• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efference ects of light quality on growth rates and pigments of Chaetoceros gracilis (Bacillariophyceae)*

    2020-06-08 05:22:30LIYongfuLIRuiqianYIXiaoyan
    Journal of Oceanology and Limnology 2020年3期

    LI Yongfu , LI Ruiqian , YI Xiaoyan

    1 Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China

    2 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China

    3 Nantong Research and Development Center of Marine Science and Technology, Institute of Oceanology, Chinese Academy of Sciences, Nantong 226019, China

    4 School of International Afference airs and Public Administration, Ocean University of China, Qingdao 266100, China

    5 Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China

    Received Jun. 28, 2019; accepted in principle Aug. 19, 2019; accepted for publication Sep. 27, 2019 ? Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

    Abstract Light is an important parameter in algal culturing. In this work, the efference ects of difference erent light qualities on growth of the marine diatom Chaetoceros gracilis are evaluated. The cells were cultured under light quantum fl ux density of 60 μmol photons/(m 2·s) with nine light qualities: LED red light (LR), LED blue light (LB), LED red plus LED blue light (LR+LB), LED white light (LW), fl uorescent white light (FW), and combinations of LW and FW lights with increased proportions of red or blue light (FW+LR, FW+LB, LW+LR, and LW+LB). Blue light promoted the growth of C. gracilis largely. Three light qualities, FW+LR, LW+LR, and LR, resulted in the lowest growth rate. Both chlorophyll and carotenoids reached the highest level under LB and the lowest level under LR among monochromatic light sources; however, increasing of the proportion of blue or red light in the white light induced an increase of the chlorophyll and carotenoid concentrations. Light absorption ability of microalgae was critical for the growth of these organisms, as we observed a positive correlation between the extinction coeき cient at difference erent wavelengths and the specifi c growth rate. These fi ndings are of importance to improve the culturing of this alga in bioreactors.

    Key word: Chaetoceros gracilis; light quality; pigments; wavelength efference ect; mean extinction coeき cients

    1 INTRODUCTION

    Chaetoceros gracilis (Bacillariophyceae), an important microalgal species from an economic point of view, represents a direct or indirect food source for bivalve mollusks, sea urchins, sea cucumbers, crustaceans and other valuable ocean aquatic animals. Currently, the closed photobioreactor (PBR) has become one of the most used production methods for cultivating C. gracilis (Pérez et al., 2017). One of the critical parameters that dramatically afference ect the growth of microalgae, regardless of the adopted production method, is light. Indoor PBRs require artifi cial light sources. In the past, fl uorescent lamps and metal halide lamps were used (Yeh and Chung, 2009; Gao et al., 2018). However, in order to efference ectively increase the biomass accumulation of microalgae, an economical, durable and eき cient light source that is easy to assemble and automatically controlled is highly desirable (Wagner et al., 2016). LED light is the best option among the existing light sources, meeting all the above-mentioned requirements. Moreover, it provides the possibility of integrating solar power technology, which would further decrease light costs for microalgal culture (Gordon and Polle, 2007). Recently, the use of LED light in the cultivation of microalgae has greatly increased (Yim et al., 2016; Shu et al., 2018). The fl exible chromatic LED strip, in particular, is suitable for PBR as it possesses a good waterproof property and multi-angled bendability (Cui et al., 2016). However, little is so far known about the infl uence and the eき ciency of difference erent monochromatic LED lights on C. gracilis growth. Since light is a crucial factor in the cultivation of this organism, a detailed understanding of how microalgae perform in response to difference erent light sources is needed.

    In this work, we analyze the efference ects of light quality on C. gracilis growth. Difference erent light sources (all with the same quantum fl ux density) are compared: LED red right (LR), LED blue light (LB), fl uorescent lamp white light (FW) and LED white light (LW) as well as combinations of white light with enhanced proportions of monochromatic red or blue light, i.e., LW+LB, LW+LR, FW+LB, and FW+LR. A simplifi ed Lambert-Beer law is used to calculate the average extinction coeき cient of microalgae at the specifi c wavelength and to identify its relationship with the specifi c growth rate. The obtained results provide a basis to explore the mechanism by which light infl uences the growth rate of microalgae.

    2 MATERIAL AND METHOD

    2.1 Microalgal strain and culture conditions

    Fig.1 Relative emission spectra of the light qualities used, blue light (LB), red light (LR), white LED light (LW) and white fl uorescent light (FW)

    Chaetoceros gracilis was obtained from the Microalgae Culture Center (MACC), Ocean University of China. The algae were placed in a 500-mL conical fl ask with 300 mL of F/2 culture medium with 2 times concentrated silicate (Guillard and Ryther, 1962). Nine light qualities were tested, all at the same light quantum fl ux density (60 μmol photons/(m2·s)), and three biological replicates were performed for each treatment. The light intensity was selected to avoid light saturation of the microalgal cells, so that only the efference ect of the light sources was measured (Chen et al., 1982). LED light sources in our study, i.e. LW, LR, and LB, are all surface mounted light emitting diodes. Each LED lamp bead emits light, and difference erent light quality lamp beads have a specifi c light intensity. The luminous intensity of each LW bead measured by using a portable light quantum meter (3415F type, pulse photoelectric sensor; Spectrum Technologies, Inc., USA) is 1.0 μmol photons/(m2·s), and both LR and LB are 0.5 μmol photons/(m2·s). The incident light intensity of microalgal culture under difference erent light qualities was set by controlling the number of light beads for each specifi c color. We lit 60 white LED beads, 120 red LED beads and 120 blue LED beads, respectively, to create 60 μmol photons/(m2·s) of white, red and blue light. Similarly, 60 red or blue LED beads and 30 white LED beads were used to provide LW+LR or LW+LB. Sixty red beads and 60 blue beads were simultaneously lit to provide LR+LB of 60 μmol photons/(m2·s). As for FW+LR and FW+LB, the 30 μmol photons/(m2·s) fl uorescent white light was fi rst constructed and then 30 μmol photons/(m2·s) LR or LB provided by 60 red or blue beads was added. The algae were continuously cultured under sterile conditions for seven days. The starting inoculum was 5×105cells/mL placed in 500 mL fl asks. Temperature was maintained stable at 35°C, cultures were hand shaken every 8 h throughout the experiments and continuous light was provided. This temperature was chosen for this study to accelerate the growth of this alga. According to a previous study, 35°C was not high enough to induce heat stress of algal cells (Liang et al., 2006). Light qualities, i.e., LW, LB and LR were provided by fl exible LED lamp strips (LXHL, Philips Ltd., Holland). The FW was provided by a fl uorescent lamp tube (F25T8/TL 950, Philips Ltd., Holland). Light spectra were measured with a plant illumination spectroradiometer (PLA-20, EVERFINE’s Quality Measurement Instruments, China) between 350 and 800 nm with 1-nm resolution (Fig.1).

