• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A number theoretic method for high order correlation functions of the Ulam map

    2020-06-03 07:55:42ZHOUXingWang

    ZHOU Xing-Wang

    (College of Mathematics, Sichuan University, Chengdu 610064, China)

    Abstract: In this paper, a number theoretic method is introduced to calculate the high order correlation functions of the Ulam map. In this method, the calculation is firstly transformed into solving a class of exponential Diophantine equations with variable coefficients. Then these equations are simplified to the Diophantine equations with strictly monotonic exponentials. Finally, the equations are solved by means of a order reduction method.As an application, the first five order correlation functions of the Ulam map are calculated.

    Keywords: Ulam map; Correlation function; Exponential Diophantine equation

    1 Introduction

    In statistical description of a dynamical system involving internal or external noises, correlation functions of the system play a key role. For a linear system involving Gaussian noises only, the first two correlation functions are sufficient to describe the system. On the other hand, for a nonlinear system or a linear system driven by non-Gaussian noises, all correlation functions of the system are indispensible.

    Generally, a correlation function of a dynamical system can be calculated ( in exact or asymptotic manner ) in terms of the correlation functions of the involved noise. For instance, the correlation functions of a dynamical system of Langevin type[1-3], which is a deterministic analogy of Langevin dynamical system, can be calculated by using the correlation functions of the Langevin like noise. And the correlation functions of the Langevin like noise are further calculated by using the correlation functions of the chaotic map. Here the Langevin like noise is a time-scaled impulsive series iteratively generated by a chaotic map, such as tent map, Bernoulli shift map, Ulam map, Tchebyscheff map, etc.

    Given an ergodic chaotic map T, a phase space X, and an invariant measure μ of T, the k-th correlation functions of T is defined by

    (1)

    TN(x)=cos(Narccosx)

    (2)

    Meanwhile, also by the method of Beck[4], Hilgers and Beck[6]discussed some properties of the correlation functions of the Tchebyscheff maps in 2001.

    In this paper,we introduce a number theoretic method to calculate the high order correlation functions of Ulam map. In this method, the calculation is transformed into solving a class of Diophantine equations with monotonic exponentials in a hierarchical manner. As an application, the first five order correlation functions of the Ulam map are calculated.

    2 Preliminaries

    Following Refs. [4-5], we set x0=cosπu, where u is a random variable obeying the uniform distribution on [0,1]. The iterates of Ulam map can be rewritten into

    xn=cosπ2nu

    (3)

    Inserting (3) and the invariant measure[8]

    into (1),the k-th correlation function of Ulam map reads

    (4)

    For instance, The first four order correlation functions of the logistic map are[5]

    E(xn)=0

    (5)

    E(xn1xn2)=δ(n1,n2)/2

    (6)

    E(xn1xn2xn3)=

    (7)

    E(xn1xn2xn3xn4)=

    ni4)-3δ(n1,n2)δ(n1,n3)δ(n1,n4)/8

    (8)

    (9)

    for given tuple (λ1,λ2,…,λk). In such a way, the calculation fo (4) can be transformed into solving Eq.(9), which can be handled in a straightforward manner.

    Due to the symmetry of correlation function (4), we need only to consider the following equation with monotonic exponentials:

    (10)

    Definition2.1For given (λ1,λ2,…,λk), x1=n1,x2=n2,…,xk=nk, denoted by (n1,n2,…,nk), is called a solution of Eq.(10) if

    α1=1, M1=#{xj|xj=x1,j=1,2,…,k},

    αi=αi-1+Mi-1,i=2,3,…,s,

    Mi=#{xj|xj=xαi,j=αi,αi+1,…,k},

    i=2,3,…,s,

    yi=xαi,i=1,2,…,s,

    where # denotes the number of elements in a finite set, Miis called the multiplicity of xαi.

    Definition2.3[9]Let n>0 be a positive integer. We define

    After eliminating the repetition of the exponentials by using Definition 2.2, Eq.(10) reduces to the equation with strictly monotonic exponentials:

    (11)

    where

    (12)

    Lemma2.4For every σi,i=1,2,…,s, we have:

    (i) σiruns over the finite set

    I(Mi)={±Mi,±(Mi-2),…,±(Mi-

    2mi),…}

    (13)

    (ii) σishares the parity with Miwhenever σi≠0;

    (iii) 0∈I(Mi) if and only if 2|Mi,where miis the number of the summands λαi+j=-1 in (12).

    ProofSuppose that there are mi,mi=0,1,…,Misummands λαi+j=-1 and thus Mi-misummands λαi+j=1 in (12). We have

    σi=(Mi-mi)-mi=Mi-2mi

    (14)

    (i) and (ii) follow.Furthermore, from (14) we get that 0∈I(Mi) if and only if mi=Mi/2 is an integer, which indicates 2|Mi. This ends the proof.

    Corollary2.5When 2?M1, Eq.(11) has no solution.

