological consequences. Mar. Pollut. Bull., 64(8): 1 519-1 528, https://doi.org/10.1016/j.marpolbul.2012.05.032.

    Burnell O W, Russell B D, Irving A D, Connell S D. 2013. Eutrophication ofference sets increased sea urchin grazing on seagrass caused by ocean warming and acidifi cation. Mar. Ecol. Prog. Ser., 485: 37-46, https://doi.org/10.3354/meps10323.

    Caley M J, Carr M H, Hixon M A, Hughes T P, Jones G P, Menge B A. 1996. Recruitment and the local dynamics of open marine populations. Annu. Rev. Ecol. Syst., 27: 477-500, https://doi.org/10.1146/annurev.ecolsys.27.1.477.

    Carroll M A, Catapane E J, Molecular. 2007. The nervous system control of lateral ciliary activity of the gill of the bivalve mollusc, Crassostrea virginica. Comp. Biochem. Physiol. A: Mol. Integr. Physiol., 148(2): 445-450, https://doi.org/10.1016/j.cbpa.2007.06.003.

    Catapane E J, Nelson M, Adams T, Carroll M A. 2016. Innervation of gill lateral cells in the bivalve mollusc Crassostrea virginica afference ects cellular membrane potential and cilia activity. J. Pharmacol. Rep., 1(2): 109.

    Catapane E J, Stefano G B, Aiello E. 1978. Pharmacological study of the reciprocal dual innervation of the lateral ciliated gill epithelium by the CNS of Mytilus edulis (Bivalvia). J. Exp. Biol., 74(1): 101-113. .

    Catapane E J, Stefano G B, Aiello E. 1979. Neurophysiological correlates of the dopaminergic cilio-inhibitory mechanism of Mytilus edulis. J. Exp. Biol., 83: 315-323.

    Chan K Y K, García E, Dupont S. 2015. Acidifi cation reduced growth rate but not swimming speed of larval sea urchins. Sci. Rep., 5: 9 764, https://doi.org/10.1038/srep09764.

    Chan K Y K, Grünbaum D, Arnberg M, Dupont S. 2016. Impacts of ocean acidifi cation on survival, growth, and swimming behaviours difference er between larval urchins and brittlestars. ICES J. Mar. Sci., 73(3): 951-961, https://doi.org/10.1093/icesjms/fsv073.

    Chan K Y K, Grünbaum D, O’Donnell M J. 2011. Efference ects of ocean-acidifi cation-induced morphological changes on larval swimming and feeding. J. Exp. Biol., 214(22): 3 857-3 867, https://doi.org/10.1242/jeb.054809.

    Charpentier C L, Cohen J H. 2016. Acidifi cation and γaminobutyric acid independently alter kairomone-induced behaviour. R. Soc. Open Sci., 3(9): 160 311, https://doi.org/10.1098/rsos.160311.

    Chivers D P, McCormick M I, Nilsson G E, Munday P L, Watson S A, Meekan M G, Mitchell M D, Corkill K C, Ferrari M C O. 2014. Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference. Global Change Biol., 20(2): 515-522, https://doi.org/10.1111/gcb.12291.

    Christmas A M F. 2013. Efference ects of Ocean Acidifi cation on Dispersal Behavior in the Larval Stage of the Dungeness Crab and the Pacifi c Green Shore Crab. Western Washington University, Bellingham.

    Chung W S, Marshall N J, Watson S A, Munday P L, Nilsson G E. 2014. Ocean acidifi cation slows retinal function in a damselfi sh through interference with GABAAreceptors. J. Exp. Biol., 217(3): 323-326, https://doi.org/10.1242/jeb.092478.

    Cigliano M, Gambi M C, Rodolfo-Metalpa R, Patti F P, Hall-Spencer J M. 2010. Efference ects of ocean acidifi cation on invertebrate settlement at volcanic CO2vents. Mar. Biol., 157(11): 2 489-2 502, https://doi.org/10.1007/s00227-010-1513-6.

    Clements J C, Bishop M M, Hunt H L. 2017. Elevated temperature has adverse efference ects on GABA-mediated avoidance behaviour to sediment acidifi cation in a wideranging marine bivalve. Mar. Biol., 164(3): 56, https://doi.org/10.1007/s00227-017-3085-1.

    Clements J C, Hunt H L. 2014. Infl uence of sediment acidifi cation and water fl ow on sediment acceptance and dispersal of juvenile soft-shell clams ( Mya arenaria L.). J. Exp. Mar. Biol. Ecol., 453: 62-69, https://doi.org/10. 1016/j.jembe.2014.01.002.

    Clements J C, Hunt H L. 2015. Marine animal behaviour in a high CO2ocean. Mar. Ecol. Prog. Ser., 536: 259-279, https://doi.org/10.3354/meps11426.

    Clements J C, Hunt H L. 2017. Efference ects of CO2-driven sediment acidifi cation on infaunal marine bivalves: a synthesis. Mar. Pollut. Bull., 117(1-2): 6-16, https://doi.org/10.1016/ j.marpolbul.2017.01.053.

    De La Haye K L, Spicer J I, Widdicombe S, Brifference a M. 2011. Reduced sea water pH disrupts resource assessment and decision making in the hermit crab Pagurus bernhardus. Anim. Behav., 82(3): 495-501, https://doi.org/10.1016/j.anbehav.2011.05.030.

    De La Haye K L, Spicer J I, Widdicombe S, Brifference a M. 2012. Reduced pH sea water disrupts chemo-responsive behaviour in an intertidal crustacean. J. Exp. Mar. Biol. Ecol., 412: 134-140, https://doi.org/10.1016/j.jembe.2011. 11.013.

    Devine B M, Munday P L, Jones G P. 2012. Rising CO2concentrations afference ect settlement behaviour of larval damselfi shes. Coral Reefs, 31(1): 229-238, https://doi.org/10.1007/s00338-011-0837-0.

    Dissanayake A, Ishimatsu A. 2011. Synergistic efference ects of elevated CO2and temperature on the metabolic scope and activity in a shallow-water coastal decapod ( Metapenaeus joyneri; Crustacea: Penaeidae). ICES J. Mar. Sci., 68(6): 1 147-1 154, https://doi.org/10.1093/icesjms/fsq188.

    Domenici P, Torres R, Manriquez P H. 2017. Efference ects of elevated carbon dioxide and temperature on locomotion and the repeatability of lateralization in a keystone marine mollusc. J. Exp. Biol., 220(4): 667-676, https://doi.org/10.1242/jeb.151779.

    Doropoulos C, Diaz-Pulido G. 2013. High CO2reduces the settlement of a spawning coral on three common species of crustose coralline algae. Mar. Ecol. Prog. Ser., 475: 93-99, https://doi.org/10.3354/meps10096.

    Doropoulos C, Ward S, Diaz-Pulido G, Hoegh-Guldberg O, Mumby P J. 2012. Ocean acidifi cation reduces coral recruitment by disrupting intimate larval-algal settlement interactions. Ecol. Lett., 15(4): 338-346, https://doi.org/10.1111/j.1461-0248.2012.01743.x.

