• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鮮棗中糖精的快速、無標(biāo)簽檢測

    2020-06-05 12:44:27吳昊邵菲郭小玉吳一萍楊海峰
    關(guān)鍵詞:吳昊鮮棗糖精

    吳昊 邵菲 郭小玉 吳一萍 楊海峰

    Fund Project: The National Natural Science Foundation of China(21475088)

    Biography: WU Hao(1990—),male,graduate student,research area:Raman application.E-mail:qingdaodaxueguzi@163.com;SHAO Fei(1995—),female,graduate student,research area:design of novel SERS substrates for detection application.E-mail:1446573055@qq.com

    ?Co-first authors:WU Hao carried out the preparation of materials,data acquisition and writing,SHAO Fei completed the characterization of part materials,detection of real sample and corresponding writing.These authors contributed equally to this work.

    *Corresponding authors:WU Yiping(1987—),female,associate professor,research area:construction of Raman probe for biological and chemical applications.E-mail:yipingwu@shnu.edu.cn;YANG Haifeng(1968—),male,professor,research area:design of Raman detection strategies for biochemical application.E-mail:hfyang@shnu.edu.cn

    引用格式: 吳昊,邵菲,郭小玉,等.鮮棗中糖精的快速、無標(biāo)簽檢測 [J].上海師范大學(xué)學(xué)報(自然科學(xué)版),2020,49(2):121-133.

    Citation format: WU H,SHAO F,GUO X Y,et al.Rapid and label-free detection of saccharin in fresh jujube fruit [J].Journal of Shanghai Normal University(Natural Sciences),2020,49(2):121-133.

    Rapid and label-free detection of saccharin in fresh jujube fruit

    WU Hao?, SHAO Fei?, GUO Xiaoyu, WU Yiping*, YANG Haifeng*

    (College of Chemistry and Materials Science,Shanghai Normal University,Shanghai 200234,China)

    Abstract: Saccharin is one of the oldest artificial sweeteners used in food industries because it has no calories.However,the abuse of saccharin is illegal.According to the National Standard of China,the maximum permitted level is 8.189×10-4mol·L-1in food.In this work,inositol hexakisphosphate(IP6) as protection agent was introduced to synthesize silver(Ag) nanoparticles(Ag NPs),designated as Ag NPs@IP6,and a rapid method based on surface-enhanced Raman scattering (SERS) was explored for the determination of saccharin in food products.The minimal detectable concentration for saccharin in water by using the optimal SERS assay was 50 nmol·L-1,which meets the requirement of National Food Safety Standard for tolerance level of food additives.This proposed Ag NPs@IP6-based SERS method with the portable Raman system could be implemented for on-site detection of saccharin in food such as fresh jujube fruit,a kind of Chinese date product.

    Key words: saccharin; silver(Ag) nanoparticles(Ag NPs); surface-enhanced Raman scattering(SERS); rapid detection

    CLC number: CLC number:O 614.24? Document code: A? Article ID: 1000-5137(2020)02-0121-13

    摘 要: 糖精是食品工業(yè)中最古老的人造甜味劑之一,因為沒有卡路里而被廣泛使用,但其濫用是非法的,食品中最大允許添加量為8.189×10-4mol·L-1.介紹了以六磷酸肌醇(IP6)為保護(hù)劑合成的銀(Ag)納米粒子(Ag NPs),即Ag NPs@IP6,并提出了一種基于表面增強(qiáng)拉曼散射(SERS)的快速方法.探討了食品中糖精的測定,用最佳SERS法測定水中糖精的最低可檢測濃度可達(dá)50 nmol·L-1,符合食品添加劑耐受性水平的國家食品安全標(biāo)準(zhǔn).提出了基于便攜式拉曼的Ag NPs@IP6的SERS方法,可用于現(xiàn)場檢測食品中的糖精,如新鮮棗果.

    關(guān)鍵詞: 糖精; 銀(Ag)納米粒子(Ag NPs); 表面增強(qiáng)拉曼散射光譜(SERS); 快速檢測

    1 Introduction

    The abuse of the additives is a current problem in the field of food safety,which is a major issue of concern to the peoples healthcare[1].Saccharin is one of the oldest artificial sweeteners used in food industries because it has no calories.In the 1970s,PRICE et al[2] found that saccharin had close correlation with bladder cancer in rodents.Consequently,foods containing saccharin must be labeled with a warning to match the requirement of the “Saccharin Study and Labeling Act” of 1977.However,in the year 2000,due to some reports exploring the different rodents cellular microenvironment,involving high pH,high calcium phosphate,and high protein levels[3-4],from human situation,the United States removed the warning labels from the external packing of food containing saccharin.Next,some researches showed saccharin might give rise to the release of insulin in humans and rats,which has not been confirmed by the later control studies[5-7].In 2012,Qin[8-9]found the close relationship between inflammatory bowel disease and the intake amount of saccharin,meaning that the saccharin is health risk for human as food additives.In China,the acceptable daily intake (ADI) value of the saccharin is in the range from 8.189×10-4to 2.729×10-2 mol·L-1for different foods.Thereupon,even if it remains controversy over the safety for saccharin as the food additive,some methods to detect saccharin have been developed.WANG et al[10]proposed a competitive enzyme-linked immunosorbent assay to determine the sodium saccharin in food samples.This immunosorbent method showed an excellent specificity for sodium saccharin with the limit of detection (LOD) of 1.146×10-8mol·L-1by the diazo-reaction,but it needed more than 1.5 h for a whole test process and even 12 h in a preparatory process.Bergamo et al[11]demonstrated an accurate analytical technique for simultaneous determination of different artificial sweeteners by using capillary electrophoresis with capacitively coupled contactless conductivity with the 30 kV separation voltages and 450 kHz operating condition,but it was not easy to actualize an on-site strategy.GREMBECKA et al[12] reported a HPLC-CAD-UV/DAD protocol to analyze the mixture of artificial sweeteners with the LOD less than 3×10-6 mol·L-1and relative standard deviation (RSD) less than 2% but it has to perform the tedious pre-treatments,control exorbitant operating conditions,and require large-sized instrument.Therefore,it is necessary to explore some fast approaches for pre-screening in food on field or market.

