• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Complete mitochondrial genomes of two deep-sea pandalid shrimps, Heterocarpus ensifer and Bitias brevis: insights into the phylogenetic position of Pandalidae (Decapoda: Caridea)*

    2020-06-08 05:34:40SUNShaoCHENGJiaoSUNSongSHAZhongli
    Journal of Oceanology and Limnology 2020年3期

    SUN Shao’e , CHENG Jiao , SUN Song , SHA Zhongli , ,

    1 Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China

    2 Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China

    3 University of Chinese Academy of Sciences, Beijing 100049, China

    Received Feb. 27, 2019; accepted in principle May 3, 2019; accepted for publication Sep. 9, 2019 ? Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

    Abstract The mitochondrial genome (mitogenome) analysis is a signifi cant tool for investigating the evolutionary history of metazoan animals. The family Pandalidae is a diverse caridean group containing mainly deep-sea species. Until May 30 2019, only two complete mitogenomes are available in GenBank. Here we present the complete mitogenome sequences of two deep-sea pandalid shrimps, Heterocarpus ensifer and Bitias brevis through Illumina sequencing. The mitochondrial genomes were determined to be 15 939 bp and 15 891 bp long, and both consist of 13 protein-coding genes (PCGs), 23 transfer-RNA genes (tRNAs), two ribosomal-RNA genes (rRNAs), and one control region. The nucleotide composition is biased toward adenine and thymine. Overall, the gene contents and arrangements are consistent with the pancrustacean ground pattern. The alignment of the control regions of four pandalids reveals a conserved sequence block (CSB) (104 bp in length, average GC%=29.47% and 69.23% similarity). A phylogenetic analysis based on 51 Caridea complete mitogenomes revealed that the deep-sea pandalid shrimps are situated an intermediate lineage, with a tendency to originated from those living in shallow sea area.

    Keyword: Pandalidae; deep sea; mitochondrial genome; gene order; phylogenetic relationships

    1 INTRODUCTION

    Animal mitochondrial (mt) genomes are covalently closed circular molecules of DNA that usually contain 37 genes, including 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and an control region (CR) (Boore, 1999). Mitochondrial DNA sequences are extensively used in population genetics, species identifi cation, phylogenetic relationships at various taxonomic levels and comparative and evolutionary genomics studies, owing to their unique features of conserved gene content, lack of extensive recombination, relatively high evolutionary rate and abundant marker types (Moritz and Brown, 1987; Curole and Kocher, 1999; Hebert et al., 2003; Gissi et al., 2008). As organelle genomes, the complete mitochondrial genomes also provide a suite of genome-level features, such as the rearrangement of genes, base composition, codon usage, tRNA and rRNA gene secondary structures (Simon et al., 2006; Gissi et al., 2008; Liu et al., 2016).

    Mitochondrial gene arrangements seem seldom to have changed in some phyla of animal. Most vertebrate mitogenomes have a typical gene order, excluding groups such as birds and amphibians (Mindell et al., 1998; Mueller and Boore, 2005). However, invertebrates display accelerated gene rearrangement events (Cameron et al., 2007). Gene arrangement show amount of variation in crustaceans mitogenomes, e.g. amphipods (Stokkan et al., 2016), in which three species of the same genus Pseudoniphargus display each a unique mitochondrial gene arrangement with respect to either the presumed Pancrustacean order or those known for other amphipods. The mitochondrial gene rearrangement within a lineage has been supposed to be phylogenetically informative (Boore and Brown, 1998; Serb and Lydeard, 2003; Boore et al., 2004; Yuan et al., 2012; Yang et al., 2016). Previous study have suggested that positive selection could act on gene order in the mitogenomes (Satoh et al., 2010).

    The deep sea occupies a vast portion of the world ocean, which is by far the largest environment on the planet. However, the knowledge of the diversity and evolutionary history of the deep-sea fauna is still remarkably poor. For a long time, the deep sea has been regarded as a region with a limited number of species, owing to its harsh biotic conditions with low temperatures, extreme hydrostatic pressures, and the absence of light and nutrient-poor sediments (Gage and Tyler, 1991). Caridea Dana, 1852 is one of the largest infraorders in the order Decapoda, containing over 3 400 species in 36 families (De Grave and Fransen, 2011; Liao et al., 2017). They occur in all aquatic habitats on the planet, ranging from freshwater to the deep sea ecosystems, providing an excellent model to explore the origin and evolution of faunas in difference erent aquatic habitats. Compared to the size and diversity of Caridea, the existing information on Caridea mitogenome is still limited. To date, the complete mitogenomes of Caridea were determined only in 51 difference erent species (https://www.ncbi.nlm.nih.gov/). Furthermore, within the infraorder Caridea, the sampling is imbalanced: twenty-three for the family Atyidae, eleven for the Palaemonidae, seven for the Alvinocarididae, fi ve for the Alpheidae, two for the Pandalidae, two for the Crangonidae and one for the Rhynchocinetidae.

    The family Pandalidae is a diverse caridean group with more than 189 species in 23 genera (De Grave et al., 2009), which distributed and inhabiting shallow and deep waters below 4 000 m depth. Some studies based on the partial sequences supported the monophyly of the family Pandalidae (Bracken et al., 2009; Li et al., 2011; Aznar-Cormano et al., 2015), except Liao et al. (2019), which state that Pandalidae is paraphyletic with the monophyletic family Thalassocarididae nested within. However, there has been no previous attempt to resolve phylogenetic position of Pandalidae within Caridea using mitogenome sequences. To date, only two complete mitogenome of pandalid species, Chlorotocus crassicornis (KY944589) and Pandalus borealis (LC341266), were available in the GenBank.

    To improve our understanding of the mitogenome evolution and phylogenetic position of Pandalidae, the complete mitogenome of two deep-sea pandalid shrimps, Heterocarpus ensifer and Bitias brevis, were sequenced. We compared the newly sequenced mitogenomes with the previously published sequences. We provided a comparative analysis of four pandalid mitogenomes, including the genomic structures, base composition, codon usage, and the structure features for the control regions. Finally, we evaluated the phylogenetic position of pandalid species within Caridea in mitogenome perspective.

    2 MATERIAL AND METHOD

    2.1 Sampling and DNA extraction

    The deep-sea pandalid shrimp, H. ensifer was captured from Yap Seamount, Western Pacifi c (11°18′06.941′′N, 139°21′43.096′′E) at a depth of 415.7 m, and B. brevis were captured from 8°51′N, 137°47′E at a depth of 311 m. Specimens were immediately preserved in 95% ethanol until DNA extraction. Total genomic DNA was isolated using the DNeasy tissue kit (Qiagen) according to the manufacturer’s instructions.

    2.2 Illumina sequencing, mitogenome assembly and annotation

    A total amount of 1 μg DNA per sample was used as input material for the DNA sample preparations. Sequencing libraries were generated using NEBNext?Ultra? DNA Library Prep Kit for Illumina (NEB, USA) following manufacturer’s recommendations and index codes were added to attribute sequences to each sample. The clustering of the index-coded samples was performed on a cBot Cluster Generation System according to the manufacturer’s instructions. After cluster generation, the library preparations were sequenced on an Illumina HiSeq 2500 platform and paired-end reads were generated. The raw reads fi ltered with average quality value (lower than Q20) were excluded from further analysis. Clean data were then assembled using SOAP denovo (Li et al., 2010) with k-mer=55. Then we blast contigs against the reference mitogenome of Chlorotocus crassicornis (KY944589) from the family Pandalidae. The contigs identifi ed as mitogenome sequences were manually examined for repeats at the beginning and end of the sequence to establish a circular mitochondrial DNA.