    Duarte C, López J, Benítez S, Manríquez P H, Navarro J M, Bonta C C, Torres R, Quijón P. 2016. Ocean acidifi cation induces changes in algal palatability and herbivore feeding behavior and performance. Oecologia, 180(2): 453-462, https://doi.org/10.1007/s00442-015-3459-3.

    Dupont S T, Mercurio M, Giacoletti A, Rinaldi A, Mirto S, D’Acquisto L, Sabatino M A, Sara G. 2015. Functional consequences of prey acclimation to ocean acidifi cation for the prey and its predator. PeerJ PrePr., 3: e1438v1.

    Dupont S, Havenhand J, Thorndyke W, Peck L S, Thorndyke M. 2008. Near-future level of CO2-driven ocean acidifi cation radically afference ects larval survival and development in the brittlestar Ophiothrix fragilis. Mar. Ecol. Prog. Ser., 373: 285-294.

    Eads A R, Kennington W J, Evans J P. 2016. Interactive efference ects of ocean warming and acidifi cation on sperm motility and fertilization in the mussel Mytilus galloprovincialis. Mar. Ecol. Prog. Ser., 562: 101-111, https://doi.org/10.3354/meps11944.

    Elgeti J, Winkler R G, Gompper G. 2015. Physics of microswimmers—single particle motion and collective behavior: a review. Rep. Prog. Phys., 78(5): 056601, https://doi.org/10.1088/0034-4885/78/5/056601.

    Ellis R P, Bersey J, Rundle S D, Hall-Spencer J M, Spicer J I. 2009. Subtle but signifi cant efference ects of CO2acidifi ed seawater on embryos of the intertidal snail, Littorina obtusata. Aquat. Biol., 5(1): 41-48, https://doi.org/10. 3354/ab00118.

    Fabry V J, Seibel B A, Feely R A, Orr J C. 2008. Impacts of ocean acidifi cation on marine fauna and ecosystem processes. ICES J. Mar. Sci., 65(3): 414-432, https://doi.org/10.1093/icesjms/fsn048.

    Ferrari M C O, McCormick M I, Munday P L, Meekan M G, Dixson D L, L?nnstedt O, Chivers D P. 2012. Efference ects of ocean acidifi cation on visual risk assessment in coral reef fi shes. Funct Ecol, 26(3): 553-558, https://doi.org/10.1111/ j.1365-2435.2011.01951.x.

    García E, Clemente S, Carlos Hernández J. 2018. Efference ects of natural current pH variability on the sea urchin Paracentrotus lividus larvae development and settlement. Mar. Environ. Res., 139: 11-18, https://doi.org/10.1016/j.marenvres.2018.04.012.

    Glaspie C N, Longmire K, Seitz R D. 2017. Acidifi cation alters predator-prey interactions of blue crab Callinectes sapidus and soft-shell clam Mya arenaria. J. Exp. Mar. Biol. Ecol., 489: 58-65, https://doi.org/10.1016/j.jembe.2016. 11.010.

    González-Gurriarán E, Freire J, Bernárdez C. 2002. Migratory patterns of female spider crabs Maja squinado detected using electronic tags and telemetry. J. Crustacean Biol., 22(1): 91-97, https://doi.org/10.1163/20021975-99990212.

    Gosselin L A, Qian P Y. 1997. Juvenile mortality in benthic marine invertebrates. Mar. Ecol. Prog. Ser., 146: 265-282, https://doi.org/10.3354/meps146265.

    Gray M W, Langdon C J, Waldbusser G G, Hales B, Kramer S. 2017. Mechanistic understanding of ocean acidifi cation impacts on larval feeding physiology and energy budgets of the mussel Mytilus californianus. Mar. Ecol. Prog. Ser., 563: 81-94, https://doi.org/10.3354/meps11977.

    Green M A, Waldbusser G G, Hubazc L, Cathcart E, Hall J. 2013. Carbonate mineral saturation state as the recruitment cue for settling bivalves in marine muds. Estuar. Coasts, 36(1): 18-27, https://doi.org/10.1007/s12237-012-9549-0.

    Green M A, Waldbusser G G, Reilly S L, Emerson K, O’Donnell S. 2009. Death by dissolution: sediment saturation state as a mortality factor for juvenile bivalves. Limnol. Oceanogr., 54(4): 1 037-1 047, https://doi.org/10. 4319/lo.2009.54.4.1037.

    Hamilton T J, Holcombe A, Tresguerres M. 2013. CO2-induced ocean acidifi cation increases anxiety in rockfi sh via alteration of GABAAreceptor functioning. Proc. Biol. Sci., 281(1775): 20132509, https://doi.org/10.1098/rspb.2013.2509.

    Havenhand J N, Buttler F R, Thorndyke M C, Williamson J E. 2008. Near-future levels of ocean acidifi cation reduce fertilization success in a sea urchin. Curr. Biol., 18(15): R651-R652, https://doi.org/10.1016/j.cub.2008.06.015.

    Havenhand J N, Schlegel P. 2009. Near-future levels of ocean acidifi cation do not afference ect sperm motility and fertilization kinetics in the oyster Crassostrea gigas. Biogeosciences, 6(12): 3 009-3 015, https://doi.org/10.5194/bg-6-3009-2009.

    Heuer R M, Grosell M. 2014. Physiological impacts of elevated carbon dioxide and ocean acidifi cation on fi sh. Am. J. Physiol. - Regul Integr. Comp. Physiol., 307(9): R1 061-R1 084, https://doi.org/10.1152/ajpregu.00064. 2014.

    Huijbers C M, Nagelkerken I, L?ssbroek P A C, Schulten I E, Siegenthaler A, Holderied M W, Simpson S D. 2012. A test of the senses: fi sh select novel habitats by responding to multiple cues. Ecology, 93(1): 46-55.

    Hunt H L, Scheibling R E. 1997. Role of early post-settlement mortality in recruitment of benthic marine invertebrates. Mar. Ecol. Prog. Ser., 155: 269-301, https://doi.org/10.3354/meps155269.

    Igulu M M, Nagelkerken, I, Beek, M V D, Schippers, M, Eck, R.V, Mgaya, Y D. 2013. Orientation from open water to settlement habitats by coral reef fi sh: behavioral fl exibility in the use of multiple reliable cues. Mar. Ecol. Prog. Ser., 493: 243-257, https://doi.org/10.3354/meps 10542

    Igulu, M M, Nagelkerken, I, Fraaije, R, Hintum, R V, Ligtenberg, H, Mgaya, Y.D. 2011. The potential role of visual cues for microhabitat selection during the early life phase of a coral reef fi sh ( Lutjanus fulvifl amma). J. Exp. Mar. Biol. Ecol., 401: 118-125, https://doi.org/10.1016/j.jembe.2011.01.022

    Jellison B M, Ninokawa A T, Hill T M, Sanford E, Gaylord B. 2016. Ocean acidifi cation alters the response of intertidal snails to a key sea star predator. Proc. Biol. Sci., 283(1833): 20160890, https://doi.org/10.1098/rspb.2016.0890.