    The surface-enhanced Raman scattering(SERS) technique has become one of the most potential spectroscopic tools for label-free determination of the metal ions,bio-analytes or food additives[13-16],due to its extraordinary capability for signal enhancement and inherent narrow width of Raman peak.The amplified Raman intensities could be attributed to the contributions of electromagnetic (EM) field enhancement[17-18]and chemical enhancement (CE)[19].With the huge electromagnetic field from “hot spots” between neighbor noble metal nanoparticles by laser inducing[20],Raman signal for some especial molecules could be dramatically elevated even down to single molecule level[21-22].The additional merits of SERS technique such as rapidness,no interference by water,and simple pre-treatment of sample have aroused great interests of many analysts in various disciplines.As above-mentioned,SERS-based methods have lots of applications in life science[23-25],biotherapy[26],and chemical analysis[27].Also,SERS spectroscopy provides fingerprint vibrational information of molecule moieties adsorbed on a metallic surface,bringing an intrinsic selectivity.It is perspective that with the development of reasonably active and stable SERS substrates,Raman spectroscopy will play the key role in quality control application for goods and foods.

    According to our previous work[28-30],inositol hexakisphosphate (IP6) as a naturally non-toxic substance,which has the strong interaction with metallic ions,could be used to synthesize and stabilize the SERS substrates.In this work,tuning the ratio of IP6and AgNO3amounts for obtaining silver(Ag)nanoparticles (Ag NPs) (designated as Ag NPs@IP6)with optimal sensitivity was explored.Herein,we proposed the Ag NPs@IP6-based SERS method to determine saccharin in the food product of fresh jujube fruit.The lowest detectable concentration for saccharin was 50 nmol·L-1,which meets the requirement of National Food Safety Standard for tolerance level of food additives.This SERS protocol with good reproducibility can be employed for on-market monitoring the food quality by using the portable Raman system.

    2 Materials and methods

    2.1 Chemicals and materials

    Silver nitrate (AgNO3),sodium salt of IP6and saccharin 98% (mass fraction) were obtained from Sigma-Aldrich (USA).Crystal violet,perchloric acid,acetic anhydride,sodium hydroxide(NaOH),Rhodamine 6G (R6G),hydroxyl-ammonium chloride (NH2OH·HCl) and acetic acid were purchased from Sinopharm Chemical Reagent (Shanghai,China).Ethanol was obtained from Shanghai Titan Scientific Co.,Ltd.Raw fresh jujube fruit (Raw-J) was purchased from a local supermarket,and retail jujube fruit (Retail-J) was bought from a local agricultural trade market.All reagents were of analytical grade and used without further purification.Deionized water (18 MΩ·cm) was produced using a Millipore water purification system.

    The SERS experiment was carried after the mixture totally dried at the condition of 20 ℃ and 60% relative humidity.

    2.4 Titration determination of saccharin

    According to suggestion by the National Standard of China,the titration method was a routine technique to analyze the saccharin in foods.In detail,the sample containing saccharin was added into the 20 mL of acetic acid and 5 mL of acetic anhydride.Then,two drops of crystal violet (1.23×10-2mol·L-1) were injected as an indicator.Finally,the above solution was titrated by 0.1 mol·L-1of perchloric acid until the color of the solution turned cyan and the experiment was repeated for three times.

    3 Results and discussion

    3.1 Preparation and characterizations of Ag NPs@IP6

    Silver substrates have their inherent surface plasmon resonance (SPR) phenomenon to enhance the Raman scattering of adsorbed species,and the enhancement factor is related to their geometry[32-33],chemical composition[34],and size distribution[35].In this work,silver nanoparticles were picked out as SERS substrates to carry out the detection of saccharin residue on the surface of foods because of Raman signal-enhancing peculiarity of Ag NPs[36].Unfortunately,silver nanoparticles are unstable under ambient condition.Normally,the citrate salt was used as reducing agent to obtain Ag NPs and citrate salt residue on the Ag NPs resulted in the Raman spectroscopic interference to the trace detection.We used NH2OH·HCl with no Raman activity as the reduction reagent to prepare Ag NPs.IP6molecules were introduced into the synthesis procedure to stabilize Ag NPs for real application requirement.Interestingly,tuning the ratio of AgNO3and IP6,the as-obtained Ag NPs@IP6products showed different SERS effects (R6G as Raman probe).As shown in figure 1(a),Raman intensity of R6G rises with the increase of the dosage of AgNO3.However,the stability of Ag NPs becomes worse and results in a serious aggregation in the case of amount of AgNO3increased from 5.0 to 7.0 mL.As a result,the optimal volume of 1×10-2mol·L-1AgNO3solution is fixed at 5.0 mL.Additionally,the usage of IP6is also carefully examined for the long-term stability of Ag NPs.As shown in figure 1(b),3.0 mL of 1.0×10-3mol·L-1IP6may be the best one for constructing SERS substrate.The excessive amount of IP6will increase the thickness of IP6at the surface of Ag NPs,which suppresses the Raman signals of target sample.

    FX_GRP_ID80000315

    Figure 1 SERS spectra of 5×10-7mol·L-1R6G based on the optimized conditions.(a) the volume of the AgNO3,from line 1 to line 5:3,4,5,6,7 mL,respectively;(b) the volume of the IP6,from line 1 to line 5:1,2,3,4,5 mL,respectively(λex=785 nm,laser poweris 300 mW,t=5 s)

    Figure 2 depicts the TEM images of the Ag NPs and Ag NPs@IP6.It is found that their average diameters are around 50 nm.The thickness of IP6shell for Ag NPs@IP6 is about 6±2 nm.In figure 2(e),the SPR bands for Ag NPs and Ag NPs@IP6are observed at 403 nm and 408 nm,respectively.Closely investigating the TEM image in figure 3 shows that the gap between Ag NPs @IP6is less than 10 nm and the distribution of Ag NPs@IP6exhibits more uniform than that of Ag NPs,which agrees with the narrow band in SPR spectrum of Ag NPs@IP6.

