鄭家松 翁蘭溪 鄭寧敏 唐自強 武奮前 蔡虬瑞 陳伏彬
摘 ? 要:在邊界層風(fēng)洞中開展了臺風(fēng)風(fēng)場與B類風(fēng)場條件下某角鋼輸電塔氣彈模型試驗,采用諧波合成法模擬了不同高度的風(fēng)速時程,在時域內(nèi)進(jìn)行了輸電塔結(jié)構(gòu)風(fēng)致響應(yīng)計算,對比研究了兩類風(fēng)場條件下的風(fēng)致響應(yīng)與風(fēng)振系數(shù). 研究結(jié)果表明:輸電塔風(fēng)致加速度響應(yīng)隨著來流風(fēng)速的增大而明顯增大,臺風(fēng)風(fēng)場條件下加速度響應(yīng)更為劇烈,比B類風(fēng)場條件大約20%~30%;B類風(fēng)場條件下風(fēng)振系數(shù)為1.59,臺風(fēng)風(fēng)場條件下達(dá)到1.85,總體增幅達(dá)到16%;數(shù)值模擬結(jié)果與風(fēng)洞試驗結(jié)果較為吻合. 因此,臺風(fēng)多發(fā)地區(qū)的輸電塔設(shè)計應(yīng)考慮臺風(fēng)高湍流引起的動力風(fēng)荷載增大效應(yīng).
關(guān)鍵詞:輸電塔;臺風(fēng)風(fēng)場;風(fēng)致響應(yīng);風(fēng)振系數(shù);風(fēng)洞試驗;諧波合成法
中圖分類號:TU973.32? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼:A
Abstract:Wind tunnel tests on a aeroelastic model of steel angle transmission tower under typhoon wind field and terrain B wind field were carried out,and then the time series of wind velocity for different height of the transmission tower were simulated by Weighted Amplitude Wave Superposition(WAWS) method and the wind-induced responses were calculated with FEM in time domain. The comparisons of wind-induced response and wind vibration factor between typhoon wind field and terrain B wind field were conducted. The results indicate that the wind-induced acceleration responses enlarge significantly with wind velocity increase,the wind-induced acceleration response under typhoon wind field is more intensive than that under terrain B wind field,and the amplification is up to 20%~30% . The highly weighted wind vibration factor with value of 1.59 under terrain B wind field,and the value of 1.85 under typhoon wind field are found ,the amplification is up to 16% in total. The results from numerical simulation are in good agreement with that from the wind tunnel tests. Therefore,the design of transmission tower in typhoon-prone areas should take the fluctuating wind load magnification effect into consideration.
Key words:transmission tower;typhoon wind field;wind-induced response;wind vibration factor;wind tunnel test;Weighted Amplitude Wave Superposition(WAWS)
輸電線路系統(tǒng)故障可給當(dāng)?shù)亟?jīng)濟和社會帶來巨大災(zāi)難,且由強/臺風(fēng)、雷暴或者龍卷風(fēng)作用引起的輸電塔線系統(tǒng)倒塌占據(jù)絕大部分;同時,這些造成輸電塔線系統(tǒng)破壞的強風(fēng)參數(shù)范圍很廣(如風(fēng)速剖面、湍流剖面等),其對輸電塔線系統(tǒng)的作用不同,造成相關(guān)的研究工作更加復(fù)雜[1].因此研究在強/臺風(fēng)作用下輸電塔線系統(tǒng)的抗風(fēng)性能是保障電力系統(tǒng)安全運營的首要基礎(chǔ).