    Jessen K R, Mirsky R, Dennison M E, Burnstock G. 1979. GABA may be a neurotransmitter in the vertebrate peripheral nervous system. Nature, 281(5726): 71-74, https://doi.org/10.1038/281071a0.

    Kim T W, Barry J P. 2016. Boldness in a deep sea hermit crab to simulated tactile predator attacks is unafference ected by ocean acidifi cation. Ocean Sci. J., 51(3): 381-386, https://doi.org/10.1007/s12601-016-0034-8.

    Kroeker K J, Kordas R L, Crim R N, Singh G G. 2010. Metaanalysis reveals negative yet variable efference ects of ocean acidifi cation on marine organisms. Ecol. Lett., 13(11): 1 419-1 434, https://doi.org/10.1111/j.1461-0248.2010. 01518.x.

    Kroeker K J, Kordas R L, Crim R, Hendriks I E, Ramajo L, Singh G S, Duarte C M, Gattuso J P. 2013. Impacts of ocean acidifi cation on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biol., 19(6): 1 884-1 896, https://doi.org/10.1111/gcb.12179.

    Kroeker K J, Sanford E, Jellison B M, Gaylord B. 2014. Predicting the efference ects of ocean acidifi cation on predatorprey interactions: a conceptual framework based on coastal molluscs. Biol. Bull., 226(3): 211-222, https://doi.org/10.1086/BBLv226n3p211.

    Lai F, Jutfelt F, Nilsson G E. 2015. Altered neurotransmitter function in CO2-exposed stickleback ( Gasterosteus aculeatus): a temperate model species for ocean acidifi cation research. Conserv. Physiol., 3(1): cov018, https://doi.org/10.1093/conphys/cov018.

    Landes A, Zimmer M. 2012. Acidifi cation and warming afference ect both a calcifying predator and prey, but not their interaction. Mar. Ecol. Prog. Ser., 450: 1-10, https://doi.org/10.3354/meps09666.

    Li L S, Lu W Q, Sui Y M, Wang Y J, Gul Y, Dupont S. 2015. Confl icting efference ects of predator cue and ocean acidifi cation on the mussel Mytilus coruscus byssus production. J. Shellfi sh Res., 34(2): 393-400, https://doi.org/10.2983/035. 034.0222.

    Li W, Gao K. 2012. A marine secondary producer respires and feeds more in a high CO2ocean. Mar. Pollut. Bull., 64(4): 699-703, https://doi.org/10.1016/j.marpolbul.2012.01.033

    Lohmann K J, Lohmann C M F, Endres C S. 2008. The sensory ecology of ocean navigation. J. Exp. Biol., 211(11): 1 719-1 728, https://doi.org/10.1242/jeb.015792.

    Lunt G G. 1991. GABA and GABA receptors in invertebrates. Semin. Neurosci., 3(3): 251-258, https://doi.org/10.1016/ 1044-5765(91)90022-G.

    Maboloc E A, Chan K Y K. 2017. Resilience of the larval slipper limpet Crepidula onyx to direct and indirect-diet efference ects of ocean acidifi cation. Sci. Rep., 7(1): 12 062, https://doi.org/10.1038/s41598-017-12253-2.

    Manríquez P H, Jara M E, Mardones M L, Navarro J M, Torres R, Lardies M A, Vargas C A, Duarte C, Widdicombe S, Salisbury J, Lagos N A. 2013. Ocean acidifi cation disrupts prey responses to predator cues but not net prey shell growth in Concholepas concholepas (loco). PLoS One, 8(7): e68643.

    Manríquez P H, Jara M E, Mardones M L, Torres R, Navarro J M, Lardies M A, Vargas C A, Duarte C, Lagos N A. 2014. Ocean acidifi cation afference ects predator avoidance behaviour but not prey detection in the early ontogeny of a keystone species. Mar. Ecol. Prog. Ser., 502: 157-167, https://doi.org/10.3354/meps10703.

    Manríquez P H, Jara M E, Seguel M E, Torres R, Alarcon E, Lee M R. 2016. Ocean acidifi cation and increased temperature have both positive and negative efference ects on early ontogenetic traits of a rocky shore keystone predator species. PLoS One, 11(3): e0151920, https://doi.org/10.1371/journal.pone.0151920.

    Morse B, Rochette R. 2016. Movements and activity levels of juvenile American lobsters Homarus americanus in nature quantifi ed using ultrasonic telemetry. Mar. Ecol. Prog. Ser., 551: 155-170, https://doi.org/10.3354/meps11721.

    Nagelkerken I, Munday P L. 2016. Animal Behaviour shapes the ecological efference ects of ocean acidifi cation and warming: moving from individual to community-level responses. Global Change Biol., 22(3): 974-989, https://doi.org/10.1111/gcb.13167.

    Nakamura M, Ohki S, Suzuki A, Sakai K. 2011. Coral larvae under ocean acidifi cation: survival, metabolism, and metamorphosis. PLoS One, 6(1): e14521, https://doi.org/10.1371/journal.pone.0014521.

    Nilsson G E, Dixson D L, Domenici P, McCormick M I, S?rensen C, Watson S A, Munday P L. 2012. Near-future carbon dioxide levels alter fi sh behaviour by interfering with neurotransmitter function. Nat. Clim. Change, 2(3): 201-204, https://doi.org/10.1038/nclimate1352.

    Ohman M D, Frost B W, Cohen E B. 1983. Reverse diel vertical migration: an escape from invertebrate predators. Science, 220(4604): 1 404-1 407, https://doi.org/10.1126/science.220.4604.1404.

    Ou M, Hamilton T J, Eom J, Lyall E M, Gallup J, Jiang A, Lee J, Close D A, Yun S S, Brauner C J. 2015. Responses of pink salmon to CO2-induced aquatic acidifi cation. Nat. Clim. Change, 5(10): 950-955, https://doi.org/10.1038/nclimate2694.

    Pecquet A, Dorey N, Chan K Y K. 2017. Ocean acidifi cation increases larval swimming speed and has limited efference ects on spawning and settlement of a robust fouling bryozoan, Bugula neritina. Mar. Pollut. Bull., 124(2): 903-910, https://doi.org/10.1016/j.marpolbul.2017.02.057.

    Peng C, Zhao X G, Liu S X, Shi W, Han Y, Guo C, Peng X, Chai X L, Liu G X. 2017. Ocean acidifi cation alters the burrowing behaviour, Ca2+/Mg2+-ATPase activity, metabolism, and gene expression of a bivalve species, Sinonovacula constricta. Mar. Ecol. Prog. Ser., 575: 107-117, https://doi.org/10.3354/meps12224.

    Persons M H, Walker S E, Rypstra A L, Marshall S D. 2001. Wolf spider predator avoidance tactics and survival in the presence of diet-associated predator cues (Araneae: Lycosidae). Anim. Behav., 61(1): 43-51, https://doi.org/10.1006/anbe.2000.1594.