    3.2 The SERS performance

    For the evaluation of the SERS effects of the Ag NPs@IP6 and Ag NPs,1.0×10-7mol·L-1R6G solution was used as the Raman probe.It was found from figure 4 that the SERS signal of R6G from Ag NPs@IP6is stronger than that from Ag NPs.The enhancement should arise from “hot-spot” formation via Ag NPs@IP6bridging each other.In figure 5(a),in case of R6G,the lowest detectable concentration could be down to 1.0×10-9mol·L-1.As a consequence,the Ag NPs@IP6 colloid is regarded as a promising substrate to elevate the SERS sensitivity for analyzing saccharin in real samples.

    The stability of the as-made Ag NPs@IP6was also monitored by the time-dependent SERS experiments.The statistical results as column diagrams in comparison with Ag NPs are given in figure 5(b).Obviously,with a storage time within 3 weeks,as compared with the original signal intensity from newly prepared substrate,the SERS signal of Ag NPs@IP6 could keep about 90% even under ambient condition (20 ℃ and 60% relative humidity) and it exhibits a long-term stability,which is beneficial to the real application.

    Figure 2 TEM images of (a),(b)Ag NPs and (c),(d) Ag NPs@IP6with different scales,and corresponding (e) UV-vis absorption spectra

    Figure 3 The TEM image of Ag NPs@IP6with large magnification

    Figure 4 SERS spectra of 1×10-7mol·L-1R6G mixed with different substrates:Ag NPs@IP6(blue curve) and Ag NPs (red curve)

    Figure 5 SERS spectra of various concentrations of R6G and the stability of Ag NPs@IP6and Ag NPs.(a) SERS spectra (1-5) of R6G at different concentrations of 1×10-5,1×10-6,1×10-7,1×10-8,and 1×10-9mol·L-1,acquired from Ag NPs@IP6and spectrum 6 is acquired from blank Ag NPs @IP6λex=785 nm,laser poweris 300 mW,t=5 s);(b) Column diagrams of normalized intensity ratio (I/I0) of R6G signals recorded on novel prepared substrates (Ag NPs (green color) or Ag NPs@IP6(red color)) and after different storage time (error bar:each datum was acquired by repeating 6 times)

    3.3 Detection of saccharin with portable Raman system

    For the interpretation of the SERS bands,normal Raman spectrum of powder saccharin and SERS spectrum of saccharin (5.0×10-4mol·L-1) together with the structure formula were given in figure 6.Clearly,the diversities between normal Raman spectrum of solid saccharinand SERS spectrum could be due to the saccharin molecules adsorbed onto the surface of Ag NPs@IP6.According to the calculation based on B3LYP/LANL2DZ level,the assignments to main vibration bands of saccharin were tabulated in table 1.SERS peak at 779 cm-1is attributed toνas(C-S-N) andνs(C-C) and a band at 1 175 cm-1could be due toδ(C-C-H) andρ(N-H).SERS band at 1 287 cm-1belongs to co-contributions ofρ(C-H) andν(C-N-O).The strongest characteristic band at 1 385 cm-1in SERS spectrum is from the asymmetric stretching modes of O=S=O group while it is a very weak band in normal Raman spectrum.This indicates that the saccharin molecules are anchored on the Ag NPs@IP6surface via lone pairs of oxygen atom.

    Figure 6 SERS spectrum of 5×10-4mol·L-1saccharin adsorbed on Ag NPs@IP6(blue color) and normal Raman spectrum of solid saccharin (red color) (λex=785 nm,laser power is 300 mW,t=5 s)

    As shown in figure 7,concentration dependent SERS spectra of saccharin in the aqueous solution are recorded with the Ag NPs@IP6 substrates.The linear relationship was plotted by the intensities of the Raman band at 1 385 cm-1versus the varying concentrations of saccharin in the range from 1.0×10-4to 1.0×10-3mol·L-1.The SERS substrate of blank Ag NPs@IP6was also recorded with no interference on the spectrum of target molecule (figure 8).The error bars given by six independent measurements are for the indication of the standard deviation.The lowest detectable concentration reaches 5.0×10-8mol·L-1,indicating that this optimized Ag NPs@IP6-based SERS method could be performed for a practical analysis.

    Figure 7 SERS spectra of various concentraction of saccharin and calibration plot based on Raman intensity at 1 385 cm-1.(a) SERS spectra of saccharin obtained from Ag NPs@IP6(the concentration of saccharin from top to bottom:5×10-2,5×10-3,5×10-4,5×10-5,5×10-6,5×10-7,5×10-8,and 5×10-9mol·L-1,respectively);(b) SERS intensities at 1 385 cm-1versus the different concentrations of saccharin(inset is the linear relationship between SERS intensity and the concentration ranging from 1.0×10-4to 1.0×10-3mol·L-1in aqueous solution,λex=785 nm,laser power is 300 mW,t=5 s)

    Figure 8 SERS spectrum of Ag NPs@IP6 without saccharin

    The investigation of SERS reproducibility of saccharin on the Ag NPs@IP6was given in figure 9 and the RSD is about 10.4%.The RSD value of Ag NPs@IP6is less than 20.0%,remarking the good reproducibility[37]of such Ag NPs@IP6substrates.

    3.4 Detection of saccharin in real sample

    The SERS-based protocol to determine saccharin might have interference of food matrix,such as acesulfame potassium,sucrose and so on.Especially,in food production process,acesulfame potassium is routinely mixed with saccharin to offer sweeter tastes by some enterprises[38].Herein,SERS spectra of saccharin,acesulfame potassium,sorbitol,sucrose,and glucose together with the mixture of above 5 species were recorded,which were shown in figure 10.It is confirmed that the characteristic Raman band of saccharin at 1 385 cm-1without interfering could be distinguished from the others.

