• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Continuous generalized metric spaces

    2020-06-03 07:55:08YUJunChe

    YU Jun-Che

    (College of Mathematics, Sichuan University, Chengdu 610064, China)

    Abstract: Continuous generalized metric spaces are introduced and investigated in this paper. It is shown that for such spaces, c-Scott topology is equal to the generalized Scott topology, and that a non-expansive map between such spaces is Yoneda continuous if and only if it is continuous with respect to the generalized Scott topology.

    Keywords: Generalized metric space; Generalized Scott topology; c-Scott topology; Yoneda continuous(2010 MSC 06B35, 18B35, 54E35)

    1 Introduction

    As observed in Lawvere[1], a generalized metric space is precisely a category enriched in the quantale ([0,∞]op,+,0). So, they can be viewed as a metric counterpart of ordered sets. The investigation of such spaces is the core part the quantitative domain theory[2-7]. In particular, as metric counterpart of dcpo’s and domains, Yoneda complete generalized metric spaces and continuous Yoneda complete generalized metric spaces have been introduced and investigated in Refs.[3-4,6].

    In this paper, the notion of continuous generalized metric spaces is introduced. Such spaces are a metric counterpart of continuous posets[4]in domain theory. The difference between such a space and a metric domain, i.e., a continuous Yoneda complete metric space, is that it need not be Yoneda complete. Basic properties of such spaces are investigated in this paper. Particularly, it is shown that, for such spaces, the generalized Scott topology is equal to the c-Scott topology, and that a non-expansive map between such spaces is Yoneda continuous if and only if it is continuous with respect to the generalized Scott topology.

    2 Continuous generalized metric spaces

    By a generalized metric on a set X, we mean a map d:X×X→[0,∞] such that d(x,x)=0 and d(x,y)+d(y,z)≥d(x,z) for all x,y,z∈X. The map d is called a generalized metric, and the value d(x,y) the distance from x to y.

    A generalized metric space (X,d) is symmetric if d(x,y)=d(y,x) for all x,y∈X; separated if x=y whenever d(x,y)=d(y,x)=0; finitary if d(x,y)<∞ for all x,y∈X. A metric in the usual sense is exactly a symmetric, separated and finitary one. Given a generalized metric d on a set X, the opposite dopof d refers to the generalized metric given by dop(x,y)=d(y.x).

    Example2.1(The Lawvere metric[1]) For all a,b in [0,∞], the Lawvere distance, dL(a,b), from a to b is defined to be the truncated minus b?a, i.e.,

    dL(a,b)=b?a=max{b-a,0},

    where, we take by convention that ∞-∞=0 and ∞-a=∞ for all a<∞. It is clear that ([0,∞],dL) is a separated, non-symmetric, and non-finitary metric space.

    The opposite of the Lawvere metric is denoted by dR, i.e., dR(x,y)=x?y.

    A non-expensive map f:(X,d)→(Y,ρ) between generalized metric spaces is a map f:X→Y such that

    d(x,y)≥ρ(f(x),f(y)).

    For each ordered set (X,≤), let ω(≤):X×X→[0,∞] be given by

    Then (X,ω(≤)) is a generalized metric space. The correspondence (X,≤)(X,ω(≤)) defines a full and faithful functor

    ω : Ord → GMet.

    The functor ω has a right adjoint

    τ: GMet → Ord

    that maps each generalized metric space (X,d) to its underlying order (X,≤d), where

    x≤dy?d(x,y)=0.

    Let (X,d) be a generalized metric space. A weight of (X,d) is a function φ:X→[0,∞] such that

    φ(x)≤φ(y)+d(x,y)

    for all x,y∈X. A coweight of (X,d) is a function ψ:X→[0,∞] such that

    ψ(y)≤ψ(x)+d(x,y)

    for all x,y∈X. Said differently, a weight of (X,d) is a non-expansive map φ:(X,d)→([0,∞],dR) and a coweight of (X,d) is a non-expansive map ψ:(X,d)→([0,∞],dL). It is easily verified that for each x∈X, d(-,x) is a weight of X and d(x,-) is a coweight of X.