    Pilditch C A, Valanko S, Norkko J, Norkko A. 2015. Postsettlement dispersal: the neglected link in maintenance of soft-sediment biodiversity. Biol. Lett., 11(2): 20140795, https://doi.org/10.1098/rsbl.2014.0795.

    Queirós A M, Fernandes J A, Faulwetter S, Nunes J, Rastrick S P S, Mieszkowska N, Artioli Y, Yool A, Calosi P, Arvanitidis C, Findlay H S, Barange M, Cheung W W L, Widdicombe S. 2015. Scaling up experimental ocean acidifi cation and warming research: from individuals to the ecosystem. Global Change Biol., 21(1): 130-143, https://doi.org/10.1111/gcb.12675.

    Quinn B K, Rochette R. 2015. Potential efference ect of variation in water temperature on development time of American lobster larvae. ICES J. Mar. Sci., 72(S1): i79-i90, https://doi.org/10.1093/icesjms/fsv010.

    Quinn B. 2014. Assessing Potential Infl uence of Larval Development Time and Drift on Large-scale Spatial Connectivity of American Lobster ( Homarus americanus). University of New Brunswick, Fredericton and Saint John, NB.

    Ren Z, Mu C, Li R, Song W, Wang C. 2018. Characterization of a γ-aminobutyrate type A receptor-associated protein gene, which is involved in the response of Portunus trituberculatus to CO2-induced ocean acidifi cation. Aquat. Res., 49(7): 2 393-2 403, https://doi.org/10.1111/are. 13699.

    Rodríguez S R, Ojeda F P, Inestrosa N C. 1993. Settlement of benthic marine invertebrates. Mar. Ecol. Prog. Ser., 97: 193-207, https://doi.org/10.3354/meps097193.

    Roggatz C C, Lorch M, Hardege J D, Benoit D M. 2016. Ocean acidifi cation afference ects marine chemical communication by changing structure and function of peptide signalling molecules. Global Change Biol., 22(12): 3 914-3 926, https://doi.org/10.1111/gcb.13354.

    Saba G K, Schofi eld O, Torres J J, Ombres E H, Steinberg D K. 2012. Increased feeding and nutrient excretion of adult Antarctic krill, Euphausia superba, exposed to enhanced carbon dioxide (CO2). PLoS One, 7(12): e52224, https://doi.org/10.1371/journal.pone.0052224.

    Sanford E, Gaylord B, Hettinger A, Lenz E A, Meyer K, Hill T M. 2014. Ocean acidifi cation increases the vulnerability of native oysters to predation by invasive snails. Proc. Biol. Sci., 281(1778): 20132681, https://doi.org/10.1098/rspb.2013.2681.

    Schalkhausser B, Bock C, Stemmer K, Brey T, P?rtner H O, Lannig G B. 2013. Impact of ocean acidifi cation on escape performance of the king scallop, Pecten maximus, from Norway. Mar. Biol., 160(8): 1 995-2 006, https://doi.org/10.1007/s00227-012-2057-8.

    Schlegel P, Binet M T, Havenhand J N, Doyle C J, Williamson J E. 2015. Ocean acidifi cation impacts on sperm mitochondrial membrane potential bring sperm swimming behaviour near its tipping point. J. Exp. Biol., 218(7): 1 084-1 090, https://doi.org/10.1242/jeb.114900.

    Schram J B, Schoenrock K M, McClintock J B, Amsler C D, Angus R A. 2017. Ocean warming and acidifi cation alter Antarctic macroalgal biochemical composition but not amphipod grazer feeding preferences. Mar. Ecol. Prog. Ser., 581: 45-56, https://doi.org/10.3354/meps12308.

    Shi W, Han Y, Guo C, Zhao X G, Liu S X, Su W H, Wang Y C, Zha S J, Chai X L, Liu G X. 2017a. Ocean acidifi cation hampers sperm-egg collisions, gamete fusion, and generation of Ca2+oscillations of a broadcast spawning bivalve, Tegillarca granosa. Mar. Environ. Res., 130: 106-112, https://doi.org/10.1016/j.marenvres.2017.07.016.

    Shi W, Zhao X G, Han Y, Guo C, Liu S X, Su S H, Wang Y C, Zha S J, Chai X L, Fu W D, Yang H C, Liu G X. 2017b. Efference ects of reduced pH and elevated p CO2 on sperm motility and fertilisation success in blood clam, Tegillarca granosa. N. Z. J. Mar. Freshwater Res., 51(4): 543-554, https://doi.org/10.1080/00288330.2017.1296006.

    Sih A, Bell A, Johnson J C. 2004. Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol. Evol., 19(7): 372-378, https://doi.org/10.1016/j.tree.2004.04.009.

    Smee D L, Weissburg M J. 2006. Hard clams ( Mercenaria mercenaria) evaluate predation risk using chemical signals from predators and injured conspecifi cs. J. Chem. Ecol., 32(3): 605-619, https://doi.org/10.1007/s10886-005-9021-8.

    Spady B L, Munday P L, Watson S A. 2018. Predatory strategies and behaviours in cephalopods are altered by elevated CO2. Global Change Biol., 24(6): 2 585-2 596, https://doi.org/10.1111/gcb.14098.

    Spady B L, Watson S A, Chase T J, Munday P L. 2014. Projected near-future CO2levels increase activity and alter defensive behaviours in the tropical squid Idiosepius pygmaeus. Biol. Open, 3(11): 1 063-1 070, https://doi.org/ 10.1242/bio.20149894.

    Sui Y M, Hu M H, Huang X Z, Wang Y J, Lu W Q. 2015. Antipredatory responses of the thick shell mussel Mytilus coruscus exposed to seawater acidifi cation and hypoxia. Mar. Environ. Res., 109: 159-167, https://doi.org/10. 1016/j.marenvres.2015.07.008.

    Sui Y M, Liu Y M, Zhao X, Dupont S, Hu M H, Wu F L, Huang X Z, Li J L, Lu W Q, Wang Y J. 2017. Defense responses to short-term hypoxia and seawater acidifi cation in the thick shell mussel Mytilus coruscus. Front. Physiol., 8: 145, https://doi.org/10.3389/fphys.2017.00145.

    Sunday J M, Fabricius K E, Kroeker K J, Anderson K M, Brown N E, Barry J P, Connell S D, Dupont S, Gaylord B, Hall-Spencer J M, Klinger T, Milazzo M, Munday P L, Russell B D, Sanford E, Thiyagarajan V, Vaughan M L H, Widdicombe S, Harley C D G. 2017. Ocean acidifi cation can mediate biodiversity shifts by changing biogenic habitat. Nat. Clim. Change, 7(1): 81-85, https://doi.org/10.1038/NCLIMATE3161.

    Talmage S C, Gobler C J. 2010. Efference ects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfi sh. Proc. Natl. Acad. Sci. USA, 107(40): 17 246-17 251, https://doi.org/10.1073/pnas.0913804107.