    Figure 9 30 sequential 3D SERS spectra of 1×10-4mol·L-1saccharin mixed with Ag NPs@IP6for examining thereproducibility of SERS substrates

    Figure 10 SERS spectra of (a) mixture of 5 species,(b) saccharin,(c) acesulfame potassium,(d) sorbitol,(e) sucrose and (f) glucose

    Pitifully in news report,some fresh jujube fruits were added with excessive saccharin by bad vendors to obtain illegal economic benefits.For conducting SERS detection,the pre-treatment approach for sample has an important process[39-42].We used 20%(volume fraction)ethanol aqueous solution to extract the raw jujubes(Raw-J),the retail jujubes(Retail-J),and the spiked jujubes (Spiked-J).All of the SERS signals were recorded from the ethanol extract solution after they were mixed with Ag NPs@IP6substrates.In figure 11(line 1),no obvious Raman signal from the extract solution of Raw-J is visible,while in figure 11(line 2),the Raman spectrum of the extract solution from Spiked-J shows the characteristic bands of saccharin.The SERS spectrum of the extract from Retail-J presents the characteristic bands at 779 and 1 385 cm-1of saccharin as shown in figure 11(line 3),meaning that Retail-J might be added by saccharin.We also tested the same sample of Retail-J according to the titration method recommended by GB 4578-2008.As demonstrated in table 2,the results obtained by the? titration method are not exactly same as those from the SERS method,but the SERS results are still in acceptable values,especially for quick on-market analysis with the help of the portable Raman system.

    Figure 11 Ag NPs@IP6-based SERS spectra of the Raw-J(line 1,green),the Spiked-J(line 2,red) and the Retail-J(line 3,blue)extract solutions (λex=785 nm,laser power is 300 mW,t=5 s)

    Through preparing an optimal Ag NPs@IP6with an IP6shell of around 6 nm in thickness,the Ag NPs@IP6-based SERS approach for the rapid determination of saccharin in fresh jujube fruit was developed.The Ag NPs@IP6showed a much stronger Raman scattering enhancement factor and long-term stability.The lowest detectable concentration of saccharin down to 50 nmol·L-1was achieved.For real application,by using the ethanol solution,after a facile pre-treatment method was done to extract the saccharin from the food products,the SERS test could be conducted.Although the SERS result had about 25% RSD in comparison with the result from the titration method recommended by the National Standard of China,as a perspective,this Ag NPs@IP6-based SERS approach with the aid of portable Raman spectrometer could realize rapid,sensitive and on-site detection of saccharin for food quality control.

    References:

    [1]???? JACKSON L S.Chemical food safety issues in the United States:past,present,and future [J].Journal of Agricultural and Food Chemistry,2009,57(18):8161?????-8170.

    [2]???? PRICE J M,BIAVA C G,OSER B L,et al.Bladder tumors in rats fed cyclohexylamine or high doses of a mixture of cyclamate and saccharin [J].Science,1970,167(3921):1131-1132.

    [3]???? WHYSNER J,WILLIAMS G M.Saccharin mechanistic data and risk assessment:urine composition,enhanced cell proliferation,and tumor promotion [J].Pharmacology and Therapeutics,1996,71(1/2):225-252.

    [4]???? DYBING E.Development and implementation of the IPCS conceptual framework for evaluating mode of action of chemical carcinogens [J].Toxicology,2002,181/182(1/2/3):121-125.

    [5]???? JUST T,PAU H W,ENGEL U,et al.Cephalic phase insulin release in healthy humans after taste stimulation? [J].Appetite,2008(3)51:622-627.

    [6]???? IONESCU E,ROHNER-JEANRENAUD F,PROIETTO J,et al.Taste-induced changes in plasma insulin and glucose turnover in lean and genetically obese rats [J].Diabetes,1988,37(6):773-779.

    [7]???? BERTHOUD H R,TRIMBLE E R,SIEGEL E G,et al.Cephalic-phase insulin secretion in normal and pancreatic islet-transplanted rats [J].American Journal of Physiology,1980,238(4):E336-E340.

    [19]???? ALBRECHT M G,CREIGHTON J A.Anomalously intense Raman spectra of pyridine at a silver electrode [J].Journal of the American Chemical Society,1977,99(15):5215-5217.

    [20]???? WANG Y,YAN B,CHEN L.SERS tags:novel optical nanoprobes for bioanalysis [J].Chemical Review,2013,113(3):1391-1428.

    [21]???? NIE S M,EMORY S R.Probing single molecules and single nanoparticles by surface-enhanced Raman scattering [J].Science,1997,275(5303):1102-1106.

    [22]???? KNEIPP K,WANG Y,KNEIPP H,et al.Single molecule detection using surface-enhanced Raman scattering (SERS) [J].Physical Review Letters,1997,78(9):1667-1670.

    [23]???? LIU T Y,TSAI K T,WANG,H H,et al.Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood [J].Nature Communication,2011,2:538-545.

    [24]???? LI Y T,LI D W,CAO Y,et al.Label-free in-situ monitoring of protein tyrosine nitration in blood by surface-enhanced Raman spectroscopy [J].Biosensors & Bioelectronics,2015,69:1-7.

    [25]???? QIAN X,PENG X H,ANSARI D O,et al.In vivotumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags [J].Nature Biotechnology,2008,26(1):83-90.

    [26]???? MOHS A M,MANCINI M C,SINGHAL S,et al.Hand-held spectroscopic device forin vivoand intraoperative tumor detection:contrast enhancement,detection sensitivity,and tissue penetration [J].Analytical Chemistry,2010,82(21):9058-9065.

    [27]???? WILLETS K A,VAN DUYNE R P.Localized surface plasmon resonance spectroscopy and sensing [J].Annual Review of Physical Chemistry,2007,58(1):267-297.

    [28]???? WANG N,YANG H F,ZHU X,et al.Synthesis of anti-aggregation silver nanoparticles based on inositol hexakisphosphoric micelles for a stable surface enhanced Raman scattering substrate [J].Nanotechnology,2009,20(31):315603.

    [29]???? FOX C H,EBERL M.Phytic acid (IP6),novel broad spectrum anti-neoplastic agent:a systematic review [J].Complementary Therapies in Medicine,2002,10(4):229-234.

    [30]???? LIU J R,GUO Y N,HUANG W D.Study on the corrosion resistance of phytic acid conversion coating for magnesium alloys [J].Surface & Coatings Technology,2006,201(3/4):1536-1541.