    ProofEq.(11) is equivalent to

    (15)

    Theorem2.6When M1=2,Mi=1,i=2,3,…,s, Eq.(11) has only one solution (n,n+1,…,n+s-1) for σ2=σ3=…=σs-1=σ1/2,σs=-σ1/2.

    ProofWhen M1=2,Mi=1,i=2,3,…,s, we have σ1∈{0,±2},σi∈{±1},i=2,3,…,s from Lemma 2.4. If σ1=0, then we know that Eq.(11) has no solution from Corollary 2.5.

    When σ1=±2, We rewritte Eq.(11) into

    (16)

    (17)

    where q1+σ2∈{0,±2}. Also from Corollary 2.5, we know that Eq.(17) has solution only for y3=y2+1 and q1+σ2=±2. That is to say, q1=σ2. Thus Eq.(17) turns to

    which shares the structure with Eq.(16) with s-1 variables, where q2=(q1+σ2)/2, say, q1=σ2=q2.

    Repeating above discussion, we finally realize that Eq. (11) has solution if and only if q1=σ2=…=σs-1=qs-1, yi+1=yi+1,i=1,2,…,s-2 and

    qs-12ys-1+1+σs2ys=0,ys-1+1≤ys. It istrivial to know that the above equation has solution ys=ys-1+1 for σs=-qs-1. Let y1=n. The proof is complete.

    3 The solutions of Eq.(11) with 3 variables

    Theorem3.1When s=1, Eq.(11) has only one solution y1=n for σ1=0.

    Lemma3.2The Diophantine equation

    q1+q22x=0,ord2qi=0,i=1,2

    has only one solution x=0 for q1+q2=0.

    Theorem3.3When s=2, Eq.(11) has the following three solutions:

    (i) (n1,n2) for (0,0);

    (ii) (n,n+l) for (2lq1,-q1);

    (iii) (n,n+r) for (2l1q1,2l2q2), where ord2(q1q2)=0,q1+q2=0, and r=l2-l1≥1.

    ProofWhen s=2, Eq.(11) shrinks to

    σ12y1+σ22y2=0,y1

    (18)

    From Corollary 2.5, Eq.(18) has no solutionwhen ord2(σ1σ2)=0. Then the solution of Eq. (18) can be divided into three cases.

    Case1. σ1=0 or σ2=0. The solution (i) comes from Theorem 3.1.

    Case2.2|σ1,2?σ2. After setting σ1=2lq1,ord2q1=0, Eq.(18) can be rewritten into

    q1+σ22y2-y1-l=0,y1

    (ii) follows from Lemma 3.2.

    Case3.2|σi,i=1,2. By setting σi=2liqi,ord2(q1q2)=0, Eq.(18) can be rewritten into q12y1+l1+q22y2+l2=0,y1

    q1+q22y2-y1+l2-l1=0,y1

    (19)

    Then, by taking the transformation x=y2-y1+l2-l1, the only solution y2=y1+l1-l2for q1+q2=0 follows from Lemma 3.2. Furthermore, considering the condition y1

    When s=3, Eq.(11) is

    σ12y1+σ22y2+σ32y3=0,y1

    (20)

    Obviously,when at least one σi=0,i=1,2,3, Eq.(20) shrinks to Eq.(18), which has been solved in Theorem 3.3. Especially, Eq.(20) has solutions (n1,n2,n3) for (0,0,0).

    Since Eq.(20) has no solution when 2?σ1, we assume 2|σ1in what follows.

    Lemma3.4Suppose that ord2(qi)=0,i=1,2,3. Then the following Diophantine equation

    q1+q22x+q32y=0,x,y∈Z

    (21)

    has three solutions:

    (i) (0,l1) for p1+q3=0;

    (ii) (l3,0) for q2+p3=0;

    (iii) (-l2,-l2) for q1+p2=0,

    where q1+q2=2l1p1, q2+q3=2l2p2, q3+q1=2l3p3,ord2(pi)=0,i=1,2,3.

    ProofWhen x=0 or y=0, Eq.(21) has been considered in Lemma 3.2. We get (i) and (ii).

    When xy≠0, after setting u=min{x,y}≠0 and rewriting Eq.(21) into

    q12-u+q22x-u+q32y-u=0,x-u≥0,y-u≥0

    (22)

    we divide the proof into the following two cases.

    Case1.x≠y. We have x-u=0,y-u>0 or y-u=0,x-u>0. Without lose of generality, we consider the former. In this case Eq.(21) is

    q2+q12-u+q32y-u=0,y-u>0

    (23)

    If u>0, then 2|q32y-uand q2+q12-uis not an integer, which means that Eq.(21) has no solution. If u<0, since 2?q2, 2|(q12-u+q32y-u), Eq.(21) has no solution as well.

    Case2.x=y=u. In this case, Eq.(21) turns to

    q1+(q2+q3)2x=0,x∈Z

    (24)

    which is

    q1+p22x+l2=0,x∈Z

    (25)

    (iii) follows from Lemma 3.2. The proof is end.