    Tierney A J, Atema T. 1988. Amino acid chemoreception: efference ects of pH on receptors and stimuli. J. Chem. Ecol., 14(1): 135-141, https://doi.org/10.1007/BF01022537.

    Uthicke S, Pecorino D, Albright R, Negri A P, Cantin N, Liddy M, Dworjanyn S, Kamya P, Byrne M, Lamare M. 2013. Impacts of ocean acidifi cation on early life-history stages and settlement of the coral-eating sea star Acanthaster planci. PLoS One, 8(12): e82938, https://doi.org/10.1371/journal.pone.0082938.

    Vargas C A, Aguilera V M, Martín V S, Manríquez P H, Navarro J M, Duarte C, Torres R, Lardies M A, Lagos N A. 2015. CO2-driven ocean acidifi cation disrupts the fi lter feeding behavior in Chilean gastropod and bivalve species from difference erent geographic localities. Estuar. Coasts, 38(4): 1 163-1 177.

    Vargas C A, De La Hoz M, Aguilera V, Martín V S, Manríquez P H, Navarro J M, Torres R, Lardies M A, Lagos N A. 2013. CO2-driven ocean acidifi cation reduces larval feeding eき ciency and changes food selectivity in the mollusk Concholepas concholepas. J. Plankton Res., 35(5): 1 059-1 068, https://doi.org/10.1093/plankt/fbt045.

    Vargas C A, Lagos N A, Lardies M A, Duarte C, Manríquez P H, Aguilera V M, Broitman B, Widdicombe S, Dupont S. 2017. Species-specifi c responses to ocean acidifi cation should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol., 1(4): 84, https://doi.org/10.1038/s41559-017-0084.

    Viyakarn V, Lalitpattarakit W, Chinfak N, Jandang S, Kuanui P, Khokiattiwong S, Chavanich S. 2015. Efference ect of lower pH on settlement and development of coral, Pocillopora damicornis (Linnaeus, 1758). Ocean Sci. J. 50(2): 475-480.

    Wang Y J, Hu M H, Wu F L, Storch D, P?rtner H O. 2018. Elevated p CO2afference ects feeding behavior and acute physiological response of the brown crab Cancer pagurus. Front. Physiol., 9: 1164.

    Wang Y J, Li L S, Hu M H, Lu W Q. 2015. Physiological energetics of the thick shell mussel Mytilus coruscus exposed to seawater acidifi cation and thermal stress. Sci. Total Environ., 514: 261-272, https://doi.org/10.1016/j.scitotenv.2015.01.092.

    Watson S A, Fields J B, Munday P L. 2017. Ocean acidifi cation alters predator behaviour and reduces predation rate. Biol. Lett., 13(2): 20160797, https://doi.org/10.1098/rsbl.2016. 0797.

    Watson S A, Lefevre S, McCormick M I, Domenici P, Nilsson G E, Munday P L. 2014. Marine mollusc predator-escape behaviour altered by near-future carbon dioxide levels. Proc. Biol. Sci., 281(1774): 20132377, https://doi.org/10. 1098/rspb.2013.2377.

    Webster N S, Uthicke S, Botté E S, Flores F, Negri A P. 2013. Ocean acidifi cation reduces induction of coral settlement by crustose coralline algae. Global Change Biol., 19(1): 303-315, https://doi.org/10.1111/gcb.12008.

    Widdicombe S, Needham H R. 2007. Impact of CO2-induced seawater acidifi cation on the burrowing activity of Nereis virens and sediment nutrient fl ux. Mar. Ecol. Prog. Ser., 341: 111-122, https://doi.org/10.3354/meps341111.

    Widdicombe S, Spicer J I. 2008. Predicting the impact of ocean acidifi cation on benthic biodiversity: what can animal physiology tell us? J. Exp. Mar. Biol. Ecol., 366(1-2): 187-197, https://doi.org/10.1016/j.jembe.2008.07.024.

    Wright J M, O’Connor W A, Parker L M, Ross P M. 2018a. Predation by the endemic whelk Tenguella marginalba (Blainville, 1832) on the invasive Pacifi c oyster Crassostrea gigas (Thunberg, 1793). Molluscan Res., 38(2): 130-136, https://doi.org/10.1080/13235818.2017.1 420397.

    Wright J M, Parker L M, O’Connor W A, Scanes E, Ross P M. 2018b. Ocean acidifi cation afference ects both the predator and prey to alter interactions between the oyster Crassostrea gigas (Thunberg, 1793) and the whelk Tenguella marginalba (Blainville, 1832). Mar. Biol., 165(3): 46, https://doi.org/10.1007/s00227-018-3302-6.

    Wu F L, Wang T, Cui S K, Xie Z, Dupont S, Zeng J N, Gu H X, Kong H, Hu M H, Lu W Q, Wang Y J. 2017. Efference ects of seawater pH and temperature on foraging behavior of the Japanese stone crab Charybdis japonica. Mar. Pollut. Bull., 120(1-2): 99-108, https://doi.org/10.1016/j.marpolbul.2017.04.053.

    Xu X Y, Yip K R, Shin P K S, Cheung S G. 2017. Predator-prey interaction between muricid gastropods and mussels under ocean acidifi cation. Mar. Pollut. Bull., 124(2): 911-916, https://doi.org/10.1016/j.marpolbul.2017.01.003.

    Xu X, Yang F, Zhao L Q, Yan X W. 2016. Seawater acidifi cation afference ects the physiological energetics and spawning capacity of the Manila clam Ruditapes philippinarum during gonadal maturation. Comp. Biochem. Physiol. A: Mol. Integr. Physiol., 196: 20-29, https://doi.org/10.1016/j.cbpa.2016.02.014.

    Zhao X G, Guo C, Han Y, Che Z M, Wang Y C, Wang X Y, Chai X L, Wu H X, Liu G X. 2017b. Ocean acidifi cation decreases mussel byssal attachment strength and induces molecular byssal responses. Mar. Ecol. Prog. Ser., 565: 67-77, https://doi.org/10.3354/meps11992.

    Zhao X G, Shi W, Han Y, Liu S X, Guo C, Fu W D, Chai X L, Liu G X. 2017a. Ocean acidifi cation adversely infl uences metabolism, extracellular pH and calcifi cation of an economically important marine bivalve, Tegillarca granosa. Mar. Environ. Res., 125: 82-89, https://doi.org/10.1016/j.marenvres.2017.01.007.

    Zittier Z M C, Hirse T, P?rtner H O. 2013. The synergistic efference ects of increasing temperature and CO2levels on activity capacity and acid-base balance in the spider crab, Hyas araneus. Mar. Biol., 160(8): 2 049-2 062, https://doi.org/10.1007/s00227-012-2073-8.