    ORF Finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html) and BLASTx were used to determine the protein coding genes (PCGs) using the invertebrate mitochondrial genetic code. The positions of transfer RNA (tRNA) genes were localized by ARWEN (Laslett and Canb?ck, 2008) and DOGMA (Wyman et al., 2004) using the invertebrate mitochondrial genetic code and the default search mode. To defi ne the ribosomal RNA (rRNA) genes, the inferred sequences were identifi ed by their similarity to those of other published crustacean mitogenomes by BLAST search (http://www.ncbi.nlm.nih.gov/BLAST).

    The mitochondrial genomes of the H. ensifer and B. brevis mitogenomes were generated with the program CGView (Stothard and Wishart, 2005). The two mitochondrial genomes have been deposited in the GenBank database under the accession numbers MG674228 for H. ensifer and MG674229 for B. brevis.

    2.3 Sequence analysis

    The base composition and skewness analyses across the complete genomes (plus strand) were performed and compared among H. ensifer, B. brevis, C. crassicornis (KY944589), and Pandalus borealis (LC341266). The A+T content values were computed using Editseq program from DNASTAR. The skew in nucleotide composition was calculated by GC and AT skew, which were measured according to the formulae by Perna and Kocher (1995), AT skew=(A-T)/(A+T); GC skew=(G-C)/(G+C). The frequencies of codons and relative synonymous codon usage (RSCU) were determined with MEGA 5 (Tamura et al., 2011). The tandem repeat sequences were searched by Tandem Repeats Finder 4.0 (Benson, 1999). The potential secondary structures of tandem repeat sequences were predicted using the online Mfold software version 3.2 with default settings (Zuker, 2003). When more than one secondary structures were possible, the one with the lowest free energy score was used.

    2.4 Phylogenetic analysis

    The nucleotide sequences of 13 PCGs and 2 rRNA genes from 51 complete Caridea mitogenomes (Supplementary Table S1) were used to perform phylogenetic analyses, with fi ve amphipod species as the outgroups. The nucleotide sequences for the PCG and rRNA genes were aligned with MAFFT (Katoh et al., 2005), applying the E-INS-I manual strategy with default parameters. Ambiguously aligned and variable areas were recognized using the program Gblocks (Castresana, 2000; Talavera and Castresana, 2007) (default setting) and excluded from the analyses. DAMBE 4.2.13 (Xia et al., 2003; Xia and Lemey, 2009) was taken to measure the substitution saturation. PartitionFinder v1.1.1 (Lanfear et al., 2012) was used to determine the best partitioning schemes and corresponding substitution models. The data blocks were predefi ned by genes and codon positions for nucleotide sequences of protein-coding genes. The Bayesian information criterion (BIC) and the greedy heuristic search algorithm with branch lengths estimated as “unlinked” to identify the best-fi t partition schemes. The best-fi t partitioning schemes (Supplementary Table S2) were adopted in the phylogenetic analyses.

    Maximum Likelihood (ML) analyses were performed using IQTREE Web Server (http://iqtree.cibiv.univie.ac.at/; Trifi nopoulos et al., 2016) with partition models. The reliability of the tree topologies was evaluated using bootstrap support with 100 replicates for the ML analysis. Bayesian inference (BI) was performed using MrBayes 3.2 (Ronquist et al., 2012), with each partition allowed to have its own set of parameters, respectively. The Markov chain Monte Carlo (MCMC) was run for 10 million generations, with sampling frequency of 1 000. All parameters were checked with Tracer v 1.5 (Drummond and Rambaut, 2007). After discarding the fi rst 5 000 trees as burn-in, the remaining 5 000 sampled trees were used to calculate a majority rule consensus tree and posterior probabilities (PP).

    3 RESULT AND DISCUSSION

    3.1 General features of Pandalidae mitochondrial genomes

    The lengths of the newly complete mitogenomes of H. ensifer and B. brevis were 15 939 bp and 15 891 bp, respectively (Supplementary Fig.S1). The length of H. ensifer mitogenome was longer than that of C. crassicornis (KY944589) (15 935 bp), but shorter than that of Pandalus borealis (LC341266). The mitogenome of B. brevis was the smallest among the available pandalid shrimps. Each mitogenome of the two pandalids encodes 37 genes, including 13 PCGs ( cox1- 3, cytb, nad1- 6, nad4l, atp6, and atp8), 22 tRNA genes and two rRNA genes ( rrnL and rrnS). They arranged in the same order with that of the typical pancrustacean ground pattern (Lavrov et al., 2000). Four protein coding genes ( nad1, nad5, nad4, and nad4l), and six tRNAs gnnes ( tRNAHis, tRNAPro, tRNALeu(UAG), tRNAVal, tRNAGln, and tRNATyr) were encoded by the H-strand, while the remaining genes were encoded by the L-strand (Supplementary Fig.S1).

    Table 1 Genomic features of the mitogenomes of Pandalidae species

    The base counts yield A+T composition of 64.76% and 64.84% for H. ensifer and B. brevis, which were slightly higher than that of C. crassicornis but lower than that of P. b orealis (Table 1). The AT content of third codon position of PCGs varied from 60.39% to 71.42%, being slightly lower than in the control region (76.59% to 79.26%). This phenomenon was in agreement with the “transcription hypothesis of the codon usage” (Sun et al., 2009), which suggested that the cells have a high availability of ATP and relatively low availability of the other three NTPs. The nucleotide compositions of four pandalid mitogenomes are all strongly skewed away from G in favor of C (the GC-skews are from -0.21 in P. borealis to -0.26 in both H. ensifer and B. brevis) and from T in favor of A (the AT-skews are from 0.06 in both B. brevis and C. crassicornis to 0.08 in H. ensifer) (Table 1). These values were similar to those found in other Caridea species with the mitochondrial genome available (Sun et al., 2018). The Pandalidae showed the same mitochondrial gene orders with the pancrustacean ground pattern, although tRNAs rearranged between some caridean families (Fig.1) (Lavrov et al., 2000).

    3.2 Protein-coding and ribosomal RNA genes

    The PCGs of the pandalid mitochondrial genomes are conserved among four species: an average of 83% for amino acid and 74% for nucleotide sequences. Pairwise identities were also calculated for nucleotide and amino acid sequences of the 13 individual PCGs. The gene cox1 is the most conserved in both nucleotide sequences (80%) and amino acid sequences (95%). The genes atp8, nad6, and nad2 are the most variable in nucleotide sequences (71%, 65%, and 66%, respectively) and in amino acid sequences (77%, 66% and 70%, respectively).