    Let PX be the set of all weights of a generalized metric space (X,d). For any φ,ψ∈PX, let

    Lemma2.2(Yoneda lemma[1]) Let (X,d) be a generalized metric space. Then

    for all x∈X and φ∈PX.

    Let (X,d) be a generalized metric space and φ a weight of (X,d). An element a∈X is called a colimit of φ if

    for all y∈X.

    Let (X,d) be a generalized metric space. For each weight φ and each coweight ψ of (X,d), the tensor product of φ and ψ [Ref. 8] is an element in [0,∞], given by

    Definition2.3[8]Let (X,d) be a generalized metric space, a weight φ of (X,d) is flat if infx∈Xφ(x)=0 and φ?max{ψ1,ψ2}=max{φ?ψ1,φ?ψ2} for any coweights ψ1,ψ2of (X,d).

    For each x in a generalized metric space (X,d), d(-,x):X→[0,∞] is easily verified to be a flat weight. Flat weights can be characterized by forward Cauchy nets. A net {xi}iin a generalized metric space (X,d) is forward Cauchy[3]if

    An element x∈X is a Yoneda limit[3]of {xi}iif for all y∈X,

    A generalized metric space is Yoneda complete if each forward Cauchy net has a Yoneda limit.

    Yoneda limits are not necessarily unique. However, if both x and y are Yoneda limits of a net {xi}i, then

    d(x,y)=d(y,x)=0.

    So, Yoneda limits of a forward Cauchy net in separated metric spaces are unique.

    A non-expansive map f:(X,d)→(Y,ρ) is Yoneda continuous if it preserves Yoneda limits in the sense that if a is a Yoneda limit of a forward Cauchy net {xi}ithen f(a) is a Yoneda limit of {f(xi)}i.

    Proposition2.4[8]Let (X,d) be a generalized metric space and φ a weight of (X,d). Then φ is a flat weight if and only if there is a forward Cauchy net {xi}iin (X,d) such that φ=infisupj≥id(-,xj).

    Proposition2.5[9]For each forward Cauchy net {xi}iin a generalized metric space (X,d), an element x is a Yoneda limit of {xi}iif and only if x is a colimit of the weight φ=infisupj≥id(-,xj).

    As an immediate corollary we obtain that (X,d) is Yoneda complete if and only if the map

    has a left adjoint, where FX denotes the set of flat weights of (X,d).

    Given a partially ordered set (X,≤), consider the generalized metric space (X,ω(≤)). Then a weight ψ of (X,ω(≤)) is flat if and only if there exists a directed lower set D of (X,≤) such that ψ(x)=0 when x∈D and ψ(x)=∞ when x?D. Furthermore, ψ has a colimit if and only if D has a join. Therefore, (X,ω(≤)) is Yoneda complete if and only if (X,≤) is directed complete. Conversely, the underlying order of each Yoneda complete generalized metric space is directed complete, see Ref. [10, Proposition 4.5].

    Definition2.6Let (X,d) be a generalized metric space and let F*X denotes the subset of FX consisting of flat weights that have a colimit. We say (X,d) is continuous if the map

    Definition2.7A separated generalized metric space (X,d) is said to be a metric domain if it is both continuous and Yoneda complete.

    Said differently, a separated generalized metric space (X,d) is a metric domain if the map

    has a left adjoint which is itself a right adjoint.

    Definition2.8[3-4]An element a in a generalized metric space is compact if for every forward Cauchy net {xi}iwith a Yoneda limit x, d(a,x)=infisupj≥id(a,xj). A separated generalized metric space is algebraic if every element in (X,d) is a Yoneda limit of a forward Cauchy net consisting of compact elements.