    Theorem3.5Suppose that σ1=2rq1,ord2(q1)=0 and ord2(σ2σ3)=0. Then Eq.(20) has only one solution (n,n+r,n+r+l1) for σ3+p1=0, where q1+σ2=2l1p1,ord2(p1)=0.

    ProofSubstituting σ1=2rq1into Eq.(20) yields that

    q12y1+r+σ22y2+σ32y3=0,y1

    (26)

    which is

    q1+σ22y2-y1-r+σ32y3-y1-r=0,y1

    Taking the transformation

    x=y2-y1-r∈Z,y=y3-y1-r∈Z

    (27)

    Eq.(26) recovers Eq.(21) with x0 for σ3+p1=0. The proof is ended by taking the inverse transformation of (27).

    Theorem3.6Suppose that σi=2riqi,ord2(qi)=0,i=1,2 and ord2(σ3)=0. Then Eq. (20) has three solutions:

    (i) (n,n+r1-r2,n+r1+l1) for r1>r2,q3+p1=0;

    (ii) (n,n+r1-(r2-l3),n+r1) for r1>r2-l3>0,q2+p3=0;

    (iii) (n,n+r1-r2-l2,y2+r2) for r1>r2+l2,q1+p2=0,

    where q1+q2=2l1p1, q2+q3=2l2p2, q3+q1=2l3p3,ord2(pi)=0,i=1,2,3.

    ProofSubstituting σi=2riqi,i=1,2 into Eq. (20) yields

    q12y1+r1+q22y2+r2+σ32y3=0,y1

    (28)

    which is

    q1+q22y2-y1+r2-r1+σ32y3-y1-r1=0,

    y1

    Taking the transformation

    x=y2+r2-y1-r1∈Z,y=y3-y1-r1∈Z

    (29)

    Eq. (28) recover Eq.(21). The needed results follow immediately from Lemma 3.4 by checking the monotonicity of the exponentials in Eq. (28).

    Theorem3.7Suppose that σi=2riqi,ord2(qi)=0,i=1,3, and ord2(σ2)=0. Then Eq. (20) has solution (n,n+r1,n+r1+l1-r3) for l1>r3,q3+p1=0, where q1+q2=2l1p1,ord2(p1)=0.

    ProofAfter substituting σi=2riqi,i=1,3 into Eq. (20), we get

    q12y1+r1+σ22y2+q32y3+r3=0,

    y1

    (30)

    which is

    q1+σ22y2-y1-r1+q32y3+r3-y1-r1=0,

    y1

    By taking the transformation

    x=y2-y1-r1∈Z,y=y3+r3-y1-r1∈Z

    (31)

    Eq. (30) recovers Eq. (21). The desired results follow from Lemma 3.4 by taking the condition x

    Theorem3.8Suppose that σi=2riqi,ord2(qi)=0,i=1,2,3. Then Eq. (20) has five solutions:

    (i) (n,n+r1-r2,n+r1+l1-r3) for r1>r2,

    l1>r3-r2,q3=-p1;

    (ii) (n,n+r1-r3,n+r1+l1-r3) for r1>

    r3=r2,q3=-p1;

    (iii) (n,n+r1-r2,n+r1+l1-r3) for r1>

    r2>r3,q3=-p1;

    (iv) (n,n+r1-(r2-l3),n+r1-r3) for r1>r2-l3>r3,q2=-p3;

    (v) (n,n+r1-(r2+l2),y2+r2-r3) for r1>r2+l2,r2>r3,q1=-p2,

    where q1+q2=2l1p1, q2+q3=2l2p2, q3+q1=2l3p3, and ord2(pi)=0,i=1,2,3.

    ProofAfter substituting σi=2riqi,i=1,2,3 into Eq. (20), we arrive at

    q12y1+r1+q22y2+r2+q32y3+r3=0,y1

    (32)

    Let r0=min{r1,r2,r3}. The proof can be divided into the following three cases.

    Case1.r0=r1. Let u2=r2-r1≥0,u3=

    r3-r1≥0. Eq. (32) turns to

    q1+q22y2-y1+u2+q32y3-y1+u3=0,

    0

    (33)

    Since 2?q1, We know from Corollary 2.5 that Eq. (33) has no solution.

    Case2.r0=r2. Let u1=r1-r2≥0,u3=

    r3-r2≥0. Eq. (32) turns to

    q12y1+u1+q22y2+q32y3+u3=0,y1

    (34)

    which recovers Eq. (30). Then (i) follows from Theorem 3.7.

    Case3.r0=r3. Let u1=r1-r3≥0,u2=

    r2-r3≥0. Eq. (32) turns to

    q12y1+u1+q22y2+u2+q32y3=0,y1

    (35)

    If u1=0, then we know from Corollary 2.5 that Eq. (35) has no solution. If u1>0,u2=0, then Eq. (35) turns to

    q12y1+u1+q22y2+q32y3=0,y1

    (36)

    which recovers Eq. (26). (ii) follows from Theorem 3.5. If u1>0,u2>0, then Eq. (32) turns to

    q12y1+u1+q22y2+u2+q32y3=0,y1

    (37)

    which recovers Eq. (28). (iii)~(v) follow from Theorem 3.6. The proof is end.