    [31]???? LEOPOLD N,LENDL B.A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride [J].Journal of Physical Chemistry B,2003,107(24):5723-5727.

    [32]???? RODRIGUEZ L L,ALVAREZ P R A,PASTORIZA S I,et al.Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering [J].Journal of the American Chemical Society,2009,131(13):4616-1618.

    [33]???? HUANG X,EL-SAYED I H,QIAN W,et al.Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods [J].Journal of the American Chemical Society,2006,128(6):2115-2120.

    [34]???? LIU B H,HAN G M,ZHANG Z P,et al.Shell thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels [J].Analytical Chemistry,2012,84:255-261.

    [35]???? LINK S,EL-SAYED M A.Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles [J].Jouranl of Physical Chemistry B,1999,103(21):4212-4217.

    [36]???? ABALDE-CELA S,ALDEANUEVA-POTEL P,MATEO-MATEO C,et al.Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles [J].Journal of the Royal Society Interface,2010,7(4):S435-S450.

    [37]???? SANTOS E D B,SIGOLI F A,MAZALI I O.Surface-enhanced Raman scattering of 4-aminobenzenethiol on silver nanoparticles substrate [J].Vibratioanl Spectroscopy,2013,68:246-250.

    [38]???? ALLEN A L,MCGEARY J E,KNOPIK V S,et al.Bitterness of the non-nutritive sweetener acesulfame potassium varies with polymorphisms in TAS2R9 and TAS2R31 [J].Chemical Senses,2013,38(5):379-389.

    [39]???? ZHANG H,ZHAI S D,LI Y M,et al.Effect of different sample pretreatment methods on the concentrations of excitatory amino acids in cerebrospinal fluid determined by high-performance liquid chromatography [J].Journal of Chromatography B,2003,784(1):131-135.

    [40]???? GONG W B,LIU C,MU X D,et al.Hydrogen peroxide-assisted sodium carbonate pretreatment for the enhancement of enzymatic saccharification of cornstover [J].ACS Sustainable Chemistry and Engineering,2015,3(12):3477-3485.

    [41]???? LIU H,PANG B,WANG H S,et al.Optimization of alkaline sulfite pretreatment and comparative study with sodium hydroxide pretreatment for improving enzymatic digestibility of corn stover [J].Journal of Agricultural and Food Chemistry,2015,63(12):3229-3234.

    [42]???? ZHANG H D,WU S B.Efficient sugar release by acetic acid ethanol-based organosolv pretreatment and enzymatic saccharification [J].Journal of Agricultural and Food Chemistry,2014,62(48):11681-11687.

    (責(zé)任編輯:郁 慧,顧浩然)