    Most PCGs of the four pandalid mitochondrial genomes were defi ned by the common start codons for invertebrate mitogenome (ATN codon). The initiation site for the cox1 gene in C. crassicornis were GCG and in P. borealis were CGA. The initiation site for the atp 6 gene in H. ensifer and B. brevis were TTG. Out of the 13 protein-coding genes, fi ve show incomplete stop codons ( cox1, cox2, cytb, nad4, and nad5). It has been explained that a functional TAA stop codon will be created viapost-transcriptional polyadenylation in the genes which were ended with partial stop codons T or TA (Ojala et al., 1981).

    Excluding stop codons, the mitogenomes of H. ensifer, B. brevis, C. crassicornis and P. borealis encodes 3 701, 3 706, 3 704 and 3 708 amino acids (Supplementary Table S3), respectively. The RSCU values for the codons NNU and NNA were usually higher than 1, suggesting a strong A+T-bias in their third codon position. The most representative was the leucine amino acid, i.e. The TTA codon presented a RSCU value of 2.11-2.70 in the four Pandalidae mitogenomes, while the codon TTG, which also translates a leucine, showed a RSCU value of 0.55-0.69. This result was also consistent with the hypothesis that the codon usage bias and the AT bias of the third codon position may be positively correlated in the mitogenomes (Salvato et al., 2008; Kim et al., 2009; Chai et al., 2012; Hao et al., 2012). In Pandalidae PCGs, the content of A+T-rich codon families (Phe, Ile, Met, Tyr, Asn and Lys) are higher than G+C-rich codon families (Pro, Ala, Arg and Gly). The ratio G+C/A+T-rich codons was 0.67, 0.69, 0.68, 0.68 in H. ensifer and B. brevis, C. crassicornis and P. borealis, respectively, which is higher than that observed in insects (Crozier and Crozier, 1993; Lessinger et al., 2000; Oliveira et al., 2008).

    Fig.1 Linear representation of the mitochondrial gene arrangement of the ancestral mitogenome of pancrustaceans and Caridea species

    Similar to the mitochondrial genome of other caridean species, the rrnL and rrnS were situated between tRNALeu(UAG)and the control region, separated by tRNAVal. In H. ensifer and B. brevis, C. crassicornis and P. borealis, the rrnL and rrnS are 2 172 bp, 2 170 bp, 2 171 bp and 2 105 bp, respectively, with the AT content of 69.94%, 69.12%, 71.03%, and 69.55% (Table 1), slightly higher than the overall content.

    3.3 Transfer RNA genes and anticodons

    The complete set of 22 transfer RNA (tRNA) genes typical of metazoan mitogenomes was present in H. ensifer and B. brevis. They ranged in size from 64 bp to 72 bp in H. ensifer, and from 65 bp to 72 bp in B. brevis. Most of the tRNA sequences can fold into canonical clover-leaf secondary structures except tRNASer(UCU), whose paired “DHU” arm were missing, simplifi ng down to a loop (Supplementary Figs.S2-S3). The lacks of DHU-arm in tRNASer(UCU)is a common feature in metazoan mitogenomes (Wolstenholme, 1992). It can also work in a similar way as usual tRNAs, after the processe of posttranscriptional RNA editing (Ohtsuki et al., 2002; Masta and Boore, 2004; Chimnaronk et al., 2005).

    In vertebrate mitogenomes, the most used codon (optimal codon) in a degenerate codon family usually perfectly matches their tRNA anticodon. This phenomenon is called codon-anticodon adaptation, and is also known as optimal codon usage (Bulmer, 1987). Unlike the vertebrate mitochondrial genomes, the adaptation between codon and anticodon was not found in Pandalidae mitogenomes (Supplementary Table S3). The codon-anticodon adaptation in the mitogenomes may be disrupted by the A+T mutation pressures. This result was not consistent with the hypothesis in the vertebrate mitogenome that anticodon evolution is driven by codon composition (Xia, 2005).

    3.4 Non-coding regions

    Except the coding regions, the mitogenomes also features 12 non-coding regions for H. ensifer and 11 non-coding regions for B. brevis, with a total of 1 185 and 1 126 non-coding bases, respectively. Although these non-coding sequences account for only 7.4% and 7.1% of the whole mitochondrial genomes, they have higher AT content than that observed in any other region, reaching 77.97% and 75.84%, respectively (Table 1).

    Fig.2 Structural organization of the mitochondrial control region of P. borealis, C. crassicornis, H. ensifer and B. brevis (a); alignment of the conserved sequence blocks identifi ed in the mitochondrial control region of the four Pandalidae species (b)

    The control region (CR) consists of 1 075 and 1 021 bp in H. ensifer and B. brevis, respectively, which located between rrnS and trnI genes. Both in H. ensifer and B. brevis, as well as in the two other Pandalidae, it exhibits the highest A+T content. In H. ensifer, B. brevis and C. crassicornis, the CRs contained tandem repeat sequences (position 13 868-14 036 for C. crassicornis, 13 561-13 670 for H. ensifer, position 13 568-13 616 for B. brevis), which were 169, 110, and 61 bp in length, all comprising two tandem repeat units, respectively (Fig.2a). In addition, some other peculiar patterns, such as GA-block and [TA(A)]n-blocks were also identifi ed within this region, although these elements were not located at the same position as they were found in other crustaceans (Kuhn et al., 2008; Liu and Cui, 2010). The alignment of the four Pandalidae control regions reveals a conserved sequence block (CSB) (104 bp in length, average GC%=29.47% and 69.23% similarity) (Fig.2b). CSBs have been identifi ed in the control region of various metazoans and are generally thought to play a role in the replication mechanism (Walberg and Clayton, 1981; Lee and Kocher, 1995; Zhang and Hewitt, 1997). However, this is only speculative. Studies that are more comprehensive would be required to identify precisely replication origins.

    3.5 Phylogenetic analyses

    It has been recommended that mitogenome contains enough genetic variation for resolving systematic relationships among higher taxa of decapod crustaceans (Lin et al., 2012; Shen et al., 2013). In the present study, the family Pandalidae is recovered to be monophyletic (Fig.3). This result was not consistent with that of Liao et al. (2019), which state that Pandalidae is paraphyletic with the monophyletic family Thalassocarididae nested within. Pandalidae has a closest relationship with the group of Palaemonidae + Alpheidae, and Alvinocarididae was sister to the ((Palaemonidae + Atyidae) + Pandalidae) clade. Then Atyidae and ((Palaemonidae + Alpheidae) + Pandalidae) + Alvinocarididae clustered together. The Rhynchocinetidae and Crangonidae (with only one species each) were basally placed in the trees in all analyses. The result is in confl ict with the results of Liao et al. (2019), where they fi nd Pandalidae being sister to (Crangonidae, Glyphocrangonidae). Also our result did not support the previous fi nding revealed by fi ve nuclear genes (18S, Enolase, H3, NaK, PEPCK) (Li et al., 2011), which suggested that the families Hippolytidae, Palaemonidae, Alpheidae, Crangonidae and Pandalidae clustered in one clade, while Oplophoridae, Nematocarcinidae, Rhynchocinetidae and Alvinocarididae clustered in another clade, and the Atyidae has been considered as basal lineage within the Caridea. The inconsistent results may due to the heterogeneity of data and difference erent numbers of samples.