    4 The first five order correlation functions of the Ulam map

    In this section, as an application of the method, we calculate the first five order correlation functions of Ulam map by solving Eq.(9) and Eq.(11).

    When k=1, Eq.(9) has no solution,

    E(xn1)=0.

    When k=4, after excluding the cases of no solution by Corollary 2.5, Eq. (9) turns to σ12y1=0 with σ1=0,±2,±4, or Eq. (18) with σ1=0,±2,σ2=0,±2, or Eq. (20) with σ1=0,±2,σ2=±1,σ3=±1.

    Case2.M1=M2=2,M3=1. In this case, we have σ1=0,±2,σ2=0,±2,σ3=±1. When σ1=σ2=0, we know Eq. (11) has no solution from Corollary 2.5.

    When σ1=±2,σ2=0,σ3=±1, Eq. (11) also shrinks to Eq. (18). Since the only possible solution (n1,n2,n1+1) violates the monotonicity of the exponentials, Eq. (9) has no solution.

    When σ1=±2,σ2=±2,σ3=±1, Eq. (11) turns to Eq. (20). By Theorem 3.6, we get r1=r2=1,q1=±1,q2=±1,q3=±1. Since r1=r2=1violates the conditions r1>r2,r1>r2-l3>0, and r1>r2+l2in Theorem 3.6, Eq. (9) has no solution.

    Case3.M1=M3=2,M2=1. In this case, we get σ1=0,±2,σ2=±1,σ3=0,±2. When σ1=0, we know Eq. (11) has no solution from Corollary 2.5, since 2?σ2.

    When σ1=±2,σ2=±1,σ3=±2, Eq. (11) turns to Eq. (20). By Theorem 3.7, we have r1=r3=1,q1=±1,q2=±1,q3=±1, which yields that q1+q2=0,±2. It is trivial to get that Eq. (11) has no solution when q1+q2=0. In the case of q1+q2=±2, we get l1=r3=1, which indicates the condition l1>r3in Theorem 3.7 can't be fulfilled. Thus Eq. (11) has no solution.

    Finally, we conclude that

    (38)

    5 Conclusions

    This paper aims at the calculation of high order correlation functions of the Ulam map. We introduce a number theoretic method including definitions, lemmas, and theorems, and transform the calculation into solving a class of Diophantine equations with strictly monotonic exponentials. Then, by solving the exponential Diophantine equations with variables less than 4, we get the first five order correlation functions of the Ulam map. Compared with the graph theoretic method, our method is straightforward and fruitful.

    A zero-centered noise is called to be dynamical asymmetric[10-12], if some of its odd order correlation functions are non-vanishing other than the first order correlation function. Remarkably, a dynamical asymmetric noise alone can induce a directed current in a spatial symmetric periodic structure. Interestingly, it had been shown that, for instance in Refs. [13-14], a Langevin type noise generated by the logistic map could induce a negative current in a spatial symmetric periodic potential. The coincidence of the sign between the current and the odd order correlation functions of the logistic map mentioned us that there is intrinsic correlation between the direction of the current and the sign of the odd order correlation functions of the chaotic map.