國內(nèi)外眾多學(xué)者開展了大量卓有成效的研究工作,為輸電塔線系統(tǒng)在強風(fēng)作用下安全工作提供了技術(shù)支撐. Mara等[2]利用大氣邊界層風(fēng)和下?lián)舯┝鲀煞N流場深入研究了來流風(fēng)向?qū)旊娝Y(jié)構(gòu)風(fēng)致響應(yīng)的影響,指出傳統(tǒng)的大氣邊界層風(fēng)場可近似地用于下?lián)舯┝髯饔孟碌目癸L(fēng)能力評估;Yang等[3]研究了斜風(fēng)對輸電塔風(fēng)效應(yīng)影響;Fu等[4]基于Kikuchi等[5]提出的模型參數(shù)開展了風(fēng)、雨耦合作用下的輸電塔線系統(tǒng)研究,發(fā)現(xiàn)雨荷載提高了輸電塔線系統(tǒng)位移響應(yīng),幅度高達(dá)22%;王述良[6]、梁樞果[7]等研究了輸電塔-線體系在強風(fēng)作用下的風(fēng)致響應(yīng),指出輸電塔與導(dǎo)線間存在明顯的非線性耦合,導(dǎo)線對塔-線體系影響不可忽視;樓文娟[8]、沈國輝[9]等通過剛性模型研究輸電塔體型系數(shù),發(fā)現(xiàn)均勻流場中角鋼桿件體型系數(shù)試驗值大于我國規(guī)范取值接近國外規(guī)范[8]取值, B類流場中圓鋼塔的體型系數(shù)結(jié)果合理,表明流場對試驗結(jié)果影響顯著[9];張慶華等[10]研究了兩類風(fēng)振系數(shù)的差異,發(fā)現(xiàn)基于加速度響應(yīng)的風(fēng)振系數(shù)大于基于位移響應(yīng)的風(fēng)振系數(shù),二者均小于荷載規(guī)范值[11];樓文娟[12]和鄧洪洲[13]等均開展了良態(tài)風(fēng)與臺風(fēng)風(fēng)場條件下風(fēng)振系數(shù)的對比研究,前者指出臺風(fēng)風(fēng)場條件下風(fēng)振系數(shù)比B類風(fēng)場大約25%,后者也發(fā)現(xiàn)了同樣規(guī)律,但放大系數(shù)約為7%;張宏杰等[14]對比分析了不同流場下的桿塔構(gòu)件的內(nèi)力,指出臺風(fēng)作用下桿塔的內(nèi)力提高了20%. 隨著數(shù)值模擬技術(shù)發(fā)展,風(fēng)速時程模擬也廣泛應(yīng)用于輸電塔線系統(tǒng)抗風(fēng)研究中,Zhang等基于輸電線路現(xiàn)場破壞情況,通過模擬不同高度風(fēng)速時程,基于規(guī)范考慮截面體型系數(shù),開展了輸電塔線系統(tǒng)有限元分析,評估其極限承載能力并識別了薄弱位置[15]; Li等應(yīng)用
高斯過程模擬脈動風(fēng)速,并用于輸電塔線在強風(fēng)作用下的風(fēng)效應(yīng)評估中,取得較好效果[16].
本文基于某輸電塔氣彈模型,研究了不同流場與不同來流風(fēng)向下的桿塔結(jié)構(gòu)風(fēng)致響應(yīng)與風(fēng)振系數(shù),并與數(shù)值模擬進(jìn)行了對比. 本研究豐富了臺風(fēng)作用下的輸電塔結(jié)構(gòu)抗風(fēng)研究成果,為其安全設(shè)計提供有效的技術(shù)支撐.
1 ? 氣彈模型風(fēng)洞試驗
1.1 ? 模型設(shè)計與制作
試驗對象塔呼高33 m,根開10.9 m,結(jié)構(gòu)簡圖如圖1所示. 根據(jù)現(xiàn)有風(fēng)洞截面尺寸與輸電塔原型尺寸,確定模型縮尺比為1 ∶ 40.
1.2 ? 模型標(biāo)定
本文對模型動力標(biāo)定采用結(jié)構(gòu)靜力拉伸的方法,通過拉線的辦法使結(jié)構(gòu)發(fā)生初位移后突然剪斷拉線讓結(jié)構(gòu)自由振動. 模態(tài)試驗過程加速度傳感器的采樣頻率為500 Hz,6個通道的加速度傳感器信號同步采集,通過濾波處理之后進(jìn)行EMD經(jīng)驗分解,采用隨機減量法獲取自由振動衰減信號,利用Hilbert變換對結(jié)構(gòu)進(jìn)行模態(tài)參數(shù)識別. 圖3給出了輸電塔兩個主軸方向的自由衰減曲線,表2給出了輸電塔動力標(biāo)定試驗?zāi)B(tài)識別結(jié)果. 需要指出的是原型頻率結(jié)果為有限元分析結(jié)果. 從表2可以看出,實測頻率與理論頻率吻合較好.