    Fig.3 Phylogenetic trees derived from Maximum Likelihood (ML) and Bayesian analyses

    4 CONCLUSION

    This study characterized the complete mitogenome of two deep-sea pandalid shrimps, Heterocarpus ensifer and Bitias brevis, which were circular molecules and encoded 37 typical mitochondrial genes. The study provided the following conclusions about deep-sea pandalid shrimps: (1) the gene contents and arrangements of pandalid species are consistent with the pancrustacean ground pattern; (2) the mitochondrial control regions of Pandalidae species are characterized by the difference erent position of structural elements, e.g., tandem repeat sequence, GA-block and [TA(A)]n-blocks compared with other reported crustaceans. The Pandalidae CRs contained a conserved sequence block, which may play a role in the replication mechanism; (3) phylogenetic analysis supported that the deep-sea pandalid shrimps are situated an intermediate lineage, with a tendency to originated from those living in shallow sea area.

    5 DATA AVAILABILITY STATEMENT

    The authors declare that all data supporting the fi ndings of this study are available within the appendix sections.

    6 ACKNOWLEDGMENT

    The samples were collected by R/V Kexue.

    References

    Aznar-Cormano L, Brisset J, Chan T Y, Corbari L, Puillandre N, Utge J, Zbinden M, Zuccon D, Samadi S. 2015. An improved taxonomic sampling is a necessary but not suき cient condition for resolving inter-families relationships in Caridean decapods. Genetica, 143(2): 195-205.

    Benson G. 1999. Tandem repeats fi nder: a program to analyze DNA sequences. Nucleic Acids Research, 27(2): 573-580.

    Boore J L, Brown W M. 1998. Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Current Opinion in Genetics & Development, 8(6): 668-674.

    Boore J L, Medina M, Rosenberg L A. 2004. Complete sequences of the highly rearranged molluscan mitochondrial genomes of the Scaphopod Graptacme eborea and the Bivalve Mytilus edulis. Molecular Biology and Evolution, 21(8): 1 492-1 503.

    Boore J L. 1999. Animal mitochondrial genomes. Nucleic Acids Research, 27(8): 1 767-1 780.

    Bracken H D, De Grave S A M M Y, Felder D L. 2009. Phylogeny of the infraorder Caridea based on mitochondrial and nuclear genes (Crustacea: Decapoda). In: Martin J W, Crandall K A, Felder D L eds. Decapod Crustacean Phylogenetics. CRC Press, Boca Raton. p.1-305.

    Bulmer M. 1987. Coevolution of codon usage and transfer RNA abundance. Nature, 325(6106): 728-730.

    Cameron S L, Johnson K P, Whiting M F. 2007. The mitochondrial genome of the screamer louse Bothriometopus (Phthiraptera: Ischnocera): efference ects of extensive gene rearrangements on the evolution of the genome. Journal of Molecular Evolution, 65(6): 589-604.

    Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17(4): 540-552.

    Chai H N, Du Y Z, Zhai B P. 2012. Characterization of the complete mitochondrial genomes of Cnaphalocrocis medinalis and Chilo suppressalis (Lepidoptera: Pyralidae). International Journal of Biological Sciences, 8(4): 561-579.

    Chimnaronk S, Gravers Jeppesen M, Suzuki T, Nyborg J, Watanabe K. 2005. Dual-mode recognition of noncanonical tRNAs(Ser) by seryl-tRNA synthetase in mammalian mitochondria. European Molecular Biology Organization Journal, 24(19): 3 369-3 379.

    Crozier R H, Crozier Y C. 1993. The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization. Genetics, 133(1): 97-117.

    Curole J P, Kocher T D. 1999. Mitogenomics: digging deeper with complete mitochondrial genomes. Trends in Ecology & Evolution, 14(10): 394-398.

    De Grave S, Fransen C H J M. 2011. Carideorum Catalogus: the recent species of the dendrobranchiate, stenopodidean, procarididean and caridean shrimps (Crustacea: Decapoda). Zoologische Mededelingen, 85: 195-589.

    De Grave S, Pentchefference N D, Ahyong S T, Chan T Y, Crandall K A, Dworschak P C, Felder D L, Feldmann R M, Fransen C H J M, Goulding L Y D, Lemaitre R, Low M E Y, Martin J W, Ng P K L, Schweitzer C E, Tan S H, Tshudy D, Wetzer R. 2009. A classifi cation of living and fossil genera of decapod crustaceans. Raラ es Bulletin of Zoology, (S21): 1-109.

    Drummond A J, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7(1): 214.

    Gage J D, Tyler P D. 1991. Deep-sea Biology: A Natural History of Organisms at the Deep-Sea Floor. Cambridge University Press, Cambridge, UK.

    Gissi C, Iannelli F, Pesole G. 2008. Evolution of the mitochondrial genome of Metazoa as exemplifi ed by comparison of congeneric species. Heredity, 101(4): 301-320.

    Hao J S, Sun Q Q, Zhao H B, Sun X Y, Gai Y H, Yang Q. 2012. The complete mitochondrial genome of Ctenoptilum vasava (Lepidoptera: Hesperiidae: Pyrginae) and its phylogenetic implication. Comparative and Functional Genomics, 2012: 328 049.

    Hebert P D N, Cywinska A, Ball S L, deWaard J R. 2003. Biological identifi cations through DNA barcodes. Proceedings of the Royal Society B Biological Sciences, 270(1512): 313-321.

    Katoh K, Kuma K, Toh H, Miyata T. 2005. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research, 33(2): 511-518.

    Kim M I, Baek J Y, Kim M J, Jeong H C, Kim K G, Bae C H, Han Y S, Jin B R, Kim I. 2009. Complete nucleotide sequence and organization of the mitogenome of the redspotted apollo butterfl y, Parnassius bremeri (Lepidoptera: Papilionidae) and comparison with other lepidopteran insects. Molecules and Cells, 28(4): 347-363.

    Kuhn K, Streit B, Schwenk K. 2008. Conservation of structural elements in the mitochondrial control region of Daphnia. Gene, 420(2): 107-112.

    Lanfear R, Calcott B, Ho S Y W, Guindon S. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29(6): 1 695-1 701.

    Laslett D, Canb?ck B. 2008. ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics, 24(2): 172-175.

    Lavrov D V, Boore J L, Brown W M. 2000. The complete mitochondrial DNA sequence of the horseshoe crab Limulus polyphemus. Molecular Biology and Evolution, 17(5): 813-824.

    Lee W J, Kocher T D. 1995. Complete sequence of a sea lamprey ( Petromyzon marinus) mitochondrial genome: early establishment of the vertebrate genome organization. Genetics, 139(2): 873.

    Lessinger A C, Junqueira A C M, Lemos T A, Kemper E L, da Silva F R, Vettore A L, Arruda P, Azeredo-Espin A M L. 2000. The mitochondrial genome of the primary screwworm fl y Cochliomyia hominivorax (Diptera: Calliphoridae). Insect Molecular Biology, 9(5): 521-529.

    Li C P, De Grave S, Chan T Y, Lei H C, Chu K H. 2011. Molecular systematics of caridean shrimps based on fi ve nuclear genes: implications for superfamily classifi cation. Zoologischer Anzeiger— A Journal of Comparative Zoology, 250(4): 270-279.

    Li R Q, Zhu H M, Ruan J, Qian W B, Fang X D, Shi Z B, Li Y R, Li S T, Shan G, Kristiansen K, Li S G, Yang H M, Wang J, Wang J. 2010. De novo assembly of human genomes with massively parallel short read sequencing. Genome Research, 20(2): 265-272.