    av.在线天堂| 我要看日韩黄色一级片| 99久久中文字幕三级久久日本| 亚洲欧美日韩无卡精品| 好男人视频免费观看在线| 国产一区二区三区av在线| 我的老师免费观看完整版| 亚洲成人av在线免费| 全区人妻精品视频| 纵有疾风起免费观看全集完整版 | 欧美变态另类bdsm刘玥| 欧美日本视频| 国产真实伦视频高清在线观看| 国产 一区 欧美 日韩| 人人妻人人澡欧美一区二区| 国产午夜精品一二区理论片| 中文字幕av在线有码专区| 亚洲国产日韩欧美精品在线观看| 久久久久国产网址| 久久精品人妻少妇| 永久免费av网站大全| 精品一区二区免费观看| 最后的刺客免费高清国语| 女的被弄到高潮叫床怎么办| 天天一区二区日本电影三级| 精华霜和精华液先用哪个| 激情 狠狠 欧美| 人妻少妇偷人精品九色| 秋霞伦理黄片| 久久久亚洲精品成人影院| 中文精品一卡2卡3卡4更新| 亚洲国产精品成人综合色| a级毛色黄片| 亚洲av中文字字幕乱码综合| 男的添女的下面高潮视频| 3wmmmm亚洲av在线观看| 一个人免费在线观看电影| 丰满少妇做爰视频| 熟女人妻精品中文字幕| 搞女人的毛片| 免费黄色在线免费观看| 国产黄片美女视频| 国产欧美日韩精品一区二区| 欧美xxxx黑人xx丫x性爽| 亚洲综合色惰| 只有这里有精品99| 免费av观看视频| 国产成人精品久久久久久| 嘟嘟电影网在线观看| 99热这里只有是精品在线观看| 超碰97精品在线观看| av线在线观看网站| 亚洲人成网站在线播| 亚洲无线观看免费| 汤姆久久久久久久影院中文字幕 | 一个人观看的视频www高清免费观看| 一级av片app| 亚洲丝袜综合中文字幕| 国产av在哪里看| 噜噜噜噜噜久久久久久91| 国产精品美女特级片免费视频播放器| 国产精品不卡视频一区二区| 亚洲精品成人久久久久久| 一夜夜www| 嘟嘟电影网在线观看| 日韩国内少妇激情av| 欧美日韩在线观看h| 日韩成人av中文字幕在线观看| 亚洲精品第二区| 2021少妇久久久久久久久久久| 亚洲欧美清纯卡通| 久久久精品94久久精品| 亚洲精品久久午夜乱码| 亚洲欧美中文字幕日韩二区| 国产91av在线免费观看| 欧美变态另类bdsm刘玥| 欧美最新免费一区二区三区| 亚洲精品,欧美精品| 热99在线观看视频| 色播亚洲综合网| 国产乱来视频区| 在线播放无遮挡| 国产黄频视频在线观看| 久久精品久久精品一区二区三区| 99久国产av精品| 免费大片黄手机在线观看| 久久久久久九九精品二区国产| 精品少妇黑人巨大在线播放| 欧美97在线视频| 尤物成人国产欧美一区二区三区| 国产探花在线观看一区二区| 国产免费一级a男人的天堂| 午夜福利高清视频| 精品国产三级普通话版| 成人漫画全彩无遮挡| 少妇猛男粗大的猛烈进出视频 | 男人和女人高潮做爰伦理| 久久精品国产亚洲av天美| 美女黄网站色视频| 精品午夜福利在线看| 国产一区二区亚洲精品在线观看| 亚洲综合色惰| 又爽又黄无遮挡网站| 三级毛片av免费| 三级国产精品片| 啦啦啦啦在线视频资源| 欧美人与善性xxx| 亚洲国产精品sss在线观看| 成人国产麻豆网| 久久99热这里只有精品18| 国产免费一级a男人的天堂| 在线天堂最新版资源| av在线播放精品| 成年版毛片免费区| 寂寞人妻少妇视频99o| 亚洲经典国产精华液单| 国产一区有黄有色的免费视频 | 女人久久www免费人成看片| 三级毛片av免费| 国产精品久久久久久精品电影小说 | 在线播放无遮挡| 高清av免费在线| 97超视频在线观看视频| 国产成年人精品一区二区| 淫秽高清视频在线观看| 亚洲最大成人av| 久久精品久久精品一区二区三区| 欧美一区二区亚洲| av在线播放精品| 乱系列少妇在线播放| 秋霞在线观看毛片| 老师上课跳d突然被开到最大视频| 久久久精品免费免费高清| 精品少妇黑人巨大在线播放| 色综合色国产| 日韩,欧美,国产一区二区三区| 伦精品一区二区三区| 女人久久www免费人成看片| 女人久久www免费人成看片| 欧美区成人在线视频| 肉色欧美久久久久久久蜜桃 | 菩萨蛮人人尽说江南好唐韦庄| 成人一区二区视频在线观看| 麻豆成人av视频| 嫩草影院新地址| 精品国产三级普通话版| 国产成人精品久久久久久| 2022亚洲国产成人精品| 日本一二三区视频观看| 久久久久久九九精品二区国产| 街头女战士在线观看网站| 日韩制服骚丝袜av| 亚洲自偷自拍三级| 嫩草影院精品99| 久久综合国产亚洲精品| 日日摸夜夜添夜夜爱| 国模一区二区三区四区视频| 亚洲精品亚洲一区二区| 日产精品乱码卡一卡2卡三| 只有这里有精品99| 国产精品av视频在线免费观看| 日本午夜av视频| 中文欧美无线码| 3wmmmm亚洲av在线观看| 国产精品av视频在线免费观看| 久久久久久久久久黄片| 国产黄a三级三级三级人| 亚洲一级一片aⅴ在线观看| 最新中文字幕久久久久| 综合色av麻豆| 国产精品美女特级片免费视频播放器| 免费黄色在线免费观看| 青春草视频在线免费观看| 国产精品1区2区在线观看.