    猜你喜歡
    吳昊鮮棗糖精
    彩虹糖精
    山西臨猗:舉辦中國農(nóng)民豐收節(jié)暨第三屆鮮棗文化節(jié)
    僑領(lǐng)吳昊:傳遞中俄世代友好的接棒者
    華人時刊(2019年21期)2019-05-21 03:30:38
    吳昊、呂十鎖國畫作品
    品嘗糖精的味道
    紅棗到底生吃好還是泡水喝好
    女子世界(2017年8期)2017-08-07 11:34:05
    一把鮮棗補(bǔ)足維C
    對糖精生產(chǎn)過程中重氮化反應(yīng)的初步研究
    河南科技(2014年7期)2014-02-27 14:11:12
    美國例外主義的神話
    日常生活中的化學(xué)知識
    少妇 在线观看| 久久国产精品大桥未久av| 中文欧美无线码| 国产激情久久老熟女| 大片免费播放器 马上看| 国产一级毛片在线| 一本一本久久a久久精品综合妖精| 狠狠婷婷综合久久久久久88av| 免费观看a级毛片全部| 久久ye,这里只有精品| 国产老妇伦熟女老妇高清| 涩涩av久久男人的天堂| 在线天堂最新版资源| 亚洲美女视频黄频| 亚洲国产欧美网| 国产精品蜜桃在线观看| 91精品三级在线观看| 不卡av一区二区三区| 悠悠久久av| 国产伦理片在线播放av一区| 亚洲精品,欧美精品| 欧美另类一区| 午夜激情av网站| 国产乱人偷精品视频| 精品酒店卫生间| 两性夫妻黄色片| 亚洲精品国产色婷婷电影| 男人爽女人下面视频在线观看| 午夜福利视频在线观看免费| 男女之事视频高清在线观看 | 亚洲七黄色美女视频| 精品一区二区免费观看| 精品少妇内射三级| 久久久久久人妻| 看免费成人av毛片| 亚洲国产av新网站| 卡戴珊不雅视频在线播放| 999精品在线视频| 欧美激情 高清一区二区三区| 色精品久久人妻99蜜桃| 中国国产av一级| 最近的中文字幕免费完整| 男女无遮挡免费网站观看| 亚洲第一区二区三区不卡| 99久久精品国产亚洲精品| 大片免费播放器 马上看| 九九爱精品视频在线观看| 成年人免费黄色播放视频| 欧美日韩视频精品一区| 久久韩国三级中文字幕| av在线app专区| 人人妻人人澡人人爽人人夜夜| 亚洲欧洲国产日韩| 天天躁日日躁夜夜躁夜夜| 亚洲图色成人| 色94色欧美一区二区| 国产极品粉嫩免费观看在线| 欧美日韩国产mv在线观看视频| 久久人人97超碰香蕉20202| 看免费成人av毛片| 操美女的视频在线观看| 精品卡一卡二卡四卡免费| 免费黄网站久久成人精品| 国产免费现黄频在线看| 国产精品亚洲av一区麻豆 | 久久久亚洲精品成人影院| 午夜久久久在线观看| a 毛片基地| 日韩精品免费视频一区二区三区| 久久免费观看电影| 成人影院久久| 如何舔出高潮| 宅男免费午夜| 黄色一级大片看看| 国产精品久久久人人做人人爽| 精品视频人人做人人爽| 最近中文字幕2019免费版| 99久久精品国产亚洲精品| 人妻人人澡人人爽人人| 国产野战对白在线观看| 欧美精品一区二区大全| 国产亚洲午夜精品一区二区久久| 性色av一级| 高清视频免费观看一区二区| 视频区图区小说| 美女福利国产在线| 人人妻,人人澡人人爽秒播 | 91国产中文字幕| 黑人欧美特级aaaaaa片| 婷婷成人精品国产| 女人久久www免费人成看片| 久久久久精品久久久久真实原创| 99久久99久久久精品蜜桃| 精品人妻一区二区三区麻豆| 成年美女黄网站色视频大全免费| 黑人猛操日本美女一级片| 欧美精品亚洲一区二区| 热99久久久久精品小说推荐| 波多野结衣一区麻豆| 啦啦啦在线免费观看视频4| 亚洲图色成人| a级毛片在线看网站| 久久ye,这里只有精品| 免费看av在线观看网站| 叶爱在线成人免费视频播放| 久久久精品94久久精品| 天堂俺去俺来也www色官网| 亚洲男人天堂网一区| 国产 一区精品| 久久 成人 亚洲| 久久精品国产a三级三级三级| 天天添夜夜摸| 夫妻午夜视频| 日韩一区二区三区影片| 日本黄色日本黄色录像| 日本wwww免费看| 一区二区三区乱码不卡18| 亚洲欧美色中文字幕在线| 交换朋友夫妻互换小说| 校园人妻丝袜中文字幕| 亚洲成人免费av在线播放| 亚洲欧美一区二区三区黑人| 制服人妻中文乱码| 18禁观看日本| 成人毛片60女人毛片免费| 亚洲欧洲精品一区二区精品久久久 | 天天躁狠狠躁夜夜躁狠狠躁| 老鸭窝网址在线观看| 久久影院123| 美女视频免费永久观看网站| av.在线天堂| 可以免费在线观看a视频的电影网站 | 一级毛片黄色毛片免费观看视频| 欧美精品av麻豆av| 国产深夜福利视频在线观看| 最近最新中文字幕大全免费视频 | 韩国av在线不卡| 中文字幕人妻丝袜一区二区 | 美女午夜性视频免费| 男的添女的下面高潮视频| av天堂久久9| 黄色 视频免费看| 久久久久久久久久久免费av| 一本色道久久久久久精品综合| 一边摸一边抽搐一进一出视频| 少妇被粗大的猛进出69影院| 极品人妻少妇av视频| 在线 av 中文字幕| 午夜福利一区二区在线看| 只有这里有精品99| 少妇猛男粗大的猛烈进出视频| 精品亚洲成a人片在线观看| 精品人妻熟女毛片av久久网站| 午夜福利网站1000一区二区三区| 亚洲人成网站在线观看播放| 夫妻性生交免费视频一级片| 国产黄频视频在线观看| 大码成人一级视频| 综合色丁香网| 欧美日韩精品网址| 国产成人系列免费观看| 男女下面插进去视频免费观看| 亚洲av中文av极速乱| 制服人妻中文乱码| 婷婷成人精品国产| 亚洲国产精品999| 欧美亚洲 丝袜 人妻 在线| 国产日韩一区二区三区精品不卡| av女优亚洲男人天堂| 欧美av亚洲av综合av国产av | 男女国产视频网站| 韩国高清视频一区二区三区| 一级爰片在线观看| 精品国产乱码久久久久久男人| 极品人妻少妇av视频| 热re99久久国产66热| 在线亚洲精品国产二区图片欧美| 欧美黑人欧美精品刺激| 最新的欧美精品一区二区| 午夜久久久在线观看| 亚洲国产精品成人久久小说| 午夜影院在线不卡| 狠狠婷婷综合久久久久久88av| 亚洲免费av在线视频| 色播在线永久视频| 亚洲图色成人| 亚洲成色77777| 日韩伦理黄色片| 日本av手机在线免费观看| 国产精品一二三区在线看| 免费看不卡的av| 日韩大码丰满熟妇| 久久人人爽av亚洲精品天堂| 亚洲精品国产区一区二| 欧美老熟妇乱子伦牲交| 亚洲精品日韩在线中文字幕| 久久ye,这里只有精品| 秋霞在线观看毛片| 亚洲,欧美精品.