    Liao Y S, De Grave S, Ho T W, Ip B H Y, Tsang L M, Chan T Y, Chu K H. 2017. Molecular phylogeny of Pasiphaeidae (Crustacea, Decapoda, Caridea) reveals systematic incongruence of the current classifi cation. Molecular Phylogenetics and Evolution, 115: 171-180.

    Liao Y S, Ma K Y, De Grave S, Komai T, Chan T Y, Chu K H. 2019. Systematic analysis of the caridean shrimp superfamily Pandaloidea (Crustacea: Decapoda) based on molecular and morphological evidence. Molecular Phylogenetics and Evolution, 134: 200-210.

    Lin F J, Yuan L, Sha Z L, Tsang L M, Chu K H, Chan T Y, Liu R Y, Cui Z X. 2012. Evolution and phylogeny of the mud shrimps (Crustacea: Decapoda) revealed from complete mitochondrial genomes. BMC Genomics, 13: 631.

    Liu Y, Cui Z. 2010. Complete mitochondrial genome of the Asian paddle crab Charybdis japonica (Crustacea: Decapoda: Portunidae): gene rearrangement of the marine brachyurans and phylogenetic considerations of the decapods. Molecular Biology Reports, 37(5): 2 559-2 569.

    Liu Z K, Gao P, Ashraf M A, Wen J B. 2016. The complete mitochondrial genomes of two weevils, Eucryptorrhynchus chinensis and E. brandti: conserved genome arrangement in Curculionidae and defi ciency of tRNA-Ile gene. Open Life Sciences, 11(1): 458-469.

    Masta S E, Boore J L. 2004. The complete mitochondrial genome sequence of the spider Habronattus oregonensis reveals rearranged and extremely truncated tRNAs. Molecular Biology and Evolution, 21(5): 893-902.

    Mindell D P, Sorenson M D, Dimchefference D E. 1998. Multiple independent origins of mitochondrial gene order in birds. Proceedings of the National Academy of Sciences of the United States of America, 95(18): 10 693-10 697.

    Moritz C, Brown W M. 1987. Tandem duplications in animal mitochondrial DNAs: variation in incidence and gene content among lizards. Proceedings of the National Academy of Sciences of the United States of America, 84(20): 7 183-7 187.

    Mueller R L, Boore J L. 2005. Molecular mechanisms of extensive mitochondrial gene rearrangement in plethodontid salamanders. Molecular Biology and Evolution, 22(10): 2 104-2 112.

    Ohtsuki T, Kawai G, Watanabe K. 2002. The minimal tRNA: unique structure of Ascaris suum mitochondrial tRNASerUCUhaving a short T arm and lacking the entire D arm. FEBS Letters, 514(1): 37-43.

    Ojala D, Montoya J, Attardi G. 1981. tRNA punctuation model of RNA processing in human mitochondria. Nature, 290(5806): 470-474.

    Oliveira M T, Barau J G, Junqueira A C M, Feij?o P C, da Rosa A C, Abreu C F, Azeredo-Espin A M L, Lessinger A C. 2008. Structure and evolution of the mitochondrial genomes of Haematobia irritans and Stomoxys calcitrans: the Muscidae (Diptera: Calyptratae) perspective. Molecular Phylogenetics and Evolution, 48(3): 850-857.

    Perna N T, Kocher T D. 1995. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. Journal of Molecular Evolution, 41(3): 353-358.

    Ronquist F, Teslenko M, van der Mark P, Ayres D L, Darling A, H?hna S, Larget B, Liu L, Suchard M A, Huelsenbeck J P. 2012. MrBayes 3.2: eき cient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3): 539-542.

    Salvato P, Simonato M, Battisti A, Negrisolo E. 2008. The complete mitochondrial genome of the bag-shelter moth Ochrogaster lunifer (Lepidoptera, Notodontidae). BMC Genomics, 9(1): 331.

    Satoh T P, Sato Y, Masuyama N, Miya M, Nishida M. 2010. Transfer RNA gene arrangement and codon usage in vertebrate mitochondrial genomes: a new insight into gene order conservation. BMC Genomics, 11(1): 479.

    Serb J M, Lydeard C. 2003. Complete mtDNA sequence of the North American freshwater mussel, Lampsilis ornata (Unionidae): an examination of the evolution and phylogenetic utility of mitochondrial genome organization in Bivalvia (Mollusca). Molecular Biology and Evolution, 20(11): 1 854-1 866.

    Shen H, Braband A, Scholtz G. 2013. Mitogenomic analysis of decapod crustacean phylogeny corroborates traditional views on their relationships. Molecular Phylogenetics and Evolution, 66(3): 776-789.

    Simon C, Buckley T R, Frati F, Stewart J B, Beckenbach A T. 2006. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annual Review of Ecology Evolution and Systematics, 37(1): 545-579.

    Stokkan M, Jurado-Rivera J A, Juan C, Jaume D, Pons J. 2016. Mitochondrial genome rearrangements at low taxonomic levels: three distinct mitogenome gene orders in the genus Pseudoniphargus (Crustacea: Amphipoda). Mitochondrial DNA Part A, 27(5): 3 579-3 589.

    Stothard P, Wishart D S. 2005. Circular genome visualization and exploration using CGView. Bioinformatics, 21(4): 537-539.

    Sun S E, Hui M, Wang M X, Sha Z L. 2018. The complete mitochondrial genome of the alvinocaridid shrimp Shinkaicaris leurokolos (Decapoda, Caridea): insight into the mitochondrial genetic basis of deep-sea hydrothermal vent adaptation in the shrimp. Comparative Biochemistry and Physiology Part D: Genomics Proteomics, 25: 42-52.

    Sun Z, Wan D G, Murphy R W, Ma L, Zhang S H, Huang D V. 2009. Comparison of base composition and codon usage in insect mitochondrial genomes. Genes and Genomics, 31(1): 65-71.

    Talavera G, Castresana J. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56(4): 564-577.

    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10): 2 731-2 739.

    Trifi nopoulos J, Nguyen L T, von Haeseler A, Minh B Q. 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44(W1): W232-W235.

    Walberg M W, Clayton D A. 1981. Sequence and properties of the human KB cell and mouse L cell D-loop regions of mitochondrial DNA. Nucleic Acids Research, 9(20): 5 411-5 421.

    Wolstenholme D R. 1992. Genetic novelties in mitochondrial genomes of multicellular animals. Current Opinion in Genetics and Development, 2(6): 918-925.

    Wyman S K, Jansen R K, Boore J L. 2004. Automatic annotation of organellar genomes with DOGMA. Bioinformatics, 20(17): 3 252-3 255.

    Xia X H. 2005. Mutation and selection on the anticodon of tRNA genes in vertebrate mitochondrial genomes. Gene, 345(1): 13-20.

    Xia X, Lemey P. 2009. Assessing substitution saturation with DAMBE. In: Lemey, Philippe, Salemi, Marco, Vandamme, Anne-Mieke (Eds.), The Phylogenetic Handbook: A Practical Approach to DNA and Protein Phylogeny, 2nd edition. Cambridge University Press. p.615-630.