    2.2 Analytical procedures

    Fig.2 Mean biomass production of C. gracilis under difference erent light qualities ( n=3)

    For dry weight (DW) measurements, 10 mL of cultures were fi ltered on pre-treated GF/C Whatman fi lter (Whatman, Maidstone, UK). GF/C fi lters were washed by distilled water and then dried at 50°C. The pre-treated GF/C fi lters were weighted before collecting cells. DWs were calculated in g/L after the fi ltrates were re-dried in an oven at 80°C overnight. The specifi c growth rate ( μ (/d)) during the exponential growth period was obtained according to the method described in Cui et al. (2017). Total chlorophyll (chlorophyll a and c) and carotenoids were extracted as described in (Li et al., 2016) and were quantifi ed using a UV visible spectrophotometer, according to protocols from Ritchie (2008) and Jensen (1978). The method of Li et al. (2016) and a simplifi ed Lambert-Beer law were used to calculate the average extinction coeき cient ( α) of C. gracilis suspension under difference erent wavelengths. where N0and Ntrepresent the cell densities (cells/mL) at the beginning and the end of the exponential phase, and t is the time of the exponential phase in days. In this study, the exponential growth of algae cells fi nished within two days. Cell numbers in the fi rst two days were used to calculate specifi c growth rates.

    where a represents the average absorbance. λdand λuare the lower-limit wavelength (400 nm for LW and LB, and 570 nm for LR) and the upper-limit wavelength (700 nm for LW, 500 nm for LB, and 680 nm for RL), respectively. a( λ) means the monochromatic light absorbance of each wavelength. The specifi c extinction coeき cient of mixed light quality was expressed by the average value of each monochrome light quality.

    SPSS 17.0 was used for the implementation of statistical analyses. Data in the fi gures represent the mean±SD ( n=3) and were subjected to one-way ANOVA and Tukey tests.

    3 RESULT AND DISCUSSION

    3.1 Infl uence of light quality on C. gracilis growth

    After being pre-cultured under fl uorescent white light, C. gracilis cells were transferred and cultured using nine light qualities. For every light treatment, at the initial stage (within 2 days after starting of the culture), C. gracilis grew rapidly, and then the biomass accumulation rate decreased until it reached a plateau stage (Fig.2). In the samples treated with the monochromatic light, the growth rates of C. gracilis under LB and LR were 1.24 and 0.59/d, respectively (Fig.3). In the case of combined light qualities, the growth rate (μ) related to LED white light was LW+LB>LW≈LW+LR, while in the case of fl uorescent white light the μ was FW+LB>FW>FW+LR. Under the exposure of LR+LB, μ value was 0.96/d, ranging between LB and LR. Notably, the μ values under LB (1.24/d), FW+LB (1.31/d) and LW+LB (1.18/d) showed no signifi cant difference erence ( P >0.05), indicating that the blue light played a dominant role among FW+LB and LW+LB.

    Fig.3 Specifi c growth rates of C. gracilis cultivated for 2 d under difference erent light qualities ( n=3)

    The efference ect of light quality on the growth of microalgae has been reported in many studies. It was previously shown that the maximum biomass accumulation of Spirulina platensis was reached at 3 000 μmol photons/(m2·s) under LR radiation; however, this alga showed no obvious difference erences below the light intensity of 300 μmol photons/(m2·s) under red, white, yellow, green and blue lights of LED lamp (Wang et al., 2007). Tang et al. (2011) demonstrated that red LED light and white fl uorescent light were all suitable for the growth of Dunaliella tertiolecta. Conversely, the optimal light condition for Chlorella vulgaris growth was shown to be red light (Yan et al., 2013); in addition, germplasm diversities of microalgae are important parameters to consider when determining the most suitable light quality (Aidar et al., 1994). For another marine diatom, Haslea ostrearia, low blue light favored growth (Mouget et al., 2005). Yoshioka et al. (2012) also reported the efference ects of three light qualities, i.e. white, blue, and red provided by LED panels, on the growth and fatty acid composition of Isochrysis galbana and showed that the highest biomass production and lipid content was obtained under blue light. Marchetti et al. (2013) further compared the efference ects of blue light and white light derived from fl uorescent tubes, on the biochemical composition and photosynthetic rate of Isochrysis sp. (T-iso) CCAP 927/14. Cell concentration and productivity did not vary signifi cantly under the difference erent light conditions at a steady state, whereas the metabolism of carbohydrates and proteins were especially regulated by blue light. For C. gracilis, our study illustrates that blue light facilitates biomass accumulation when the light intensity is 60 μmol photons/(m2·s) and regardless of the combination with other light spectra (FW+LB or LW+LB). In view of a practical application, LB seems to be the most suitable light source to be used in a closed photobioreactor.