    99精品在免费线老司机午夜| 中文字幕人妻丝袜一区二区| 老鸭窝网址在线观看| 精品一区二区三区四区五区乱码| 91精品国产国语对白视频| 欧美成人午夜精品| 色综合亚洲欧美另类图片| 亚洲精品中文字幕一二三四区| 18禁黄网站禁片午夜丰满| 亚洲男人的天堂狠狠| 丝袜美足系列| av天堂在线播放| 欧美日本中文国产一区发布| 免费在线观看黄色视频的| 9色porny在线观看| 成人特级黄色片久久久久久久| 国产又爽黄色视频| 91av网站免费观看| 大码成人一级视频| 9热在线视频观看99| 人人妻人人澡欧美一区二区 | 性欧美人与动物交配| 色哟哟哟哟哟哟| 91在线观看av| 成人国产综合亚洲| 男女午夜视频在线观看| 曰老女人黄片| 真人做人爱边吃奶动态| 中文亚洲av片在线观看爽| 99国产极品粉嫩在线观看| 91麻豆精品激情在线观看国产| 亚洲av日韩精品久久久久久密| 母亲3免费完整高清在线观看| 欧美日韩一级在线毛片| 精品久久久久久久久久免费视频| 不卡一级毛片| 久久精品影院6| av网站免费在线观看视频| 国产精品亚洲av一区麻豆| 真人做人爱边吃奶动态| 国产男靠女视频免费网站| 免费在线观看完整版高清| 啪啪无遮挡十八禁网站| 久9热在线精品视频| 国产高清有码在线观看视频 | 99国产精品一区二区蜜桃av| 国产麻豆成人av免费视频| 最近最新中文字幕大全电影3 | 亚洲精品国产区一区二| 亚洲精品美女久久久久99蜜臀| 这个男人来自地球电影免费观看| 国产高清videossex| 国产精品乱码一区二三区的特点 | 亚洲第一电影网av| 男男h啪啪无遮挡| 黄色 视频免费看| 久久中文看片网| 日本 欧美在线| 国产亚洲欧美精品永久| 亚洲欧美精品综合一区二区三区| 欧美午夜高清在线| 亚洲成av人片免费观看| 欧美最黄视频在线播放免费| 国产一级毛片七仙女欲春2 | 亚洲人成电影免费在线| 99国产精品99久久久久| 日本五十路高清| 久久香蕉国产精品| 久久这里只有精品19| 久久青草综合色| 亚洲国产高清在线一区二区三 | 美女高潮到喷水免费观看| 久久精品人人爽人人爽视色| 成人手机av| 人人妻人人澡人人看| 精品欧美一区二区三区在线| 一边摸一边抽搐一进一出视频| 久久人人精品亚洲av| 久久久久久国产a免费观看| 久久午夜亚洲精品久久| 国产1区2区3区精品| 亚洲国产欧美日韩在线播放| 亚洲精品粉嫩美女一区| 国产麻豆69| 国产精品野战在线观看| 久久久久亚洲av毛片大全| av有码第一页| 国内精品久久久久久久电影| 国产亚洲精品一区二区www| 此物有八面人人有两片| 国产一区二区三区在线臀色熟女| 久久久久久亚洲精品国产蜜桃av| 亚洲va日本ⅴa欧美va伊人久久| 波多野结衣av一区二区av| 免费高清在线观看日韩| 欧美中文日本在线观看视频| 久久久久国产精品人妻aⅴ院| 日本欧美视频一区| 久久久久久久久久久久大奶| 两个人看的免费小视频| 夜夜看夜夜爽夜夜摸| 国产精品久久久人人做人人爽| 老鸭窝网址在线观看| 成人三级做爰电影| 变态另类成人亚洲欧美熟女 | 可以在线观看毛片的网站| 国产99白浆流出| 亚洲男人天堂网一区| 高清毛片免费观看视频网站| 亚洲在线自拍视频| 亚洲全国av大片| 人人妻人人爽人人添夜夜欢视频| 人人妻人人澡人人看| 色播在线永久视频| 日韩 欧美 亚洲 中文字幕| 一夜夜www| 成年女人毛片免费观看观看9| 又黄又粗又硬又大视频| 日本 av在线| av网站免费在线观看视频| 亚洲国产精品久久男人天堂| 亚洲一区二区三区色噜噜| 日本精品一区二区三区蜜桃| 国产麻豆成人av免费视频| 色综合婷婷激情| 此物有八面人人有两片| 男女下面插进去视频免费观看| 成人亚洲精品av一区二区| 亚洲午夜精品一区,二区,三区| 日本 av在线| 亚洲精品久久国产高清桃花| 免费观看精品视频网站| 亚洲美女黄片视频| 免费看十八禁软件| 91精品国产国语对白视频| 嫩草影视91久久| 露出奶头的视频| aaaaa片日本免费| 一本综合久久免费| 久久精品国产清高在天天线| 中文字幕人妻熟女乱码| 搡老熟女国产l中国老女人| 亚洲自拍偷在线| 99国产精品一区二区蜜桃av| 夜夜躁狠狠躁天天躁| 每晚都被弄得嗷嗷叫到高潮| 国产精品av久久久久免费| 老司机午夜福利在线观看视频| 在线十欧美十亚洲十日本专区| 国产主播在线观看一区二区| 国产av又大| 可以在线观看毛片的网站| 久久欧美精品欧美久久欧美| 亚洲av熟女| 亚洲国产精品久久男人天堂| 午夜福利高清视频| 国产成人精品久久二区二区91| 午夜久久久在线观看| 亚洲专区国产一区二区| 色综合站精品国产| 成人亚洲精品av一区二区| 精品不卡国产一区二区三区| 国产一区二区激情短视频| x7x7x7水蜜桃| 九色亚洲精品在线播放| 在线天堂中文资源库| 极品人妻少妇av视频| 亚洲自偷自拍图片 自拍| 国产又色又爽无遮挡免费看| 制服诱惑二区| 无限看片的www在线观看| 国产欧美日韩一区二区三| 99riav亚洲国产免费| 午夜免费鲁丝| 午夜福利18| 亚洲黑人精品在线| 麻豆一二三区av精品| 最好的美女福利视频网| 中国美女看黄片| 50天的宝宝边吃奶边哭怎么回事| 国产成人系列免费观看| 国产欧美日韩一区二区精品| 色老头精品视频在线观看| 国产精品,欧美在线| 99香蕉大伊视频| 在线观看舔阴道视频| 欧美在线黄色| 一区在线观看完整版| 久久久久久久久中文| 天天躁狠狠躁夜夜躁狠狠躁| 国产精华一区二区三区| 啦啦啦观看免费观看视频高清 | 性欧美人与动物交配| 亚洲专区国产一区二区| 嫩草影院精品99| 熟女少妇亚洲综合色aaa.