1.3 ? 風(fēng)場模擬
試驗流場采用被動模擬技術(shù),采用尖劈和粗糙元模擬了《建筑結(jié)構(gòu)荷載規(guī)范》[11]規(guī)定的B類風(fēng)場;基于前人關(guān)于臺風(fēng)研究成果[12-13],臺風(fēng)風(fēng)場采用尖劈、擋板和粗糙元的3種組合,亦采用被動模擬方式進(jìn)行風(fēng)場模擬. 常規(guī)B類風(fēng)場和臺風(fēng)風(fēng)場模擬結(jié)果分別如圖4和圖5所示.
兩類風(fēng)場條件下,均采集了4組風(fēng)速下的加速度響應(yīng). 其中B類風(fēng)場參考風(fēng)速為:3.081 m/s、4.024 m/s、5.017 m/s、6.214 m/s、6.972 m/s(對應(yīng)實際20.669 m/s、26.995 m/s、33.66 m/s、41.6879 m/s、46.7731 m/s);臺風(fēng)風(fēng)場參考風(fēng)速為:3.079 m/s、4.026 m/s、5.038 m/s、5.930 m/s、6.920 m/s(對應(yīng)實際20.656 m/s、27.009 m/s、33.800m/s、39.782 m/s、46.424 m/s). 參考點位置為0.75 m,對應(yīng)實際高度為30 m.
2 ? 數(shù)值模擬
諧波合成法(WAWS)主要思想為利用三角函數(shù)的線性組合,通過對一系列余弦函數(shù)序列求和的辦法模擬隨機脈動風(fēng)荷載[18-19],該方法具有較高精度且無條件穩(wěn)定等優(yōu)點,被廣泛應(yīng)用于輸電塔風(fēng)致效應(yīng)的數(shù)值模擬中[20].基于諧波合成法獲得不同高度處的風(fēng)速,轉(zhuǎn)化為不同高度處的風(fēng)壓力,根據(jù)規(guī)范方法(如公式(1)所示)獲得不同高度處的節(jié)點力[15],施加到有限元模型上(有限元模型如圖7所示).
? 表4給出最不利風(fēng)向下(0°風(fēng)向角)3個典型高度處風(fēng)振系數(shù)的試驗值與時域分析結(jié)果,同時給出了3種規(guī)范下的風(fēng)振系數(shù)取值. 這里需要著重指出的是,在計算風(fēng)振系數(shù)時,其保證因子均取為4.0.?
從表4可以看出:對于整體風(fēng)振系數(shù),《建筑結(jié)構(gòu)荷載規(guī)范》的計算值最大,《高聳結(jié)構(gòu)設(shè)計規(guī)范》的計算值次之,《架空輸電線路桿塔結(jié)構(gòu)設(shè)計技術(shù)規(guī)定》的計算值最小,但均大于常規(guī)B類風(fēng)場試驗值,小于臺風(fēng)風(fēng)場試驗值;時域分析結(jié)果與試驗值較為吻合;臺風(fēng)風(fēng)場條件下的風(fēng)振系數(shù)試驗值比常規(guī)風(fēng)場大約16%,時域分析值大約10%,放大效應(yīng)介于樓文娟等人[12]的試驗結(jié)果與鄧洪洲等人[13]的試驗結(jié)果之間,驗證了強風(fēng)參數(shù)與研究對象的差異對研究結(jié)果的影響[1].
4 ? 結(jié) ? 論
1)高湍流的臺風(fēng)作用下,輸電塔風(fēng)致加速度響應(yīng)明顯高于常規(guī)B類風(fēng)場條件,增幅達(dá)到20%~30%.
2)B類風(fēng)場條件下輸電塔風(fēng)振系數(shù)試驗值與《架空輸電線路桿塔結(jié)構(gòu)設(shè)計技術(shù)規(guī)定》[21]較為吻合,取為1.6;臺風(fēng)風(fēng)場下的風(fēng)振系數(shù)明顯高于B類風(fēng)場,達(dá)到了1.85,因此在臺風(fēng)多發(fā)地區(qū)進(jìn)行輸電塔結(jié)構(gòu)設(shè)計時應(yīng)考慮高湍流臺風(fēng)風(fēng)場的影響.