    Table 1 Pigment concentrations of C. gracilis under various light qualities with a constant light intensity of 60 μmol photons/(m 2·s)

    Although chl a is commonly used as a measure of pigment content, other pigments such as chl c and carotenoids can contribute signifi cantly to light absorption (Macintyre et al., 2002). These accessory pigments may also contribute to light harvesting or to the dissipation of excitation energy. When the incident light spectrum changes, microalgae are able to adjust photosynthetic organs in order to obtain the maximum light use eき ciency and the concentration of additional photosynthetic pigments is normally observed (MacIntyre et al., 2002). It can be observed that LBcultured C. gracilis showed the highest concentrations of chl a, chl c, and carotenoids (9.82, 1.38, 6.59 mg/L, respectively), under monochromatic light and white light (LW, FW). However, LW+LR and FW+LR induced the highest concentration of carotenoids for all light qualities, either monochromatic or trichromic light. Except for FW+LB, the increase of the proportion of monochromatic light quality (both LR and LB) in the white light induced an increase in the pigment concentration (Table 1). This work is not yet able to explain this point. However, it has been reported that green light yielded the best chlorophyll-a production in Gloeothece membranacea, compared to violet, orange, and red light (Mohsenpour et al., 2012). Green light, an important component of white light, may also play an important role in regulating the accumulation of pigments in C. gracilis, although this efference ect may not be as obvious as LB or LR. This may be the reason why increasing the proportion of LR or LB in white light can signifi cantly increase the content of pigments.

    Fig.4 Absorption spectrum (a) and the relation between the specifi c growth rates and mean extinction coeき cients (b) of C. gracilis under photosynthetically active radiation

    3.2 Absorption spectra under photosynthetically active radiation

    Under photosynthetically active radiation (PAR, 400-700 nm), C. gracilis suspension was scanned to obtain the absorption spectrogram (Fig.4a). Two absorption peaks of chlorophyll at 433 nm and 675 nm were observed without any other visible peaks. Our results were consistent with the observation of Moberg et al. (2002) and indicated that algal cells can absorb more blue light photons under the same photosynthetic quantum fl ux.

    Although large chromatic efference ects do not occur in some microalgae under light-limited conditions, some studies found that light quality actually regulates physiological and biochemical processes of microalgae (i.e. growth, photosynthetic pigment synthesis and photosynthesis parameter) (Mouget et al., 2004, 2005). Since such difference erences cannot be simply explained by germplasm difference erences of microalgae, underlying mechanisms, that remain unknown, are likely to be involved.

    Generally, light afference ects microalgae through three pathways: (i) photon energy; (ii) distribution of light energy on the surface of microalgae and the penetration inside cells; (iii) capture and use of light energy. In the fi rst case, when microalgae use PAR for photosynthesis, the light energy is absorbed by quantization. The photon energy is directly proportional to electromagnetic radiation frequency ( υ) and inversely proportional to wavelength ( λ). Under the same photon fl ux density, the photon in the short wavelength area (approaching the visible bluepurple band) has more energy for photosynthesis than the one in the long wavelength area (approaching the red band) (Prézelin et al., 1991). The second process is connected to the penetrability of light in water and the apparent absorption of photons by microalgae. When the color spectrum with a narrow wavelength band overlaps with the absorption spectrum, the light utilization rate shows a rising trend (Chen et al., 2011). In the third pathway, the absorption of light energy in the cell depends on the protein complex of photosynthetic and light-harvesting pigments. The light energy is transferred between pigment molecules toward the two light reaction centers (PSI and PSII on the eukaryotic thylakoid membrane) to complete the fi nal photosynthesis process. Extinction coeき cient refl ects the absorption magnitude of light energy from the spectrum. Our results showed a signifi cant positive correlation calculated with the Pearson’s correlation test between the specifi c growth rate and each light quality (Fig.4b). Thus, the light absorption property of microalgal cells played, in part, an important role in regulating cell growth. It is known that the quantum energy of photons at 680 nm is needed for the photolysis of water. Additional energy of lower wavelength photons, e.g. blue, is dissipated as heat (Barber, 2009). This brings forward the question why blue light is the optimum light quality to promote the growth of algae cells. It can be speculated that the constituents of the cells, e.g., proteins, lipids, pigments, and carbohydrates, have their own optical properties that reduce the energy of photons and decrease the light energy reaching the PSII reaction center (Lehmuskero et al., 2018). Future studies are needed to investigate this topic in more detail. Our results also indicated that C. gracilis grown under blue light had higher chl a, chl c, and carotenoid concentrations than that under red light. This phenomenon suggested that LB enhanced the light absorption capacity by increasing the pigment levels, and ultimately improved biomass accumulation. Correspondingly, blue light induces a higher pigmentation content, resulting in more eき cient energy absorption and utilization when the equivalent photons, far below the saturated light intensity, are provided. It has been reported that in the diatom H. ostrearia, the most obvious efference ect of blue light is an enhancement of marennine production, which could refl ect the involvement of nitrogen metabolism in the marennine synthesis pathway (Mouget et al., 2005). Interestingly, it has been confi rmed that blue light stimulated the carotenogenesis pathway in some fungi by regulating the gene expression, e.g., Monascus (Wang et al., 2012), Fusarium (Avalos et al., 2017) and Neurospora (Polaino et al., 2017). Information about the response of the genes encoding the pigment biosynthesis in the microalgae is still lacking. It is a very interesting subject needing to be investigated further.

    4 CONCLUSION

    A blue light LED strip was a suitable light source for cultivating C haetoceros gracilis. Chlorophyll and carotenoid contents under blue light was signifi cantly higher than those under red light. Increasing of the proportion of blue or red light in the white light induced an increase of the chl a, chl c, and carotenoid concentrations. The correlation between the extinction coeき cient at difference erent wavelengths and the specifi c growth rate was positive, suggesting that the light absorption property of microalgal cells played an important role in regulating cell growth.