| 一边摸一边做爽爽视频免费| 久久人妻福利社区极品人妻图片| 91老司机精品| 国产精品香港三级国产av潘金莲| 男人操女人黄网站| 亚洲色图av天堂| 国产精品二区激情视频| 老司机午夜福利在线观看视频| 一边摸一边做爽爽视频免费| 91av网站免费观看| 精品国内亚洲2022精品成人| 亚洲国产看品久久| 在线观看免费午夜福利视频| 97人妻天天添夜夜摸| 91精品三级在线观看| 亚洲一区高清亚洲精品| 日本黄色视频三级网站网址| 欧美激情高清一区二区三区| 国产aⅴ精品一区二区三区波| 国产精品综合久久久久久久免费 | 久久国产亚洲av麻豆专区| 成人三级黄色视频| 麻豆国产av国片精品| 一本综合久久免费| 国产一区二区三区综合在线观看| 欧美国产日韩亚洲一区| 午夜福利18| 如日韩欧美国产精品一区二区三区| 搡老熟女国产l中国老女人| 久久中文看片网| 在线av久久热| 此物有八面人人有两片| 久9热在线精品视频| 日韩精品中文字幕看吧| 日韩视频一区二区在线观看| 亚洲精品av麻豆狂野| 一区二区日韩欧美中文字幕| 最新在线观看一区二区三区| 一区二区三区高清视频在线| 桃红色精品国产亚洲av| av免费在线观看网站| 精品久久久久久久毛片微露脸| 国产av一区在线观看免费| 神马国产精品三级电影在线观看 | cao死你这个sao货| 91在线观看av| 国产亚洲欧美在线一区二区| 九色国产91popny在线| 91成人精品电影| 亚洲成av人片免费观看| 亚洲五月色婷婷综合| 精品国产乱码久久久久久男人| 欧美久久黑人一区二区| 日本 av在线| 99久久精品国产亚洲精品| 亚洲人成网站在线播放欧美日韩| 老司机午夜福利在线观看视频| 老汉色∧v一级毛片| 免费人成视频x8x8入口观看| 美国免费a级毛片| 国产91精品成人一区二区三区| 两人在一起打扑克的视频| 日本黄色视频三级网站网址| av网站免费在线观看视频| 欧美日本视频| 淫秽高清视频在线观看| 久久青草综合色| 黄色女人牲交| 婷婷丁香在线五月| 午夜福利高清视频| 国产熟女午夜一区二区三区| 欧美成人午夜精品| 母亲3免费完整高清在线观看| 91九色精品人成在线观看| 99精品欧美一区二区三区四区| 国产97色在线日韩免费| 亚洲 国产 在线| 亚洲人成电影观看| 亚洲五月色婷婷综合| 18禁美女被吸乳视频| 日日夜夜操网爽| 久久天堂一区二区三区四区| 狂野欧美激情性xxxx| 亚洲精品在线美女| a级毛片在线看网站| 搞女人的毛片| 国产av精品麻豆| 我的亚洲天堂| 亚洲成人国产一区在线观看| 国产高清videossex| 国产真人三级小视频在线观看| 精品一区二区三区四区五区乱码| 一进一出抽搐gif免费好疼| 色精品久久人妻99蜜桃| 99国产精品一区二区三区| 久久久久久久午夜电影| 亚洲在线自拍视频| 人人妻人人爽人人添夜夜欢视频| 久久午夜综合久久蜜桃| 亚洲视频免费观看视频| 欧美日韩亚洲国产一区二区在线观看| 久久国产精品男人的天堂亚洲| bbb黄色大片| 黄网站色视频无遮挡免费观看| 亚洲黑人精品在线| 9热在线视频观看99| 大陆偷拍与自拍| 亚洲 欧美一区二区三区| 欧美激情 高清一区二区三区| 亚洲精品国产一区二区精华液| 村上凉子中文字幕在线| 黄色片一级片一级黄色片| 亚洲中文字幕日韩| 国产成人影院久久av| 亚洲最大成人中文| 欧美成人性av电影在线观看| 又黄又粗又硬又大视频| 久久中文字幕一级| 91在线观看av| 国产精品av久久久久免费| 国产成人免费无遮挡视频| 日本精品一区二区三区蜜桃| 夜夜躁狠狠躁天天躁| 国产私拍福利视频在线观看| svipshipincom国产片| 亚洲国产看品久久| 精品久久久久久成人av| 国产高清激情床上av| www国产在线视频色| 午夜免费成人在线视频| 精品一区二区三区四区五区乱码| 此物有八面人人有两片| 日韩一卡2卡3卡4卡2021年| 老司机靠b影院| 18禁裸乳无遮挡免费网站照片 | 丝袜在线中文字幕| 久久久久国内视频| 黄网站色视频无遮挡免费观看| 最近最新免费中文字幕在线| 久热爱精品视频在线9| 欧美成人性av电影在线观看| 日韩精品中文字幕看吧| av网站免费在线观看视频| 国产亚洲精品久久久久5区| 精品高清国产在线一区| 久久久精品欧美日韩精品| 丁香六月欧美| 亚洲av电影在线进入| 国产激情欧美一区二区| 久久久久久国产a免费观看| 免费在线观看日本一区| 黄色视频不卡| 国产激情欧美一区二区| 长腿黑丝高跟| 欧美久久黑人一区二区| 一二三四社区在线视频社区8| 国产日韩一区二区三区精品不卡| 深夜精品福利| 夜夜躁狠狠躁天天躁| 国产成年人精品一区二区| 国产片内射在线| 日韩欧美一区二区三区在线观看| 国产片内射在线| 一进一出好大好爽视频| 成人18禁高潮啪啪吃奶动态图| 国产精品久久久久久精品电影 | 国产精品免费视频内射| 麻豆av在线久日| 久久国产精品影院| 青草久久国产| 国产一级毛片七仙女欲春2 | 精品高清国产在线一区| 国产精品av久久久久免费| 搡老熟女国产l中国老女人| 亚洲性夜色夜夜综合| 看黄色毛片网站| 国产精品九九99| 久久青草综合色| 久久久水蜜桃国产精品网| 亚洲色图综合在线观看| or卡值多少钱| 国产亚洲精品一区二区www| 欧美日韩亚洲综合一区二区三区_| 午夜日韩欧美国产| 国内毛片毛片毛片毛片毛片| 女性被躁到高潮视频| 黄频高清免费视频| 亚洲国产精品合色在线| 少妇裸体淫交视频免费看高清 | 国产av精品麻豆| 日韩有码中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 国产精品国产高清国产av| 麻豆久久精品国产亚洲av| 色综合亚洲欧美另类图片| 久久久久久久精品吃奶| 国产99久久九九免费精品| 国产成人系列免费观看| 国产色视频综合| 色老头精品视频在线观看| av有码第一页| 黄色丝袜av网址大全| 日本五十路高清| 两个人视频免费观看高清| 午夜久久久久精精品| 国产亚洲精品第一综合不卡| 91国产中文字幕| 9热在线视频观看99| 久久中文字幕一级| 怎么达到女性高潮| 亚洲精品久久成人aⅴ小说| 日韩一卡2卡3卡4卡2021年| 日韩精品中文字幕看吧| 亚洲性夜色夜夜综合| 一级毛片女人18水好多| 男女做爰动态图高潮gif福利片 | 