3)數(shù)值模擬結(jié)果與試驗結(jié)果較為吻合,表明諧波合成法是一種有效的風(fēng)速時程模擬方法,能有效應(yīng)用于輸電塔抗風(fēng)研究中.
4)不同地貌情況下,臺風(fēng)特性各異,其流場特征有較大差異,仍需更多實測的臺風(fēng)信息確定合適的流場特征,以開展此類結(jié)構(gòu)的風(fēng)洞試驗,提供更為豐富的臺風(fēng)作用下輸電塔結(jié)構(gòu)抗風(fēng)設(shè)計的技術(shù)支撐.
5)需要指出的是,本文在開展風(fēng)致響應(yīng)計算時并未考慮氣動阻尼的影響,研究表明氣動阻尼能降低輸電塔結(jié)構(gòu)的風(fēng)致效應(yīng)[12]. 因此,研究精細(xì)化氣動阻尼及其對輸電塔系統(tǒng)的影響是下一步的一個重點工作.
參考文獻(xiàn)
[1] ? ?ABD-ELAAL E,MILLS J E,MA X. A review of transmission line systems under downburst wind loads[J]. Journal of Wind Engineering and Industrial Aerodynamics,2018,179:503—513.
[2] ? ?MARA T G,HONG H P. Effect of wind direction on the response and capacity surface of a transmission tower[J]. Engineering Structures,2013,57:493—501.
[3] ? YANG F L,YANG J B,NIU H W,et al. Design wind loads for tubular-angle steel cross-arm transmission towers under skewed wind loading[J]. Journal of Wind Engineering and Industrial Aerodynamics,2015,140:10—18.
[4] ? ?FU X,LI H N. Dynamic analysis of transmission tower-line system subjected to wind and rain loads[J]. Journal of Wind Engineering and Industrial Aerodynamics,2016,157:95—103.
[5] ? KIKUCHI N,MATSUZAKI Y,YUKINO T,et al. Aerodynamic drag of newdesign electric power wire in a heavy rainfall and wind[J]. Journal of Wind Engineering and Industrial Aerodynamics,2003,91:41—51.
[6] ? ?王述良,梁樞果,熊鐵華,等. 基于氣彈模型風(fēng)洞試驗的輸電塔-線體系風(fēng)致響應(yīng)分析[J]. 水電能源科學(xué),2014,32(8):169—173.
WANG S L,LIANG S G,XIONG T H,et al. Analysis on wind-induced response of transmission tower-line system based on aero-elastic model wind tunnel test[J]. Water Resources and Power,2014,32(8):169—173. (In Chinese)
[7] ? ?LIANG S G,ZOU L H,WANG D H,et al. Investigation on wind tunnel tests of a full aeroelastic model of electrical transmissiontower-linesystem[J]. Engineering Structures,2015,85:63—72.
[8] ? ?樓文娟,王東,沈國輝,等. 角鋼輸電桿件風(fēng)壓及體型系數(shù)的風(fēng)洞試驗研究[J]. 華中科技大學(xué)學(xué)報(自然科學(xué)版),2013,41(4):114—118.
LOU W J,WANG D,SHEN G H,et al. Wind tunnel tests for wind load distribution and shape coefficient of angle-made-transmission towers[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2013,41(4):114—118. (In Chinese)
[9] ? ?沈國輝,項國通,邢月龍,等. 2種風(fēng)場下格構(gòu)式圓鋼塔的天平測力試驗研究[J]. 浙江大學(xué)學(xué)報(工學(xué)版),2014,48(4):704—710.
SHEN G H,XIANG G T,XING Y L,et al. Experimental investigation of steel lattices towers with cylindrical members based on force balance tests under two wind flows[J]. Journal of Zhejiang University (Engineering Science) ,2014,48(4):704—710. (In Chinese)
[10] ?張慶華,馬文勇,趙龍. 典型窄基輸電塔風(fēng)致氣彈模型風(fēng)洞試驗[J]. 振動、測試與診斷,2017,37(2):326—331. (In Chinese)
ZHANG Q H,MA W Y,ZHAO L. Wind-induced response analysis for the typical transmission tower with narrow base based on an aero-elastic model wind tunnel test[J]. Journal of Vibration,Measurement and diagnosis,2017,37(2):326—331. (In Chinese)
[11] ?GB ?50009—2012 ?建筑結(jié)構(gòu)荷載規(guī)范[S]. 北京:中國建筑工業(yè)出版社,2012:220—221.