    5 DATA AVAILABILITY STATEMENT

    Full information developed from this study is available from the corresponding author upon reasonable request.

    6 ACKNOWLEDGMENT

    The authors thank Dr. MENG Fanping of the Ocean University of China for providing LED light sources. We thank Dr. LI Xian, Key Laboratory of Experimental Marine Biology, Chinese Academy of Sciences, Institute of Oceanology, for her kind help in measuring the light spectra. The authors also thank Dr. John van der Meer of the Pan-American Marine Biotechnology Association for his assistance with proofreading.

    References

    Aidar E, Gianesella-Galv?o S M F, Sigaud T C S, Asano C S, Liang T H, Rezende K R V, Oishi M K, Aranha F J, Milani G M, Sandes M A L. 1994. Efference ects of light quality on growth, biochemical composition and photo synthetic production in Cyclotella caspia Grunow and Tetraselmis gracilis (Kylin) Butcher. Journal of Experimental Marine Biology and Ecology, 180(2): 175-187.

    Avalos J, Pardo-Medina J, Parra-Rivero O, Ruger-Herreros M, Rodríguez-Ortiz R, Hornero-Méndez D, Limón M C. 2017. Carotenoid biosynthesis in F usarium. Journal of Fungi, 3(3): 39.

    Barber J. 2009. Photosynthetic energy conversion: Natural and artifi cial. Chemical Society Reviews, 38(1): 185-196.

    Chen C Y, Yeh K L, Aisyah R, Lee D J, Chang J S. 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresource Technology, 102(1): 71-81.

    Chen S F, Tan G Y, Pan Y Y. 1982. The efference ect of temperature, light intensity and photoperiod on the growth of Chaetoceros sp. Marine Sciences, (2): 38-40. (in Chinese with English abstract)

    Cui H W, Meng F P, Li Y F, Wang Y J, Duan W Y. 2016. Efference ects of artifi cial light source and light quality on the growth of two species of microalgae. Science Discovery, 4(2): 129-136.

    Cui H W, Meng F P, Li F, Wang Y J. 2017. Application of sodium erythorbate to promote the growth of Chlorella vulgaris. Journal of Applied Phycology, 29(3): 1 135-1 144.

    Gao X B, Kong B, Vigil R D. 2018. Simulation of algal photobioreactors: recent developments and challenges. Biotechnology Letters, 40(9-10): 1 311-1 327.

    Gordon J M, Polle J E W. 2007. Ultrahigh bioproductivity from algae. Applied Microbiology and Biotechnology, 76(5): 969-975.

    Guillard R R L, Ryther J H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 8(2): 229-239.

    Jensen A. 1978. Chlorophylls and carotenoids. In: Hellebust J, Craigie J S, eds. Handbook of Phycological Methods; Physiological and Biochemical Methods. Cambridge University Press, Cambridge, UK. p.61-64.

    Lehmuskero A, Chauton M S, Bostr?m T. 2018. Light and photosynthetic microalgae: a review of cellular- and molecular-scale optical processes. Progress in Oceanography, 168: 43-56.

    Li Y F, Liu J G, Zhang L T, Pang T. 2016. Changes of photosynthetic performances in mature thalli of the red alga Gelidium amansii (gelidiaceae) exposed to difference erent salinities. Marine Biology Research, 12(6): 631-639.

    Liang Y, Liang L X, Yin C L, Cao C H. 2006. Efference ects of high temperature stress on the chlorophyll fl uorescence kinetics of Phaeodactylum tricornutum and Chaetoceros gracilis. Periodical of Ocean University of China, 36(3): 427-433. (in Chinese with English abstract)

    MacIntyre H L, Kana T M, Anning T, Geider R J. 2002. Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. Journal of Phycology, 38(1): 17-38.

    Marchetti J, Bougaran G, Jaufference rais T, Lefebvre S, Rouxel C, Saint-Jean B, Lukomska E, Robert R, Cadoret J P. 2013. Efference ects of blue light on the biochemical composition and photosynthetic activity of Isochrysis sp. (T-iso). Journal of Applied Phycology, 25(1): 109-119.

    Moberg L, Karlberg B, S?rensen K, K?llqvist T. 2002. Assessment of phytoplankton class abundance using absorption spectra and chemometrics. Talanta, 56(1): 153-160.

    Mohsenpour S F, Richards B, Willoughby N. 2012. Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production. Bioresource Technology, 125: 75-81.

    Mouget J L, Rosa P, Tremblin G. 2004. Acclimation of Haslea ostrearia to light of difference erent spectral qualitiesconfi rmation of ‘chromatic adaptation’ in diatoms. Journal of Photochemistry and Photobiology B: Biology, 75(1-2): 1-11.

    Mouget J L, Rosa P, Vachoux C, Tremblin G. 2005. Enhancement of marennine production by blue light in the diatom H aslea ostrearia. Journal of Applied Phycology, 17(5): 437-445.

    Pérez L, Salgueiro J L, González J, Parralejo A I, Maceiras R, Cancela á. 2017. Scaled up from indoor to outdoor cultures of Chaetoceros gracilis and Skeletonema costatum microalgae for biomass and oil production. Biochemical Engineering Journal, 127: 180-187.

    Polaino S, Villalobos-Escobedo J M, Shakya V P S, Miralles-Durán A, Chaudhary S, Sanz C, Shahriari M, Luque E M, Eslava A P, Corrochano L M, Herrera-Estrella A, Idnurm A. 2017. A Ras GTPase associated protein is involved in the phototropic and circadian photobiology responses in fungi. Scientifi c Reports, 7: 44790.

    Prézelin B B, Tilzer M M, Schofi eld O, Haese C. 1991. The control of the production process of phytoplankton by the physical structure of the aquatic environment with special reference to its optical properties. Aquatic Sciences, 53(2-3): 136-186.

    Ritchie R J. 2008. Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica, 46(1): 115-126.