    Xia X, Xie Z, Salemi M, Chen L, Wang Y. 2003. An index of substitution saturation and its application. Molecular Phylogenetics and Evolution, 26(1): 1-7.

    Yang J, Ye F, Huang Y. 2016. Mitochondrial genomes of four katydids (Orthoptera: Phaneropteridae): New gene rearrangements and their phylogenetic implications. Gene, 575: 702-711.

    Yuan Y, Li Q, Yu H, Kong L F. 2012. The complete mitochondrial genomes of six heterodont bivalves (Tellinoidea and Solenoidea): Variable gene arrangements and phylogenetic implications. PLoS One, 7(2): e32353.

    Zhang D X, Hewitt G M. 1997. Insect mitochondrial control region: A review of its structure, evolution and usefulness in evolutionary studies. Biochemical Systematics and Ecology, 25(2): 99-120.

    Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31(13): 3 406-3 415.

    午夜久久久久精精品| 精品酒店卫生间| 成人毛片60女人毛片免费| 热99在线观看视频| 免费搜索国产男女视频| 国产中年淑女户外野战色| 国产又黄又爽又无遮挡在线| 久久精品91蜜桃| 亚洲怡红院男人天堂| 国产精品女同一区二区软件| 少妇熟女欧美另类| 日韩欧美在线乱码| 你懂的网址亚洲精品在线观看 | 国产麻豆成人av免费视频| 国产色爽女视频免费观看| 三级经典国产精品| 久久精品久久久久久噜噜老黄 | 亚洲色图av天堂| 只有这里有精品99| 综合色丁香网| 久热久热在线精品观看| 人妻制服诱惑在线中文字幕| 日本五十路高清| 久久精品综合一区二区三区| 99热6这里只有精品| 联通29元200g的流量卡| 国产爱豆传媒在线观看| 亚洲精品色激情综合| av国产久精品久网站免费入址| 亚洲欧美精品综合久久99| 真实男女啪啪啪动态图| 建设人人有责人人尽责人人享有的 | 久久精品久久久久久噜噜老黄 | 亚洲高清免费不卡视频| 91久久精品电影网| 久久精品人妻少妇| 亚洲av成人精品一二三区| 精品午夜福利在线看| 日日摸夜夜添夜夜爱| 国产真实乱freesex| 成人鲁丝片一二三区免费| 99久国产av精品| 国产色婷婷99| 亚洲欧美成人精品一区二区| 女人久久www免费人成看片 | 激情 狠狠 欧美| 日韩成人av中文字幕在线观看| 日韩av在线大香蕉| 春色校园在线视频观看| 久99久视频精品免费| 麻豆精品久久久久久蜜桃| 国产精品一二三区在线看| 亚洲人成网站在线播| 国产亚洲av片在线观看秒播厂 | 亚洲精品456在线播放app| 亚洲图色成人| 中文在线观看免费www的网站| 美女被艹到高潮喷水动态| 中文资源天堂在线| 女人久久www免费人成看片 | 大香蕉97超碰在线| 欧美xxxx性猛交bbbb| 日韩一区二区三区影片| 国产精品久久电影中文字幕| 久久精品国产鲁丝片午夜精品| 精品久久久久久成人av| 亚洲人成网站高清观看| 啦啦啦韩国在线观看视频| a级一级毛片免费在线观看| 久久久久免费精品人妻一区二区| 女人久久www免费人成看片 | 1024手机看黄色片| 一级黄片播放器| 亚洲精品456在线播放app| 亚洲天堂国产精品一区在线| 午夜视频国产福利| 日本熟妇午夜| 欧美区成人在线视频| 22中文网久久字幕| 日本色播在线视频| 国产一区亚洲一区在线观看| 九九热线精品视视频播放| 我要搜黄色片| 亚洲五月天丁香| 欧美色视频一区免费| 色视频www国产| 精品久久久久久久久亚洲| 午夜福利在线在线| 久久久久精品久久久久真实原创| 又粗又硬又长又爽又黄的视频| 一级二级三级毛片免费看| 成人无遮挡网站| 最近手机中文字幕大全| 久久久久性生活片| 久久久久久久久久久丰满| 欧美变态另类bdsm刘玥| 色综合色国产| av在线蜜桃| 91av网一区二区| 国产精品,欧美在线| 久久久久久国产a免费观看| 日韩成人av中文字幕在线观看| 欧美日本视频| 在线观看66精品国产| 国产成人午夜福利电影在线观看| 日韩在线高清观看一区二区三区| 一个人看视频在线观看www免费| 伊人久久精品亚洲午夜| 国产白丝娇喘喷水9色精品| 波野结衣二区三区在线| 一级黄色大片毛片| 国产精品一区二区三区四区免费观看| 少妇熟女aⅴ在线视频| 国内精品一区二区在线观看| 看十八女毛片水多多多| 精品国产一区二区三区久久久樱花 | 成人午夜高清在线视频| 听说在线观看完整版免费高清| 能在线免费看毛片的网站| 国产精品一区www在线观看| 欧美丝袜亚洲另类| 欧美高清性xxxxhd video| 99热这里只有是精品50| 中国美白少妇内射xxxbb| 黄色日韩在线| 久久精品人妻少妇| 国产精品,欧美在线| 最后的刺客免费高清国语| 美女高潮的动态| av在线老鸭窝| 亚洲欧美日韩东京热| 麻豆久久精品国产亚洲av| 97人妻精品一区二区三区麻豆| 免费av毛片视频| 国产精品日韩av在线免费观看| 一个人观看的视频www高清免费观看| 久久久国产成人免费| 女人被狂操c到高潮| videos熟女内射| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲中文字幕一区二区三区有码在线看| 亚洲自拍偷在线| 中文精品一卡2卡3卡4更新| 搡老妇女老女人老熟妇| 男人和女人高潮做爰伦理| 如何舔出高潮| 青春草视频在线免费观看| 99久久九九国产精品国产免费| 身体一侧抽搐| 男人舔女人下体高潮全视频| 97在线视频观看| 天天躁日日操中文字幕| 欧美xxxx性猛交bbbb| 亚洲人成网站在线播| 亚洲三级黄色毛片| 亚洲在久久综合| 午夜福利网站1000一区二区三区| 欧美bdsm另类| 丰满乱子伦码专区| 能在线免费看毛片的网站| 国产精品国产三级国产专区5o | 波多野结衣高清无吗| 丰满人妻一区二区三区视频av| 观看美女的网站| 精品一区二区三区视频在线| 色尼玛亚洲综合影院| 一个人看的www免费观看视频| av.