| 免费观看性生交大片5| 国产 一区精品| 日韩精品有码人妻一区| 日韩一本色道免费dvd| 永久网站在线| 日韩不卡一区二区三区视频在线| 亚洲av免费在线观看| 日本爱情动作片www.在线观看| 又粗又硬又长又爽又黄的视频| 少妇丰满av| 亚洲熟女精品中文字幕| 国产不卡一卡二| 欧美性猛交╳xxx乱大交人| 国产老妇伦熟女老妇高清| av黄色大香蕉| 欧美区成人在线视频| 中文欧美无线码| av在线天堂中文字幕| 在线免费观看不下载黄p国产| 一级毛片aaaaaa免费看小| 少妇熟女aⅴ在线视频| 亚洲欧美一区二区三区黑人 | 免费无遮挡裸体视频| 久久久亚洲精品成人影院| 日韩av在线免费看完整版不卡| 我的老师免费观看完整版| av网站免费在线观看视频 | 在线观看免费高清a一片| 免费看日本二区| 网址你懂的国产日韩在线| 97超视频在线观看视频| 亚洲精品影视一区二区三区av| 国产精品久久久久久久久免| 国产免费又黄又爽又色| 看十八女毛片水多多多| av免费观看日本| 99九九线精品视频在线观看视频| a级毛色黄片| 不卡视频在线观看欧美| 亚洲精品国产成人久久av| 亚洲精品乱码久久久v下载方式| 日本-黄色视频高清免费观看| 欧美性感艳星| 中文字幕制服av| 欧美不卡视频在线免费观看| 一级二级三级毛片免费看| 久久精品国产鲁丝片午夜精品| 色综合色国产| 精品人妻偷拍中文字幕| 在线 av 中文字幕| 国产黄片视频在线免费观看| 麻豆成人午夜福利视频| 又爽又黄a免费视频| 岛国毛片在线播放| 91av网一区二区| 精品久久久久久久久av| 熟女电影av网| ponron亚洲| 日韩av在线免费看完整版不卡| ponron亚洲| 精品久久国产蜜桃| 在现免费观看毛片| 欧美变态另类bdsm刘玥| 国产av在哪里看| av在线播放精品| 日日啪夜夜爽| 成年女人看的毛片在线观看| 九色成人免费人妻av| 一级黄片播放器| 人人妻人人看人人澡| 黄片无遮挡物在线观看| 国精品久久久久久国模美| 亚洲av在线观看美女高潮| 夜夜看夜夜爽夜夜摸| 国产精品人妻久久久影院| 最近2019中文字幕mv第一页| 国产亚洲精品av在线| 美女主播在线视频| 18禁裸乳无遮挡免费网站照片| 精品一区二区三卡| 免费高清在线观看视频在线观看| 亚洲国产精品专区欧美| 国产成人精品一,二区| 精品国产一区二区三区久久久樱花 | 亚洲精品,欧美精品| 色播亚洲综合网| 黄色欧美视频在线观看| 午夜日本视频在线| 91在线精品国自产拍蜜月| 晚上一个人看的免费电影| 精品酒店卫生间| 国产 亚洲一区二区三区 | 国产精品久久视频播放| 十八禁国产超污无遮挡网站| 中文字幕av成人在线电影| 综合色av麻豆| 久久久久久久大尺度免费视频| 国产男女超爽视频在线观看| 亚洲18禁久久av| 亚洲精品成人av观看孕妇| 亚洲欧美成人精品一区二区| 国产一区二区在线观看日韩| 久久午夜福利片| 国产色婷婷99| 国产黄频视频在线观看| 毛片一级片免费看久久久久| 国产色婷婷99| 亚洲欧美日韩无卡精品| 丰满少妇做爰视频| 精品久久久久久久末码| 在线观看人妻少妇| 久久精品人妻少妇| 久久6这里有精品| av在线老鸭窝| 午夜福利在线在线| 亚洲欧美日韩卡通动漫| 十八禁国产超污无遮挡网站| 日韩av在线免费看完整版不卡| 91在线精品国自产拍蜜月| 国产色爽女视频免费观看| 午夜福利在线在线| 大片免费播放器 马上看| 国产伦精品一区二区三区四那| 亚洲真实伦在线观看| 最近中文字幕高清免费大全6| 国产精品蜜桃在线观看| 在线天堂最新版资源| 日韩强制内射视频| 免费黄网站久久成人精品| 夜夜看夜夜爽夜夜摸| 舔av片在线| 成年av动漫网址| 九草在线视频观看| 亚洲精品亚洲一区二区| 一级毛片久久久久久久久女| 