    Shu C H, Tseng K, Jaiswal R. 2018. Efference ects of light intensity and wavelength on the production of lactobionic acid from whey by Pseudomonas taetrolens in batch cultures. Journal of Chemical Technology & Biotechnology, 93(6): 1 595-1 600.

    Tang H, Abunasser N, Garcia M E D, Chen M, Ng K Y S, Salley S O. 2011. Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Applied Energy, 88(10): 3 324-3 330.

    Wagner I, Steinweg C, Posten C. 2016. Mono- and dichromatic LED illumination leads to enhanced growth and energy conversion for high-eき ciency cultivation of microalgae for application in space. Biotechnology Journal, 11(8): 1 060-1 071.

    Wang C L, Yang H, Chen M H, Wang Y R, Li F J, Luo C, Zhao S Y, He D. 2012. Real-time quantitative analysis of the infl uence of blue light on citrinin biosynthetic gene cluster expression in Monascus. Biotechnology Letters, 34(9): 1 745-1 748.

    Wang C Y, Fu C C, Liu Y C. 2007. Efference ects of using lightemitting diodes on the cultivation of Spirulina platensis. Biochemical Engineering Journal, 37(1): 21-25.

    Yan C, Luo X Z, Zheng Z. 2013. Efference ects of various LED light qualities and light intensity supply strategies on purifi cation of slurry from anaerobic digestion process by Chlorella vulgaris. International Biodeterioration & Biodegradation, 79(2): 81-87.

    Yeh N, Chung J P. 2009. High-brightness LEDs-Energy eき cient lighting sources and their potential in indoor plant cultivation. Renewable and Sustainable Energy Reviews, 13(8): 2 175-2 180.

    Yim S K, Ki D W, Doo H S, Kim H, Kwon T H. 2016. Internally illuminated photobioreactor using a novel type of lightemitting diode (LED) bar for cultivation of Arthrospira platensis. Biotechnology and Bioprocess Engineering, 21(6): 767-776.

    Yoshioka M, Yago T, Yoshie-Stark Y, Arakawa H, Morinaga T. 2012. Efference ect of high frequency of intermittent light on the growth and fatty acid profi le of Isochrysis galbana. Aquaculture, 338-341: 111-117.