在线天堂| 亚洲精品亚洲一区二区| 国产成人91sexporn| 久久99热这里只频精品6学生 | 精品久久久久久久久久久久久| 亚洲欧美成人精品一区二区| 身体一侧抽搐| 午夜a级毛片| 我要看日韩黄色一级片| 亚洲综合精品二区| 久久久国产成人精品二区| 男女那种视频在线观看| 欧美+日韩+精品| 日韩av在线免费看完整版不卡| 亚洲自偷自拍三级| 91久久精品国产一区二区成人| 秋霞在线观看毛片| 老女人水多毛片| 波野结衣二区三区在线| 婷婷色麻豆天堂久久 | 久久热精品热| 日韩一本色道免费dvd| 免费av毛片视频| 天美传媒精品一区二区| 亚洲欧美中文字幕日韩二区| 乱码一卡2卡4卡精品| 两性午夜刺激爽爽歪歪视频在线观看| 国产女主播在线喷水免费视频网站 | 99久久精品一区二区三区| 午夜福利在线观看免费完整高清在| 免费播放大片免费观看视频在线观看 | 天堂√8在线中文| 美女内射精品一级片tv| 国产精品永久免费网站| 国产精品一区二区三区四区免费观看| 最新中文字幕久久久久| 一级毛片久久久久久久久女| 国产人妻一区二区三区在| 国产一区有黄有色的免费视频 | 国产精品麻豆人妻色哟哟久久 | 久久久久久久久久久免费av| 日本-黄色视频高清免费观看| 久久这里只有精品中国| 天美传媒精品一区二区| 国产美女午夜福利| 中文字幕久久专区| 亚洲中文字幕日韩| 久久久久久伊人网av| 成人午夜高清在线视频| 久久久国产成人精品二区| 在线播放无遮挡| 日韩av不卡免费在线播放| 成年女人永久免费观看视频| 亚洲va在线va天堂va国产| 中文字幕亚洲精品专区| 国产成人freesex在线| 精品人妻视频免费看| 国产精品女同一区二区软件| 少妇人妻精品综合一区二区| 欧美潮喷喷水| 国产一级毛片七仙女欲春2| 亚洲伊人久久精品综合 | 国产亚洲一区二区精品| 欧美人与善性xxx| 亚洲欧美日韩无卡精品| 免费看美女性在线毛片视频| 国产视频首页在线观看| 人妻夜夜爽99麻豆av| 国产精品av视频在线免费观看| 日韩强制内射视频| 久久精品久久久久久噜噜老黄 | 国产精品久久久久久精品电影小说 | 欧美潮喷喷水| 中文亚洲av片在线观看爽| 七月丁香在线播放| 日日摸夜夜添夜夜爱| 亚洲图色成人| h日本视频在线播放| 七月丁香在线播放| 插阴视频在线观看视频| 观看免费一级毛片| 国产av码专区亚洲av| 国内揄拍国产精品人妻在线| 青青草视频在线视频观看| 欧美3d第一页| 小蜜桃在线观看免费完整版高清| 精品一区二区三区人妻视频| 国产精品国产三级国产av玫瑰| av卡一久久| 直男gayav资源| 国产精品不卡视频一区二区| 欧美日本亚洲视频在线播放| 听说在线观看完整版免费高清| 乱系列少妇在线播放| 秋霞伦理黄片| 久久精品人妻少妇| 噜噜噜噜噜久久久久久91| 人妻系列 视频| 特级一级黄色大片| 少妇人妻一区二区三区视频| 国产黄色小视频在线观看| 极品教师在线视频| 亚洲色图av天堂| 亚洲av男天堂| 日本一二三区视频观看| 国产亚洲av片在线观看秒播厂 | 青春草视频在线免费观看| 夫妻性生交免费视频一级片| av免费观看日本| 少妇裸体淫交视频免费看高清| 久久精品久久久久久久性| 看十八女毛片水多多多| 午夜日本视频在线| a级毛片免费高清观看在线播放| 热99re8久久精品国产| 亚洲性久久影院| 最新中文字幕久久久久| 2021少妇久久久久久久久久久| 免费观看精品视频网站| 日韩人妻高清精品专区| 久久久久久久午夜电影| 韩国av在线不卡| 熟妇人妻久久中文字幕3abv| 久久精品国产自在天天线| 午夜老司机福利剧场| 观看免费一级毛片| 永久免费av网站大全| 国产精品爽爽va在线观看网站| 麻豆av噜噜一区二区三区| 国产精品国产高清国产av| 99热网站在线观看| 乱系列少妇在线播放| 亚洲,欧美,日韩| 亚洲美女视频黄频| 久久久久九九精品影院| 精品国内亚洲2022精品成人| 神马国产精品三级电影在线观看| 麻豆一二三区av精品| 在线观看66精品国产| 99在线人妻在线中文字幕| 国产黄色视频一区二区在线观看 | 久久精品影院6| 99热这里只有是精品在线观看| 欧美日韩国产亚洲二区| 国产不卡一卡二| 久久久久九九精品影院| 免费观看精品视频网站| 亚洲精品自拍成人| 国产精品女同一区二区软件| 亚洲av电影不卡..在线观看| 亚洲欧美日韩东京热| 国产成人91sexporn| 久99久视频精品免费| 国产伦一二天堂av在线观看| 亚洲美女视频黄频| 好男人在线观看高清免费视频| 亚洲人成网站在线观看播放| 国产 一区精品| 亚洲高清免费不卡视频| 夜夜爽夜夜爽视频| 午夜日本视频在线| 视频中文字幕在线观看| 午夜精品国产一区二区电影 | 欧美一区二区国产精品久久精品| 久久精品国产亚洲网站| 国产精品.久久久| 亚洲自偷自拍三级| 久久99热6这里只有精品| 欧美不卡视频在线免费观看| 亚洲一级一片aⅴ在线观看| 欧美xxxx性猛交bbbb| 国产白丝娇喘喷水9色精品| АⅤ资源中文在线天堂| 成年免费大片在线观看| 国产白丝娇喘喷水9色精品| 国产精品人妻久久久影院| 亚洲最大成人手机在线| 天堂av国产一区二区熟女人妻| 日产精品乱码卡一卡2卡三| 丝袜美腿在线中文| 亚洲在线观看片| 蜜臀久久99精品久久宅男| 国产黄片视频在线免费观看| 国产综合懂色| 国产乱人视频| 日本爱情动作片www.