久久伊人香网站| 最好的美女福利视频网| 国产欧美日韩综合在线一区二区| 午夜激情av网站| 国内毛片毛片毛片毛片毛片| 精品久久久久久久人妻蜜臀av | 99在线视频只有这里精品首页| av免费在线观看网站| 一夜夜www| 波多野结衣巨乳人妻| 在线永久观看黄色视频| 精品熟女少妇八av免费久了| 亚洲国产精品合色在线| 国产一区二区在线av高清观看| 人妻久久中文字幕网| 女同久久另类99精品国产91| 午夜福利,免费看| 女警被强在线播放| 成人国产综合亚洲| 国产精品爽爽va在线观看网站 | 国产成人精品久久二区二区91| 黄片播放在线免费| 亚洲第一av免费看| 国产成人影院久久av| 欧美成人午夜精品| 午夜福利影视在线免费观看| 美女扒开内裤让男人捅视频| 黄网站色视频无遮挡免费观看| 亚洲av熟女| 级片在线观看| 久久婷婷人人爽人人干人人爱 | 侵犯人妻中文字幕一二三四区| 亚洲无线在线观看| 啦啦啦观看免费观看视频高清 | 午夜福利成人在线免费观看| 午夜视频精品福利| 一边摸一边抽搐一进一小说| 日韩国内少妇激情av| 久久久水蜜桃国产精品网| 久久久久精品国产欧美久久久| 久久久久亚洲av毛片大全| 国产欧美日韩一区二区精品| 黑人巨大精品欧美一区二区mp4| 国产成人精品无人区| 亚洲一区二区三区不卡视频| 成人亚洲精品一区在线观看| 黄片播放在线免费| 一进一出好大好爽视频| 校园春色视频在线观看| 日韩成人在线观看一区二区三区| 精品无人区乱码1区二区| 国产欧美日韩一区二区三区在线| 久久久久九九精品影院| 欧美精品亚洲一区二区| 国产成人影院久久av| ponron亚洲| 首页视频小说图片口味搜索| 两个人免费观看高清视频| 精品国产乱子伦一区二区三区| 亚洲狠狠婷婷综合久久图片| 又黄又爽又免费观看的视频| 亚洲成av人片免费观看| 国产三级在线视频| 日本在线视频免费播放| 女生性感内裤真人,穿戴方法视频| 韩国av一区二区三区四区| 亚洲黑人精品在线| 99久久久亚洲精品蜜臀av| 日本撒尿小便嘘嘘汇集6| 在线观看免费视频网站a站| 国产成人av激情在线播放| 嫩草影院精品99| 国产乱人伦免费视频| 成人手机av| 午夜福利高清视频| 午夜福利成人在线免费观看| 免费高清视频大片| 不卡av一区二区三区| 国产精品久久视频播放| 一进一出抽搐gif免费好疼| 狂野欧美激情性xxxx| 国产一卡二卡三卡精品| 久久国产亚洲av麻豆专区| 欧美成人性av电影在线观看| 色哟哟哟哟哟哟| 在线av久久热| 亚洲,欧美精品.| 麻豆一二三区av精品| 男女下面插进去视频免费观看| 国产99白浆流出| 夜夜夜夜夜久久久久| 国产免费av片在线观看野外av| 黄色毛片三级朝国网站| 欧美成人性av电影在线观看| 麻豆久久精品国产亚洲av| 亚洲成国产人片在线观看| 国产精品免费一区二区三区在线| 韩国av一区二区三区四区| 18美女黄网站色大片免费观看| 悠悠久久av| 久久草成人影院| 亚洲av美国av| 成人精品一区二区免费| 人成视频在线观看免费观看| 日韩免费av在线播放| 亚洲av电影不卡..在线观看| www.999成人在线观看| 精品国产国语对白av| 18美女黄网站色大片免费观看| 自线自在国产av| 欧美日韩亚洲国产一区二区在线观看| 亚洲熟妇熟女久久| 天天一区二区日本电影三级 | 亚洲专区中文字幕在线| 欧美日韩亚洲国产一区二区在线观看| 亚洲熟妇熟女久久| 欧美不卡视频在线免费观看 | www.www免费av| 99国产极品粉嫩在线观看| 黄色丝袜av网址大全| 90打野战视频偷拍视频| 黑人巨大精品欧美一区二区mp4| 国内精品久久久久久久电影| 久久精品国产清高在天天线| 好看av亚洲va欧美ⅴa在| 桃红色精品国产亚洲av| 日韩成人在线观看一区二区三区| 我的亚洲天堂| 高清黄色对白视频在线免费看| 不卡一级毛片| 午夜福利成人在线免费观看| 久久久久久国产a免费观看| 欧美精品亚洲一区二区| 精品一区二区三区四区五区乱码| 亚洲激情在线av| av电影中文网址| 18禁裸乳无遮挡免费网站照片 | 在线永久观看黄色视频| 欧美日本视频| 两性夫妻黄色片| 免费少妇av软件| 窝窝影院91人妻| 一级片免费观看大全| 男人舔女人的私密视频| 免费久久久久久久精品成人欧美视频| 琪琪午夜伦伦电影理论片6080| av免费在线观看网站| 日韩一卡2卡3卡4卡2021年| 国产精品免费一区二区三区在线| 熟妇人妻久久中文字幕3abv| 欧美成狂野欧美在线观看| 在线视频色国产色| 脱女人内裤的视频| 一级片免费观看大全| av天堂在线播放| 九色国产91popny在线| 一夜夜www| 国产欧美日韩一区二区三区在线| 国内久久婷婷六月综合欲色啪| 国产精品自产拍在线观看55亚洲| 久久香蕉精品热| 狂野欧美激情性xxxx| 亚洲精品粉嫩美女一区| 变态另类成人亚洲欧美熟女 | 久久精品国产清高在天天线| 无限看片的www在线观看| 欧美色视频一区免费| 精品国产一区二区三区四区第35| 波多野结衣巨乳人妻| 久久久久国内视频| 97人妻精品一区二区三区麻豆 | 欧美日韩瑟瑟在线播放| 无人区码免费观看不卡| 亚洲第一青青草原| 岛国在线观看网站| 久久这里只有精品19| 亚洲av美国av| 曰老女人黄片| 免费不卡黄色视频| 国产精品一区二区三区四区久久 | 欧美日韩黄片免| 国产激情久久老熟女| 国产一区二区三区在线臀色熟女| 精品国产亚洲在线| 熟女少妇亚洲综合色aaa.| 国产一区二区三区在线臀色熟女| 国产午夜福利久久久久久| 亚洲男人的天堂狠狠| 黄色视频,在线免费观看| 麻豆久久精品国产亚洲av| 色尼玛亚洲综合影院| 俄罗斯特黄特色一大片| 少妇粗大呻吟视频| 国产人伦9x9x在线观看| 欧美激情高清一区二区三区| 纯流量卡能插随身wifi吗| 国产精品 欧美亚洲| 欧美日韩乱码在线| 亚洲 国产 在线| 黄片播放在线免费| 一级片免费观看大全| 天天躁狠狠躁夜夜躁狠狠躁| 91精品国产国语对白视频|