    中文在线观看免费www的网站 | 午夜成年电影在线免费观看| 可以免费在线观看a视频的电影网站| 亚洲人成伊人成综合网2020| 国产真实乱freesex| 久久香蕉激情| 久99久视频精品免费| 操出白浆在线播放| 国产极品粉嫩免费观看在线| 中文字幕精品亚洲无线码一区 | 国产精品乱码一区二三区的特点| 色婷婷久久久亚洲欧美| 亚洲五月色婷婷综合| 91字幕亚洲| 午夜视频精品福利| 亚洲欧美日韩无卡精品| 日韩欧美一区视频在线观看| 男女床上黄色一级片免费看| 美女高潮到喷水免费观看| www.999成人在线观看| 久久中文字幕人妻熟女| 中文字幕人妻丝袜一区二区| 国产一区二区激情短视频| av在线天堂中文字幕| 哪里可以看免费的av片| 国产精品爽爽va在线观看网站 | 禁无遮挡网站| 中文字幕人妻熟女乱码| 中文字幕精品亚洲无线码一区 | 日韩国内少妇激情av| 亚洲五月色婷婷综合| 999久久久国产精品视频| 亚洲欧美日韩无卡精品| 亚洲av成人不卡在线观看播放网| 丝袜在线中文字幕| 最好的美女福利视频网| 免费电影在线观看免费观看| 国产精品爽爽va在线观看网站 | 成年免费大片在线观看| 制服诱惑二区| bbb黄色大片| 午夜老司机福利片| 真人一进一出gif抽搐免费| 国产麻豆成人av免费视频| 欧美成人一区二区免费高清观看 | 女性被躁到高潮视频| 亚洲自偷自拍图片 自拍| 激情在线观看视频在线高清| 国产精品综合久久久久久久免费| 亚洲欧美日韩无卡精品| avwww免费| 在线天堂中文资源库| 久久久久久国产a免费观看| 国内毛片毛片毛片毛片毛片| 久久久久久久精品吃奶| 麻豆av在线久日| 国产精品久久久久久人妻精品电影| 亚洲黑人精品在线| 大型av网站在线播放| 中文字幕另类日韩欧美亚洲嫩草| 久久久久久大精品| 国产黄a三级三级三级人| 午夜福利免费观看在线| 免费在线观看完整版高清| 欧美黑人精品巨大| 欧美午夜高清在线| 搡老岳熟女国产| 欧美av亚洲av综合av国产av| av中文乱码字幕在线| 人人妻人人澡欧美一区二区| 亚洲专区中文字幕在线| 久久精品91蜜桃| 中文亚洲av片在线观看爽| 欧美日韩黄片免| 在线视频色国产色| 免费高清视频大片| 国产亚洲精品久久久久5区| 国产精品精品国产色婷婷| a在线观看视频网站| 中文字幕人妻熟女乱码| 亚洲成国产人片在线观看| 淫妇啪啪啪对白视频| 中文字幕久久专区| cao死你这个sao货| av视频在线观看入口| 青草久久国产| 亚洲一区高清亚洲精品| 日本三级黄在线观看| 亚洲午夜理论影院| 一边摸一边做爽爽视频免费| 国产av在哪里看| 午夜免费观看网址| 久久精品国产亚洲av高清一级| 18禁裸乳无遮挡免费网站照片 | 国内精品久久久久精免费| 高潮久久久久久久久久久不卡| 一级毛片女人18水好多| 久久久久国产精品人妻aⅴ院| 老司机靠b影院| 日韩精品免费视频一区二区三区| 久久久久久久久久黄片| 99国产综合亚洲精品| 亚洲黑人精品在线| 国产亚洲av嫩草精品影院| 国产精华一区二区三区| 女人被狂操c到高潮| 中文字幕久久专区| 少妇 在线观看| 国产在线观看jvid| a级毛片a级免费在线| 最近最新免费中文字幕在线| 很黄的视频免费| 日本三级黄在线观看| 久久国产精品人妻蜜桃| 免费无遮挡裸体视频| 又黄又爽又免费观看的视频| 999精品在线视频| 精品不卡国产一区二区三区| 亚洲成人久久性| 亚洲成人免费电影在线观看| 国产99白浆流出| 欧美日韩黄片免| 成人三级黄色视频| 亚洲成人国产一区在线观看| 亚洲人成77777在线视频| 人成视频在线观看免费观看| 99热6这里只有精品| 亚洲在线自拍视频| 波多野结衣巨乳人妻| 99国产精品一区二区三区| 精品少妇一区二区三区视频日本电影| 午夜福利在线在线| 亚洲片人在线观看| 十八禁网站免费在线| 国产一区二区在线av高清观看| 色精品久久人妻99蜜桃| 男人的好看免费观看在线视频 | 国产精华一区二区三区| 久久精品国产99精品国产亚洲性色| 三级毛片av免费| 国产日本99.免费观看| √禁漫天堂资源中文www| 99国产精品一区二区三区| 欧美日韩黄片免| 精品乱码久久久久久99久播| 欧美黑人巨大hd| 99久久综合精品五月天人人| 91九色精品人成在线观看| 不卡一级毛片| 婷婷六月久久综合丁香| 亚洲,欧美精品.| 亚洲中文av在线| 最近最新中文字幕大全免费视频| 成人手机av| 成熟少妇高潮喷水视频| 啦啦啦韩国在线观看视频| 国产乱人伦免费视频| 亚洲 欧美 日韩 在线 免费| 精品久久久久久,| 在线免费观看的www视频| 天堂动漫精品| 最近最新免费中文字幕在线| 操出白浆在线播放| 在线看三级毛片| 午夜久久久在线观看| 欧美中文综合在线视频| 国内久久婷婷六月综合欲色啪| 最近最新中文字幕大全电影3 | 国产精品久久久久久亚洲av鲁大| 国产精品久久久久久精品电影 | 人人妻人人看人人澡| 亚洲 欧美 日韩 在线 免费| 国产野战对白在线观看| 亚洲,欧美精品.| 欧美成人一区二区免费高清观看 | 国产精品免费视频内射| 亚洲午夜精品一区,二区,三区| 黄色成人免费大全| 18禁黄网站禁片免费观看直播| 美女高潮喷水抽搐中文字幕| 听说在线观看完整版免费高清| 成年人黄色毛片网站| 久久香蕉激情| 国产aⅴ精品一区二区三区波| 婷婷精品国产亚洲av| 国产精品香港三级国产av潘金莲| 91av网站免费观看| 欧美丝袜亚洲另类 | 麻豆成人午夜福利视频| 国产97色在线日韩免费| 在线国产一区二区在线| 精品国产超薄肉色丝袜足j| 国产一级毛片七仙女欲春2 | 成人手机av| 三级毛片av免费| 国产精品亚洲av一区麻豆| 色综合欧美亚洲国产小说| 国产久久久一区二区三区| 一本精品99久久精品77| 看免费av毛片| 久久久久免费精品人妻一区二区 | 黑人操中国人逼视频| 亚洲欧美日韩高清在线视频| 亚洲国产精品久久男人天堂| 淫妇啪啪啪对白视频| 一级毛片高清免费大全| 熟妇人妻久久中文字幕3abv| 777久久人妻少妇嫩草av网站| 