在线观看| 老女人水多毛片| 欧美又色又爽又黄视频| av卡一久久| 秋霞伦理黄片| av国产免费在线观看| 国模一区二区三区四区视频| 成人综合一区亚洲| 国产爱豆传媒在线观看| 日日干狠狠操夜夜爽| 亚洲天堂国产精品一区在线| 男的添女的下面高潮视频| 一夜夜www| 最近最新中文字幕大全电影3| 日本与韩国留学比较| 一个人观看的视频www高清免费观看| 午夜精品一区二区三区免费看| 亚洲激情五月婷婷啪啪| 国产高清有码在线观看视频| av在线老鸭窝| 亚洲欧美日韩无卡精品| 性色avwww在线观看| 久久这里有精品视频免费| 日本与韩国留学比较| 97热精品久久久久久| 国产高清三级在线| 2021天堂中文幕一二区在线观| 亚洲婷婷狠狠爱综合网| 中文字幕久久专区| 久久国产乱子免费精品| 男插女下体视频免费在线播放| 国产激情偷乱视频一区二区| 国产精品无大码| 一本久久精品| 久久久久免费精品人妻一区二区| 少妇人妻一区二区三区视频| 国产精华一区二区三区| 国产精品99久久久久久久久| 精品午夜福利在线看| 成人鲁丝片一二三区免费| 免费观看在线日韩| 在线观看美女被高潮喷水网站| 精品人妻一区二区三区麻豆| 日韩人妻高清精品专区| 色播亚洲综合网| 99久久精品一区二区三区| 精品久久久久久久久亚洲| 午夜精品在线福利| 久久鲁丝午夜福利片| 欧美精品国产亚洲| 亚洲精品456在线播放app| 国产精品一区二区性色av| 少妇裸体淫交视频免费看高清| 最近最新中文字幕大全电影3| 亚洲乱码一区二区免费版| 18禁裸乳无遮挡免费网站照片| 日日摸夜夜添夜夜添av毛片| 久久99热这里只有精品18| 午夜爱爱视频在线播放| www.av在线官网国产| 国产精品日韩av在线免费观看| av线在线观看网站| 日韩av不卡免费在线播放| av国产久精品久网站免费入址| 国产精品人妻久久久久久| 中文精品一卡2卡3卡4更新| 国产真实伦视频高清在线观看| 嫩草影院入口| 国产精品野战在线观看| 亚洲美女视频黄频| 少妇人妻精品综合一区二区| 三级经典国产精品| 欧美性猛交黑人性爽| 国产av一区在线观看免费| 久久久亚洲精品成人影院| av视频在线观看入口| 国产精品野战在线观看| www.色视频.com| 国产麻豆成人av免费视频| 亚洲成人av在线免费| 综合色av麻豆| 国产又黄又爽又无遮挡在线| 男女啪啪激烈高潮av片| 一个人观看的视频www高清免费观看| 国产欧美日韩精品一区二区| 3wmmmm亚洲av在线观看| 国产麻豆成人av免费视频| 国产av码专区亚洲av| 校园人妻丝袜中文字幕| 欧美97在线视频| 看非洲黑人一级黄片| 人妻系列 视频| 国产成人精品久久久久久| 亚洲高清免费不卡视频| 搞女人的毛片| 床上黄色一级片| 亚洲国产色片| 熟女电影av网| 视频中文字幕在线观看| 啦啦啦啦在线视频资源| 精品国产露脸久久av麻豆 | 黄色一级大片看看| 色综合站精品国产| 亚洲国产精品久久男人天堂| 国产爱豆传媒在线观看| 亚洲精品aⅴ在线观看| 九色成人免费人妻av| 欧美成人午夜免费资源| 纵有疾风起免费观看全集完整版 | 神马国产精品三级电影在线观看| 99久国产av精品国产电影| 波野结衣二区三区在线| 青青草视频在线视频观看| 美女被艹到高潮喷水动态| 久久99热这里只有精品18| 国产v大片淫在线免费观看| av在线观看视频网站免费| 午夜爱爱视频在线播放| 小说图片视频综合网站| 一个人免费在线观看电影| 一级毛片aaaaaa免费看小| 高清日韩中文字幕在线| 干丝袜人妻中文字幕| 神马国产精品三级电影在线观看| 99在线视频只有这里精品首页| 国产精品一区二区在线观看99 | 久久婷婷人人爽人人干人人爱| 成年免费大片在线观看| 国产乱人视频| 久久久久网色| 欧美三级亚洲精品| 卡戴珊不雅视频在线播放| 亚洲性久久影院| 国产亚洲最大av| 大又大粗又爽又黄少妇毛片口| 国产成人91sexporn| 高清毛片免费看| 色噜噜av男人的天堂激情| 成人鲁丝片一二三区免费| 亚洲精品自拍成人| 国产淫片久久久久久久久| 色网站视频免费| 少妇猛男粗大的猛烈进出视频 | 国模一区二区三区四区视频| 国产伦理片在线播放av一区| 亚洲内射少妇av| 天堂网av新在线| 亚洲精品色激情综合| 午夜久久久久精精品| 国产不卡一卡二| 国产乱来视频区| 国产乱人视频| 国产麻豆成人av免费视频| 边亲边吃奶的免费视频| 国产真实乱freesex| 天堂中文最新版在线下载 | 免费av观看视频| 久久久精品94久久精品| 免费人成在线观看视频色| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品1区2区在线观看.| 校园人妻丝袜中文字幕| av在线亚洲专区| 亚洲av一区综合| 观看免费一级毛片| 2022亚洲国产成人精品| 久久韩国三级中文字幕| 欧美潮喷喷水| 精品国产三级普通话版| 日韩亚洲欧美综合| 亚洲最大成人中文| 天堂√8在线中文| 极品教师在线视频| eeuss影院久久| av在线播放精品| 高清在线视频一区二区三区 | 国产高潮美女av| 一区二区三区四区激情视频| 国产综合懂色| 亚洲乱码一区二区免费版| 亚洲综合精品二区| 日韩在线高清观看一区二区三区| 久久精品国产自在天天线| 成人av在线播放网站| 亚洲,欧美,日韩| 国产精品人妻久久久影院| 国产精品国产三级国产专区5o | 亚洲av成人av| 嘟嘟电影网在线观看| 日本-黄色视频高清免费观看| 超碰av人人做人人爽久久| 国产av一区在线观看免费| 国产乱人视频| 久久午夜福利片| 亚洲av中文字字幕乱码综合| 午夜a级毛片| 日本黄色片子视频| 日韩欧美精品v在线| 蜜桃亚洲精品一区二区三区| 91av网一区二区| 晚上一个人看的免费电影| 在线观看一区二区三区| 国产久久久一区二区三区| 日日撸夜夜添| videos熟女内射| 最近最新中文字幕免费大全7| 精品久久久久久久久久久久久| 七月丁香在线播放| 精品久久久久久久久久久久久| 我的女老师完整版在线观看| 最近最新中文字幕大全电影3| 国产成年人精品一区二区| 日韩视频在线欧美| 床上黄色一级片| 成人午夜精彩视频在线观看| 国产一区二区在线av高清观看| 久久精品熟女亚洲av麻豆精品 | 国产真实伦视频高清在线观看| 成人二区视频| www日本黄色视频网| 成年av动漫网址| www.色视频.com| 男女那种视频在线观看| 国产国拍精品亚洲av在线观看| 美女被艹到高潮喷水动态| 国产精品日韩av在线免费观看| 在线播放无遮挡| av视频在线观看入口| 老司机影院毛片| 日本欧美国产在线视频| 大话2 男鬼变身卡| 成人av在线播放网站| 日韩精品青青久久久久久| 久久精品久久久久久久性| av国产免费在线观看| 亚洲精品乱码久久久v下载方式| 色吧在线观看| 欧美97在线视频| 狂野欧美激情性xxxx在线观看| 国产午夜精品论理片| 激情 狠狠 欧美| 亚洲最大成人中文| 亚洲婷婷狠狠爱综合网| 国产成人精品久久久久久| 国产美女午夜福利| 亚洲国产精品sss在线观看| 99久久人妻综合| 国产精品人妻久久久影院| 国产午夜精品一二区理论片| 观看美女的网站| av天堂中文字幕网| 亚洲va在线va天堂va国产| 午夜福利高清视频| 午夜激情欧美在线| 亚洲精品,欧美精品| 搡女人真爽免费视频火全软件| 非洲黑人性xxxx精品又粗又长| 哪个播放器可以免费观看大片| 特大巨黑吊av在线直播| 色综合亚洲欧美另类图片| 久久这里有精品视频免费| 久久精品久久精品一区二区三区| 中文亚洲av片在线观看爽|