国产精品嫩草影院av在线观看| 午夜福利成人在线免费观看| 少妇的逼水好多| 欧美xxⅹ黑人| 亚洲欧美成人综合另类久久久| 好男人在线观看高清免费视频| 国产伦理片在线播放av一区| 久久99热这里只有精品18| 水蜜桃什么品种好| 天天一区二区日本电影三级| 日日撸夜夜添| 久久精品夜色国产| 成人亚洲精品一区在线观看 | 国产老妇女一区| 国产国拍精品亚洲av在线观看| 久热久热在线精品观看| 国产熟女欧美一区二区| 听说在线观看完整版免费高清| 九九爱精品视频在线观看| 久久久亚洲精品成人影院| 欧美成人a在线观看| 啦啦啦韩国在线观看视频| 少妇人妻一区二区三区视频| 99久久精品国产国产毛片| 天堂av国产一区二区熟女人妻| 草草在线视频免费看| 国产老妇伦熟女老妇高清| 国产午夜精品一二区理论片| 国产黄频视频在线观看| 久久久精品94久久精品| 午夜精品国产一区二区电影 | 禁无遮挡网站| 久久久久免费精品人妻一区二区| 精品久久久久久电影网| 国产精品美女特级片免费视频播放器| 国内精品一区二区在线观看| 天堂√8在线中文| 伊人久久国产一区二区| 国产成人91sexporn| 欧美高清性xxxxhd video| 日本色播在线视频| 中文字幕免费在线视频6| 3wmmmm亚洲av在线观看| 九九爱精品视频在线观看| 久久精品久久久久久噜噜老黄| 一级av片app| 深夜a级毛片| 成人二区视频| 久久精品国产自在天天线| 中文字幕亚洲精品专区| 国产一区二区在线观看日韩| 亚洲美女搞黄在线观看| 久久99热这里只有精品18| 日本三级黄在线观看| 热99在线观看视频| 久久久久久久大尺度免费视频| 精品熟女少妇av免费看| 国产精品爽爽va在线观看网站| 一本久久精品| 国产精品伦人一区二区| 精品国产露脸久久av麻豆 | 极品教师在线视频| 亚洲最大成人中文| 国产不卡一卡二| 亚洲精品日本国产第一区| 成年版毛片免费区| 亚洲av电影在线观看一区二区三区 | 综合色av麻豆| 久久人人爽人人片av| 免费大片黄手机在线观看| 在线观看一区二区三区| 欧美日韩国产mv在线观看视频 | 三级国产精品片| 自拍偷自拍亚洲精品老妇| 国产麻豆成人av免费视频| 日韩一本色道免费dvd| 男人爽女人下面视频在线观看| 亚洲欧美一区二区三区黑人 | 黄片无遮挡物在线观看| 18禁动态无遮挡网站| 婷婷色综合大香蕉| 伊人久久国产一区二区| 精品午夜福利在线看| 免费观看精品视频网站| a级毛片免费高清观看在线播放| 免费看不卡的av| 国国产精品蜜臀av免费| 亚洲无线观看免费| 免费观看无遮挡的男女| 99视频精品全部免费 在线| 免费观看的影片在线观看| 国产午夜福利久久久久久| 成年人午夜在线观看视频 | 亚洲va在线va天堂va国产| 精品国产露脸久久av麻豆 | 国产男人的电影天堂91| 99久久精品一区二区三区| 久久草成人影院| 亚洲人成网站在线观看播放| 国产黄片美女视频| 爱豆传媒免费全集在线观看| 免费看日本二区| 欧美xxⅹ黑人| 天天躁日日操中文字幕| 在线播放无遮挡| 欧美另类一区| 熟妇人妻久久中文字幕3abv| 国产黄片视频在线免费观看| 欧美最新免费一区二区三区| 日韩亚洲欧美综合| 2022亚洲国产成人精品| 亚洲精品久久午夜乱码| 成人亚洲精品一区在线观看 | 亚洲欧美精品自产自拍| 欧美xxxx性猛交bbbb| 汤姆久久久久久久影院中文字幕 | 亚洲精品乱码久久久久久按摩| 欧美xxxx性猛交bbbb| 国产黄频视频在线观看| 成人鲁丝片一二三区免费| 黄片wwwwww| 精品亚洲乱码少妇综合久久| 欧美精品国产亚洲| 欧美高清成人免费视频www| 日本免费a在线| 国产成人精品福利久久| 国产亚洲av嫩草精品影院| 成人毛片60女人毛片免费| 秋霞在线观看毛片| 自拍偷自拍亚洲精品老妇| 亚洲av不卡在线观看| 国产精品av视频在线免费观看| 亚洲天堂国产精品一区在线| 男女边吃奶边做爰视频| 熟妇人妻久久中文字幕3abv| 能在线免费看毛片的网站| 国产成人精品久久久久久| 51国产日韩欧美| 亚洲国产精品sss在线观看| 丝瓜视频免费看黄片| 日韩三级伦理在线观看| 亚洲精华国产精华液的使用体验| 日韩av在线大香蕉| 精品一区二区三区人妻视频| 久久久久性生活片| 国产精品av视频在线免费观看| 在线观看人妻少妇| 天堂√8在线中文| 日韩在线高清观看一区二区三区| 