| 只有这里有精品99| 美女扒开内裤让男人捅视频| 最近的中文字幕免费完整| 亚洲视频免费观看视频| a级毛片在线看网站| 国产精品免费大片| 国产 精品1| 一区福利在线观看| 永久免费av网站大全| 成人三级做爰电影| 亚洲欧美中文字幕日韩二区| 日韩 欧美 亚洲 中文字幕| 欧美精品一区二区大全| 多毛熟女@视频| 亚洲欧美一区二区三区国产| 一区二区日韩欧美中文字幕| 麻豆av在线久日| 激情五月婷婷亚洲| 最近2019中文字幕mv第一页| 久久天堂一区二区三区四区| 国产极品天堂在线| 中国国产av一级| 国产无遮挡羞羞视频在线观看| 欧美黄色片欧美黄色片| 久久性视频一级片| 国产成人av激情在线播放| 亚洲熟女毛片儿| 男女床上黄色一级片免费看| 91aial.com中文字幕在线观看| 国产成人av激情在线播放| 欧美 日韩 精品 国产| www.av在线官网国产| 少妇人妻 视频| 亚洲 欧美一区二区三区| 日韩欧美精品免费久久| 欧美黑人精品巨大| 大香蕉久久成人网| 久久97久久精品| 亚洲精品一区蜜桃| 黄频高清免费视频| 狂野欧美激情性xxxx| 国产精品免费视频内射| 亚洲精华国产精华液的使用体验| 国产精品成人在线| 国产亚洲最大av| 久热爱精品视频在线9| 欧美精品高潮呻吟av久久| 亚洲七黄色美女视频| 美女扒开内裤让男人捅视频| 最近的中文字幕免费完整| 尾随美女入室| 99精品久久久久人妻精品| 久久精品国产综合久久久| 新久久久久国产一级毛片| 黄频高清免费视频| 国产精品 欧美亚洲| 最近的中文字幕免费完整| 人妻一区二区av| 少妇被粗大猛烈的视频| 亚洲欧美一区二区三区久久| 国产精品麻豆人妻色哟哟久久| 伊人亚洲综合成人网| av天堂久久9| 狠狠精品人妻久久久久久综合| 亚洲av电影在线进入| 桃花免费在线播放| 老司机亚洲免费影院| 新久久久久国产一级毛片| 十八禁网站网址无遮挡| 一级,二级,三级黄色视频| 校园人妻丝袜中文字幕| 男女午夜视频在线观看| 午夜福利网站1000一区二区三区| 久久久久人妻精品一区果冻| 涩涩av久久男人的天堂| 亚洲欧美精品自产自拍| 操美女的视频在线观看| 一本久久精品| 一级爰片在线观看| 亚洲激情五月婷婷啪啪| 久久综合国产亚洲精品| 18禁观看日本| 男女免费视频国产| 在线观看三级黄色| a级毛片黄视频| 亚洲成人国产一区在线观看 | 免费不卡黄色视频| 亚洲一区中文字幕在线| 国产毛片在线视频| 亚洲av男天堂| 国产精品熟女久久久久浪| 午夜免费男女啪啪视频观看| 成年女人毛片免费观看观看9 | 精品一区二区三卡| 日韩大片免费观看网站| 乱人伦中国视频| 国产熟女午夜一区二区三区| 老汉色∧v一级毛片| 亚洲av中文av极速乱| 在线 av 中文字幕| 国产福利在线免费观看视频| 一级毛片我不卡| 伦理电影大哥的女人| 黄片播放在线免费| 国产伦理片在线播放av一区| 两个人看的免费小视频| 国产午夜精品一二区理论片| 国产精品 欧美亚洲| 午夜影院在线不卡| av又黄又爽大尺度在线免费看| www.自偷自拍.com| 69精品国产乱码久久久| 亚洲av综合色区一区| 国产精品 国内视频| 2021少妇久久久久久久久久久| 国产一区二区激情短视频 | av一本久久久久| 男人添女人高潮全过程视频| 在线观看三级黄色| 青春草视频在线免费观看| 国产精品亚洲av一区麻豆 | 久久久精品94久久精品| 久久婷婷青草| 大片电影免费在线观看免费| 亚洲第一av免费看| 一级片'在线观看视频| 男女午夜视频在线观看| 国产精品亚洲av一区麻豆 | 男女国产视频网站| 久久天堂一区二区三区四区| 成人18禁高潮啪啪吃奶动态图| avwww免费| 又粗又硬又长又爽又黄的视频| 男女午夜视频在线观看| 中国三级夫妇交换| 免费黄频网站在线观看国产| 国产97色在线日韩免费| 欧美av亚洲av综合av国产av | 亚洲成人国产一区在线观看 | 一区二区三区激情视频| 香蕉国产在线看| 国产亚洲av高清不卡| 天天操日日干夜夜撸| 我要看黄色一级片免费的| 色94色欧美一区二区| www.熟女人妻精品国产| 亚洲精品国产av蜜桃| 美女脱内裤让男人舔精品视频| 别揉我奶头~嗯~啊~动态视频 | 欧美日韩一区二区视频在线观看视频在线| 精品一区在线观看国产| 亚洲av成人不卡在线观看播放网 | 欧美精品高潮呻吟av久久| 久久性视频一级片| 无限看片的www在线观看| 亚洲精品一二三| 精品国产一区二区久久| 欧美日韩精品网址| 黄色一级大片看看| 18禁裸乳无遮挡动漫免费视频| 婷婷色av中文字幕| 成年美女黄网站色视频大全免费| 综合色丁香网| 国产又爽黄色视频| 婷婷色综合大香蕉| 丰满少妇做爰视频| 人妻一区二区av| 又粗又硬又长又爽又黄的视频| 狠狠精品人妻久久久久久综合| 婷婷色麻豆天堂久久| 美国免费a级毛片| 成年人免费黄色播放视频| 狂野欧美激情性xxxx| 亚洲国产毛片av蜜桃av| 自拍欧美九色日韩亚洲蝌蚪91| 日韩制服丝袜自拍偷拍| 少妇人妻久久综合中文| 免费黄频网站在线观看国产| 久久久国产一区二区| 久久婷婷青草| 久久午夜综合久久蜜桃| 黄片小视频在线播放| 黄片播放在线免费| 国产探花极品一区二区| 一区二区三区四区激情视频| 伦理电影大哥的女人| 嫩草影院入口| 久久人妻熟女aⅴ| www日本在线高清视频| 成人毛片60女人毛片免费| 亚洲精品国产av成人精品| 国产欧美亚洲国产| svipshipincom国产片| 国产亚洲最大av| 日日摸夜夜添夜夜爱| 丝瓜视频免费看黄片| videosex国产| 中文字幕最新亚洲高清| 日韩 欧美 亚洲 中文字幕| 亚洲国产av影院在线观看| 最近的中文字幕免费完整| 老司机影院毛片| 