在线观看www视频免费| 日韩精品青青久久久久久| 亚洲国产精品999在线| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲中文字幕日韩| 国产爱豆传媒在线观看 | 日本五十路高清| 在线观看一区二区三区| 日韩欧美三级三区| 色综合站精品国产| 狠狠狠狠99中文字幕| 久久性视频一级片| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美激情综合另类| 欧美日韩亚洲国产一区二区在线观看| 久久热在线av| netflix在线观看网站| 国语自产精品视频在线第100页| 精品国产超薄肉色丝袜足j| 男人舔奶头视频| 男女下面进入的视频免费午夜 | 这个男人来自地球电影免费观看| 久久香蕉激情| 一区二区三区国产精品乱码| 动漫黄色视频在线观看| 美女免费视频网站| 国产私拍福利视频在线观看| 色精品久久人妻99蜜桃| 无人区码免费观看不卡| 欧美乱妇无乱码| 视频在线观看一区二区三区| www.精华液| 老熟妇乱子伦视频在线观看| 人人妻人人澡欧美一区二区| 日韩欧美三级三区| 日本免费a在线| av片东京热男人的天堂| 黑人欧美特级aaaaaa片| 777久久人妻少妇嫩草av网站| 久久国产精品男人的天堂亚洲| 欧美日韩亚洲综合一区二区三区_| 国产成人av教育| 成人精品一区二区免费| 女同久久另类99精品国产91| 色在线成人网| 婷婷六月久久综合丁香| 69av精品久久久久久| 精品午夜福利视频在线观看一区| 久久久久国产精品人妻aⅴ院| 久久狼人影院| 哪里可以看免费的av片| 久9热在线精品视频| 制服人妻中文乱码| 国产黄片美女视频| 久久婷婷人人爽人人干人人爱| 免费看十八禁软件| 欧美中文日本在线观看视频| 午夜久久久久精精品| 欧美一级a爱片免费观看看 | 老司机午夜福利在线观看视频| 亚洲avbb在线观看| 制服人妻中文乱码| 99精品在免费线老司机午夜| 在线十欧美十亚洲十日本专区| 伊人久久大香线蕉亚洲五| 国产蜜桃级精品一区二区三区| 亚洲人成77777在线视频| bbb黄色大片| 国内精品久久久久精免费| 中文资源天堂在线| 999久久久国产精品视频| 男女床上黄色一级片免费看| 久久久久久大精品| 两个人视频免费观看高清| 日韩高清综合在线| 欧美日韩福利视频一区二区| 首页视频小说图片口味搜索| 国产精品 欧美亚洲| 欧美一级a爱片免费观看看 | 啦啦啦观看免费观看视频高清| 又黄又粗又硬又大视频| 国产男靠女视频免费网站| 久久久久久久午夜电影| 精品卡一卡二卡四卡免费| 国产精品国产高清国产av| 欧美日本亚洲视频在线播放| 搡老妇女老女人老熟妇| 国产av一区在线观看免费| 又紧又爽又黄一区二区| 午夜福利欧美成人| 国产一区二区三区在线臀色熟女| 精品无人区乱码1区二区| 久久 成人 亚洲| 男人舔女人的私密视频| 极品教师在线免费播放| 午夜成年电影在线免费观看| 妹子高潮喷水视频| 美女免费视频网站| 18禁裸乳无遮挡免费网站照片 | 欧美乱色亚洲激情| 久热这里只有精品99| 制服诱惑二区| 亚洲国产欧美网| 亚洲国产精品sss在线观看| 久久精品91无色码中文字幕| 中文字幕最新亚洲高清| 国产成人欧美| 美女高潮到喷水免费观看| 免费在线观看亚洲国产| 不卡av一区二区三区| 欧美日本亚洲视频在线播放| 久久精品国产亚洲av高清一级| 久久久国产成人精品二区| av电影中文网址| 国产真人三级小视频在线观看| av超薄肉色丝袜交足视频| 脱女人内裤的视频| 国产成人欧美| 亚洲av日韩精品久久久久久密| 法律面前人人平等表现在哪些方面| 天天躁夜夜躁狠狠躁躁| 成人亚洲精品一区在线观看| 老司机福利观看| 大型黄色视频在线免费观看| 久久人妻福利社区极品人妻图片| 精品一区二区三区av网在线观看| 国产av在哪里看| 国产精品 国内视频| 99国产精品99久久久久| 国产不卡一卡二| 两个人视频免费观看高清| 亚洲人成网站高清观看| 村上凉子中文字幕在线| 俺也久久电影网| 午夜日韩欧美国产| 国产一区在线观看成人免费| 禁无遮挡网站| 国产免费男女视频| 哪里可以看免费的av片| 欧美另类亚洲清纯唯美| 999久久久国产精品视频| 满18在线观看网站| 国内精品久久久久精免费| 18禁黄网站禁片免费观看直播| 十八禁人妻一区二区| 日本熟妇午夜| 哪里可以看免费的av片| 中出人妻视频一区二区| 亚洲国产欧美日韩在线播放| 亚洲av第一区精品v没综合| 级片在线观看| 免费在线观看影片大全网站| 中文字幕另类日韩欧美亚洲嫩草| 制服人妻中文乱码| 2021天堂中文幕一二区在线观 | 国产成人精品久久二区二区免费| av欧美777| 99精品久久久久人妻精品| 美女国产高潮福利片在线看| 啦啦啦 在线观看视频| 亚洲一区高清亚洲精品| 国产亚洲av高清不卡| 露出奶头的视频| 91大片在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲五月婷婷丁香| 免费在线观看视频国产中文字幕亚洲| 欧美激情 高清一区二区三区| 亚洲成国产人片在线观看| 妹子高潮喷水视频| 欧美性猛交╳xxx乱大交人| www.