久久97久久精品| 成人亚洲精品一区在线观看 | 有码 亚洲区| 高清视频免费观看一区二区 | 久久久久久九九精品二区国产| 成年免费大片在线观看| 搡女人真爽免费视频火全软件| 免费黄频网站在线观看国产| 麻豆国产97在线/欧美| 亚洲,欧美,日韩| 美女内射精品一级片tv| 国产爱豆传媒在线观看| 如何舔出高潮| 亚洲一级一片aⅴ在线观看| 成人午夜精彩视频在线观看| 免费观看无遮挡的男女| 亚洲av日韩在线播放| a级毛色黄片| 亚洲美女视频黄频| 国产探花在线观看一区二区| 观看美女的网站| 黄色日韩在线| 久久久久精品性色| 美女大奶头视频| 狠狠精品人妻久久久久久综合| 爱豆传媒免费全集在线观看| 国产亚洲精品av在线| 久久韩国三级中文字幕| 寂寞人妻少妇视频99o| 人妻系列 视频| 日本wwww免费看| 中文字幕久久专区| 69人妻影院| 免费观看av网站的网址| 国产视频内射| 亚洲av男天堂| 中文字幕av在线有码专区| 69av精品久久久久久| 成年女人看的毛片在线观看| 天堂俺去俺来也www色官网 | 国产一级毛片在线| 亚洲精品乱久久久久久| 国产午夜精品论理片| 18禁在线无遮挡免费观看视频| 麻豆久久精品国产亚洲av| 麻豆av噜噜一区二区三区| 精品久久久久久电影网| 人人妻人人看人人澡| 男女视频在线观看网站免费| 国内少妇人妻偷人精品xxx网站| 韩国av在线不卡| 精品人妻视频免费看| 午夜福利成人在线免费观看| 一个人看的www免费观看视频| 亚洲精品亚洲一区二区| 亚洲国产色片| 男的添女的下面高潮视频| 麻豆成人午夜福利视频| 亚洲av在线观看美女高潮| 亚洲精品日韩在线中文字幕| 简卡轻食公司| 天堂中文最新版在线下载 | 亚洲乱码一区二区免费版| 国产乱来视频区| 国产精品无大码| 嘟嘟电影网在线观看| 在线观看一区二区三区| 亚洲国产精品国产精品| 久久久久久久久久黄片| 亚洲三级黄色毛片| 久久久久久国产a免费观看| av在线亚洲专区| 69人妻影院| av福利片在线观看| 国产亚洲av嫩草精品影院| 男的添女的下面高潮视频| 韩国av在线不卡| 日本色播在线视频| 99热这里只有精品一区| 日韩大片免费观看网站| 国产探花在线观看一区二区| 最近视频中文字幕2019在线8| 亚洲无线观看免费| 啦啦啦中文免费视频观看日本| 岛国毛片在线播放| 久久6这里有精品| 夫妻性生交免费视频一级片| 高清欧美精品videossex| 精品人妻偷拍中文字幕| 国产精品国产三级国产专区5o| 久久99蜜桃精品久久| 成年免费大片在线观看| 日韩精品有码人妻一区| 直男gayav资源| 99久久中文字幕三级久久日本| 黄色欧美视频在线观看| 国国产精品蜜臀av免费| 尾随美女入室| 两个人视频免费观看高清| 免费av不卡在线播放| 午夜免费激情av| 日韩欧美 国产精品| 免费黄色在线免费观看| av免费观看日本| 老师上课跳d突然被开到最大视频| 亚洲精品色激情综合| 午夜免费观看性视频| 91久久精品国产一区二区三区| 高清视频免费观看一区二区 | 亚洲av二区三区四区| 亚洲精品国产av成人精品| 国产永久视频网站| 干丝袜人妻中文字幕| 亚洲美女视频黄频| 国产色爽女视频免费观看| 亚洲内射少妇av| 中文资源天堂在线| 国精品久久久久久国模美| 最近中文字幕2019免费版| 国产精品嫩草影院av在线观看| 亚洲精品视频女| 亚洲精品中文字幕在线视频 | 亚洲精品国产成人久久av| 大陆偷拍与自拍| 婷婷色av中文字幕| 国产精品三级大全| 人体艺术视频欧美日本| 国产v大片淫在线免费观看| 少妇的逼好多水| 国产高清不卡午夜福利| 亚洲成人一二三区av| 国产黄a三级三级三级人| 三级男女做爰猛烈吃奶摸视频| 麻豆精品久久久久久蜜桃| 五月玫瑰六月丁香| 白带黄色成豆腐渣| 久久精品国产亚洲网站| 亚洲熟妇中文字幕五十中出| 一个人看的www免费观看视频| 成年免费大片在线观看| 日韩av免费高清视频| 亚洲av二区三区四区| 免费看av在线观看网站| 精品久久久久久久久av| 色网站视频免费| 超碰97精品在线观看| 国国产精品蜜臀av免费| 夜夜看夜夜爽夜夜摸| 亚洲精品国产av蜜桃| 狂野欧美激情性xxxx在线观看| 日本黄大片高清| 久久精品国产鲁丝片午夜精品| 一个人免费在线观看电影| 国产黄色免费在线视频| 又黄又爽又刺激的免费视频.| 丝袜美腿在线中文| 国产三级在线视频|