国产精品女同一区二区软件| 日韩 欧美 亚洲 中文字幕| 日韩制服骚丝袜av| av国产精品久久久久影院| 搡老岳熟女国产| 操出白浆在线播放| 最近的中文字幕免费完整| 国产有黄有色有爽视频| 丁香六月欧美| 日韩一区二区视频免费看| 少妇人妻 视频| 丰满饥渴人妻一区二区三| 免费观看人在逋| 久久人人爽av亚洲精品天堂| 精品视频人人做人人爽| 色婷婷av一区二区三区视频| 如何舔出高潮| 国产极品天堂在线| 免费日韩欧美在线观看| 精品酒店卫生间| 亚洲av电影在线观看一区二区三区| 国产在线一区二区三区精| 免费人妻精品一区二区三区视频| 久久久久精品性色| 中文字幕人妻丝袜制服| 男男h啪啪无遮挡| 99re6热这里在线精品视频| av一本久久久久| 久久狼人影院| 一级毛片 在线播放| 婷婷成人精品国产| 超色免费av| 美女国产高潮福利片在线看| 黑丝袜美女国产一区| 午夜免费鲁丝| 青春草视频在线免费观看| 一级毛片 在线播放| 伊人久久大香线蕉亚洲五| 国产精品成人在线| 97精品久久久久久久久久精品| 在线天堂最新版资源| 成年美女黄网站色视频大全免费| 好男人视频免费观看在线| 18禁国产床啪视频网站| 成人国产麻豆网| 欧美日韩亚洲国产一区二区在线观看 | 在线观看一区二区三区激情| 亚洲av成人精品一二三区| 欧美日韩亚洲高清精品| 91aial.com中文字幕在线观看| 欧美成人午夜精品| 汤姆久久久久久久影院中文字幕| 一边摸一边抽搐一进一出视频| 亚洲成人av在线免费| av在线播放精品| 国产毛片在线视频| 亚洲精品久久午夜乱码| 老汉色av国产亚洲站长工具| 观看美女的网站| 人妻一区二区av| 伦理电影免费视频| 久久亚洲国产成人精品v| 欧美另类一区| 国产又色又爽无遮挡免| 在线观看国产h片| 国产精品国产av在线观看| 国产免费福利视频在线观看| 老司机亚洲免费影院| 久久精品国产亚洲av高清一级| 不卡av一区二区三区| 国产成人精品无人区| av不卡在线播放| 亚洲一码二码三码区别大吗| 久久久久精品性色| 男的添女的下面高潮视频| 日本欧美国产在线视频| 欧美日韩一区二区视频在线观看视频在线| 久久韩国三级中文字幕| www.av在线官网国产| 亚洲成人手机| 天天添夜夜摸| 精品少妇内射三级| 欧美日韩亚洲综合一区二区三区_| 99久国产av精品国产电影| 男的添女的下面高潮视频| 超碰成人久久| 天堂中文最新版在线下载| 亚洲欧美一区二区三区久久| 老司机影院毛片| 欧美乱码精品一区二区三区| 亚洲人成77777在线视频| 黄色毛片三级朝国网站| 啦啦啦 在线观看视频| av卡一久久| 国产精品一区二区在线观看99| 男男h啪啪无遮挡| 国产成人精品在线电影| 日韩免费高清中文字幕av| 国产av码专区亚洲av| 免费日韩欧美在线观看| 永久免费av网站大全| 亚洲精品成人av观看孕妇| 十八禁人妻一区二区| 久久久精品区二区三区| 久久性视频一级片| 精品国产超薄肉色丝袜足j| 日本午夜av视频| 999精品在线视频| 别揉我奶头~嗯~啊~动态视频 | 制服诱惑二区| 9热在线视频观看99| 纵有疾风起免费观看全集完整版| 9热在线视频观看99| 日韩av不卡免费在线播放| 在线观看www视频免费| 欧美人与性动交α欧美精品济南到| www.自偷自拍.com| 亚洲天堂av无毛| 18禁观看日本| 国产成人欧美在线观看 | 亚洲少妇的诱惑av| 成人国产av品久久久| 人妻 亚洲 视频| 午夜久久久在线观看| 考比视频在线观看| 欧美精品av麻豆av| 国产精品国产av在线观看| 国产一区二区 视频在线| 午夜福利,免费看| 国产精品一区二区在线不卡| 欧美变态另类bdsm刘玥| 日本猛色少妇xxxxx猛交久久| 日韩欧美一区视频在线观看| 国产亚洲最大av| 亚洲国产精品999| xxxhd国产人妻xxx| 久久鲁丝午夜福利片| 91精品国产国语对白视频| 伦理电影大哥的女人| 亚洲国产最新在线播放| 亚洲一区中文字幕在线| 黄色视频不卡| 亚洲成人手机| 国产av精品麻豆| 午夜福利影视在线免费观看| 亚洲av日韩在线播放| 国产黄色视频一区二区在线观看| 日韩av不卡免费在线播放| 韩国高清视频一区二区三区| av免费观看日本| 九九爱精品视频在线观看| 一级毛片 在线播放| 免费少妇av软件| 国产片内射在线| 中文字幕人妻丝袜一区二区 | 国产色婷婷99| 黑人猛操日本美女一级片| 国产伦理片在线播放av一区| av国产精品久久久久影院| 波野结衣二区三区在线| av不卡在线播放| 久久天躁狠狠躁夜夜2o2o | 国产乱人偷精品视频| 少妇的丰满在线观看| 精品人妻在线不人妻| 国产人伦9x9x在线观看| 国产成人一区二区在线| av国产久精品久网站免费入址| 亚洲精品日韩在线中文字幕| 日本91视频免费播放| 人人澡人人妻人| 男女下面插进去视频免费观看| 伊人久久大香线蕉亚洲五| 搡老乐熟女国产| 天堂中文最新版在线下载| 久久久久久久大尺度免费视频| 欧美日韩亚洲国产一区二区在线观看 | 国产精品久久久av美女十八| 啦啦啦在线免费观看视频4| 亚洲激情五月婷婷啪啪| 午夜福利视频在线观看免费| av国产精品久久久久影院| 色精品久久人妻99蜜桃| 亚洲av在线观看美女高潮| 搡老乐熟女国产| 制服丝袜香蕉在线| 久久久久久人人人人人| 久久ye,这里只有精品| 黄频高清免费视频| 18禁观看日本| 丰满迷人的少妇在线观看| 黄频高清免费视频| 18禁观看日本| 亚洲av电影在线观看一区二区三区| 大话2 男鬼变身卡| 黑人巨大精品欧美一区二区蜜桃| 丰满迷人的少妇在线观看| 成人毛片60女人毛片免费| 乱人伦中国视频| 日韩成人av中文字幕在线观看| 纵有疾风起免费观看全集完整版| 伊人久久国产一区二区| 精品少妇久久久久久888优播| 国产女主播在线喷水免费视频网站| 亚洲av在线观看美女高潮| 色视频在线一区二区三区| a级毛片在线看网站| tube8黄色片| 少妇猛男粗大的猛烈进出视频| 在线观看免费日韩欧美大片| 久久婷婷青草| 夜夜骑夜夜射夜夜干| 别揉我奶头~嗯~啊~动态视频 | avwww免费|