GB 50009—2012 ?Load code for the design of building structures[S]. Beijing:China Architecture & Building Press,2012:220—221. (In Chinese)
[12] ?樓文娟,夏亮,蔣瑩,等. B類風(fēng)場與臺風(fēng)風(fēng)場下輸電塔的風(fēng)振響應(yīng)和風(fēng)致系數(shù)[J]. 振動與沖擊,2013,32(6):13—17.
LOU W J,XIA L,JIANG Y,et al. Wind-induced response and wind load factor of transmission tower under terrain B wind field and typhoon wind field[J]. Journal of vibration and Shock,2013,32(6):13—17. (In Chinese)
[13] ?鄧洪洲,段成蔭,徐海江. 良態(tài)風(fēng)與臺風(fēng)風(fēng)場下輸電塔線體系氣彈模型風(fēng)洞試驗[J]. 振動與沖擊,2018,37(8):257—262.
DENG H Z,DUAN C Y,XU H J. Wind tunnel tests on an aeroelastic model of a transmission tower-line system under normal wind field and typhoon wind field[J]. Journal of Vibration and Shock,2018,37(8):257—262. (In Chinese)
[14] ?張宏杰,楊靖波,楊風(fēng)利,等. 臺風(fēng)風(fēng)場參數(shù)對輸電桿塔力學(xué)特性的影響[J]. 中國電力,2016,49(2):41—47.
ZHANG H J,YANG J B,YANG F L,et al. Study on the influence of typhoon wind parameters on mechanical characteristics of transmission tower[J]. Electric Power,2016,49(2):41—47. (In Chinese)
[15] ?ZHANG J,XIE Q. Failure analysis of transmission tower subjected to strong wind load [J]. Journal of Constructional Steel Research,2019,160:271—279.
[16] XUAN L,ZHANG W,NIU H W,et al. Probabilistic capacity assessment of single circuit transmission tower-line system subjected to strong winds[J]. Engineering Structures,2018,175:517—530.
[17] ?陳伏彬,李秋勝,胡尚瑜,等. 開闊地貌臺風(fēng)風(fēng)場實測與風(fēng)洞試驗應(yīng)用研究[J]. 建筑結(jié)構(gòu),2015,45(2):89—94.
CHEN F B,LI Q S,HU S Y,et al. Field measurement an wind tunnel test application research of typhoon wind field in open terrain[J]. Building Structure,2015,45(2):89—94. (In Chinese)
[18] ?SHINOZUKA M,JAN C M. Digital simulation of random processes and its applications[J]. Journal of Sound & Vibration,1972,25(1):111—128.
[19] ?羅俊杰,韓大建. 諧波合成法模擬隨機風(fēng)場的優(yōu)化算法[J]. 華南理工大學(xué)學(xué)報(自然科學(xué)版),2007(7):105—109.
LUO J J,HAN D J. Optimized algorithm of wave superposition method to simulate stochastic wind field[J]. Journal of South China University of Technology(Natural Science Edition),2007(7):105—109. (In Chinese)
[20] ?甘鳳林,楊振偉,代曉光. 基于諧波合成法的輸電塔線體系風(fēng)致響應(yīng)分析[J]. 電網(wǎng)技術(shù),2009,33(18):186—190.
GAN F L,YANG Z W,DAI X G. Analysis on wind-Induced dynamic response of transmission tower-line system based on weighted amplitude wave superposition[J]. Power System Technology,2009,33(18):186—190. (In Chinese)
[21] ?DL/T ?5154—2012 ? 架空輸電線路桿塔結(jié)構(gòu)設(shè)計技術(shù)規(guī)定[S]. 北京:中國計劃出版社,2012:18—21.
D/T ?5154—2012 ?Technical code for the design of tower and pole structures of overhead transmission line[S]. Beijing:China Planning Press,2012:18—21. (In Chinese)
[22] ?GB ?50135—2006,高聳結(jié)構(gòu)設(shè)計規(guī)范[S],北京:中國計劃出版社,2006:136—142.
GB 50135—2006,Code for design of high-rising structures[S]. Beijing:China Planning Press,2006:136—142. (In Chinese)