精华液| 男人舔奶头视频| 久久久久九九精品影院| 9191精品国产免费久久| 黄片小视频在线播放| 精品欧美一区二区三区在线| 亚洲一区二区三区色噜噜| 亚洲黑人精品在线| 日日摸夜夜添夜夜添小说| 欧美黑人精品巨大| 国产成人一区二区三区免费视频网站| 欧美精品亚洲一区二区| 久久久精品欧美日韩精品| 日本在线视频免费播放| 19禁男女啪啪无遮挡网站| 精品一区二区三区四区五区乱码| 亚洲中文字幕一区二区三区有码在线看 | 亚洲人成伊人成综合网2020| 午夜两性在线视频| 男女之事视频高清在线观看| 日韩高清综合在线| 一个人免费在线观看的高清视频| 日本三级黄在线观看| 国产一区在线观看成人免费| 黄色片一级片一级黄色片| 亚洲 欧美 日韩 在线 免费| 久久天躁狠狠躁夜夜2o2o| av电影中文网址| 国产一区二区在线av高清观看| 国产又黄又爽又无遮挡在线| 国产蜜桃级精品一区二区三区| 成人三级做爰电影| 午夜免费成人在线视频| av福利片在线| 国产午夜福利久久久久久| 69av精品久久久久久| 国产亚洲精品综合一区在线观看 | 不卡一级毛片| 国产高清有码在线观看视频 | 国内久久婷婷六月综合欲色啪| 97碰自拍视频| 制服诱惑二区| 婷婷精品国产亚洲av| 少妇裸体淫交视频免费看高清 | 日韩欧美在线二视频| av中文乱码字幕在线| 国产欧美日韩一区二区精品| 婷婷精品国产亚洲av| 搡老妇女老女人老熟妇| 在线国产一区二区在线| 欧美黑人欧美精品刺激| 午夜成年电影在线免费观看| 久久人人精品亚洲av| 女警被强在线播放| 一区二区三区激情视频| 免费搜索国产男女视频| 又黄又粗又硬又大视频| 亚洲人成77777在线视频| 女人爽到高潮嗷嗷叫在线视频| 精品免费久久久久久久清纯| 国产视频一区二区在线看| 最近在线观看免费完整版| 免费电影在线观看免费观看| 亚洲在线自拍视频| 国产精品自产拍在线观看55亚洲| 欧美不卡视频在线免费观看 | 黄色a级毛片大全视频| av有码第一页| 欧美国产精品va在线观看不卡| 国产精品久久视频播放| 国产高清视频在线播放一区| 性欧美人与动物交配| 久久精品aⅴ一区二区三区四区| 中文在线观看免费www的网站 | 黄色片一级片一级黄色片| 亚洲成人精品中文字幕电影| www.熟女人妻精品国产| 黄色视频不卡| 欧美绝顶高潮抽搐喷水| 18禁裸乳无遮挡免费网站照片 | 91国产中文字幕| 亚洲全国av大片| 成人国语在线视频| 午夜免费观看网址| 一区二区三区国产精品乱码| 成人午夜高清在线视频 | 很黄的视频免费| 国产一区在线观看成人免费| 黄片播放在线免费| 俄罗斯特黄特色一大片| 少妇 在线观看| 99精品久久久久人妻精品| 欧美日本亚洲视频在线播放| 高清在线国产一区| 国产亚洲欧美在线一区二区| 亚洲国产精品合色在线| 香蕉国产在线看| 精品人妻1区二区| 亚洲国产中文字幕在线视频| 亚洲av成人av| 免费在线观看视频国产中文字幕亚洲| 高清毛片免费观看视频网站| 亚洲精品在线观看二区| 日韩欧美在线二视频| 亚洲av成人av| 两性午夜刺激爽爽歪歪视频在线观看 | 十八禁人妻一区二区| 18禁观看日本| 校园春色视频在线观看| www.999成人在线观看| 久久久久免费精品人妻一区二区 | 一本大道久久a久久精品| 欧美成人一区二区免费高清观看 | 在线观看www视频免费| 很黄的视频免费| 亚洲片人在线观看| 成人欧美大片| 国产成人精品无人区| 亚洲精品在线美女| 成年免费大片在线观看| 18禁国产床啪视频网站| 国产亚洲精品av在线| 色精品久久人妻99蜜桃| 成人国产一区最新在线观看| www.精华液| 黄色视频不卡| 美女国产高潮福利片在线看| 亚洲一卡2卡3卡4卡5卡精品中文| 精华霜和精华液先用哪个| 正在播放国产对白刺激| 免费高清在线观看日韩| 精品少妇一区二区三区视频日本电影| 非洲黑人性xxxx精品又粗又长| 久久狼人影院| 亚洲精品av麻豆狂野| 成人午夜高清在线视频 | 国产成人欧美在线观看| 精品乱码久久久久久99久播| 亚洲一区二区三区不卡视频| 黄片大片在线免费观看| 2021天堂中文幕一二区在线观 | 淫秽高清视频在线观看| 一级a爱视频在线免费观看| 在线观看日韩欧美| 午夜福利欧美成人| 日日爽夜夜爽网站| 免费搜索国产男女视频| 999久久久国产精品视频| 亚洲精品国产一区二区精华液| 变态另类丝袜制服| 手机成人av网站| 精品熟女少妇八av免费久了| 国内揄拍国产精品人妻在线 | 黄片小视频在线播放| 搡老熟女国产l中国老女人| 久久精品成人免费网站| 国产精品影院久久| 中文字幕最新亚洲高清| 亚洲九九香蕉| 欧美日韩黄片免| 中出人妻视频一区二区| 久久久水蜜桃国产精品网| 757午夜福利合集在线观看| 久9热在线精品视频| 国产不卡一卡二| 久久 成人 亚洲| 亚洲精华国产精华精| 欧美又色又爽又黄视频| 久久午夜综合久久蜜桃| 中文字幕另类日韩欧美亚洲嫩草| 亚洲中文字幕一区二区三区有码在线看 | 制服丝袜大香蕉在线| 不卡一级毛片| 亚洲av电影不卡..在线观看| 女性生殖器流出的白浆| 一二三四在线观看免费中文在| 中文字幕精品亚洲无线码一区 | 亚洲九九香蕉| 一边摸一边做爽爽视频免费| e午夜精品久久久久久久| 欧美黄色片欧美黄色片| 天天一区二区日本电影三级| 一级作爱视频免费观看| 久热这里只有精品99| 99久久99久久久精品蜜桃| 嫁个100分男人电影在线观看| 最好的美女福利视频网| 黄片播放在线免费| 欧美zozozo另类| 自线自在国产av| 中文在线观看免费www的网站 | 人妻久久中文字幕网| 女生性感内裤真人,穿戴方法视频| 亚洲色图av天堂| 老司机午夜十八禁免费视频| 亚洲男人天堂网一区| 女性被躁到高潮视频| 无人区码免费观看不卡| 亚洲成人国产一区在线观看| 超碰成人久久| 亚洲人成电影免费在线| 他把我摸到了高潮在线观看| 又黄又粗又硬又大视频| 精品熟女少妇八av免费久了| 丰满的人妻完整版| 一本大道久久a久久精品| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩欧美一区视频在线观看| 在线观看舔阴道视频| 国产av又大| 久久精品aⅴ一区二区三区四区| 9191精品国产免费久久| 又大又爽又粗| 亚洲 国产 在线| 99久久综合精品五月天人人| 国产欧美日韩精品亚洲av| 国产精品98久久久久久宅男小说| 黄色片一级片一级黄色片| 啦啦啦免费观看视频1| 久久人妻av系列| 免费看美女性在线毛片视频| 国产高清视频在线播放一区| 国产片内射在线| 制服丝袜大香蕉在线| 18禁观看日本| 两个人看的免费小视频| 国产成人精品无人区| 国产av在哪里看| 免费在线观看日本一区| 视频在线观看一区二区三区| 国产精品久久久av美女十八| 亚洲av中文字字幕乱码综合 | 91成人精品电影| 亚洲精品av麻豆狂野| 高清毛片免费观看视频网站| 午夜福利欧美成人|