    Proposition2.9[11]An element a is compact in a generalized metric space (X,d) if and only if for each flat weight φ with a colimit it holds that d(a,colim φ)=φ(a).

    It is proved in Ref. [12] that a Yoneda complete and algebraic generalized partial metric space is continuous. Similarly, we have the following proposition for generalized metric spaces.

    Proposition2.10Algebraic generalized metric spaces are continuous.

    ProofFor each x∈X, take a forward Cauchy net {ai}iof compact elements in X with x as a Yoneda limit and let φx=infisupj≥id(-,aj). Then for every flat weight φ of (X,d) with a colimit,

    d(x,colim φ).

    Example2.11The generalized metric space (Q∩[0,∞],dL) is algebraic, hence continuous. But it is not Yoneda complete.

    In the following, we characterize continuous generalized metric spaces by a metric version of the "way below relation" in domain theory.

    Definition2.12(way-below distance)

    Given a separated generalized metric space (X,d), the way-below distance on X is the map w:X×X→[0,∞] given by

    Lemma2.13Let (X,d) be a separated generalized metric space. Then for all x,y,z∈X:

    (i) d(x,y)≤w(x,y);

    (ii) w(x,y)≤w(x,z)+d(z,y)≤w(x,z)+w(z,y).

    Consider the generalized metric space (X,ω(≤)) induced by a partially ordered set (X,≤), for any x,y∈X, it is easy to check that,

    Proposition2.14A separated generalized metric space (X,d) is continuous if and only if for every x∈X, w(-,x) is a flat weight and x is a colimit of w(-,x).

    ProofLet ψ be a flat weight with a colimit a. For every y∈X, w(y,x)≥ψ(y)?d(x,a). It follows that,

    Since x is a colimit of w(-,x),

    Hence (X,d) is continuous.

    it follows that

    φx(y)≥ψ(y)?d(x,colim ψ)

    for every y∈X. Hence,

    φx(y)≥w(y,x).

    On the other hand,

    φx(y)?d(x,x)=φx(y).

    Proposition2.15(interpolation property) Let (X,d) be a continuous generalized metric space. Then for all x,y∈X,

    Firstly, for any ε<0, there exist a,b∈X such that w(a,y)<ε, w(b,a)<ε, it follows that φ(b)<2ε. We obtain

    infx∈Xφ(x)=0.

    For any coweights ψ1,ψ2on (X,d),

    max{φ?ψ1,φ?ψ2}

    (1)

    For any a∈X,

    (2)

    Then by the definition of way-below distance,

    w(x,y)≥φ(x)?d(y,y)=φ(x).

    It follows that

    Let (X,≤) be a partially ordered set. It is not hard to see that (X,≤) is a continuous poset if and only if (X,ω(≤)) is a continuous generalized metric space. So, the functor ω preserves and reflects continuity. But, the following example shows that the functor ι does not preserves continuity.

    Example2.16Let X=[0,1]∪{a}. Define a generalized metric on X as follows:

    Since every element in (X,d) is compact, (X,d) is algebraic, hence continuous by Proposition 2.10. It is easily verified that (X,d) is Yoneda complete, hence (X,d) is a metric domain. But (X,≤d) is not continuous.

    3 Topologies on continuous generalized metric spaces

    For every generalized metric space (X,d), there is a natural topology for (X,d), namely, the open ball topology on (X,d). The open ball topology[4]]on (X,d) is the topology generated as a basis by the open balls in (X,d), where, for each x∈X and r>0, a point lies in the open ball B(x,r) with center x and radius r if the distance d(x,y) from x to y is less than r, i.e.,

    B(x,r)={y∈X|d(x,y)

    One easily sees that, for an ordered set (X,≤), the open ball topology on (X,ω(≤)) is equal to the Alexandroff topology on (X,≤). Hence, the open ball topology is an extension of the Alexandroff topology to generalized metric spaces. As for Scott topology, in the literature there exist three ways to extend it to the metric setting.

    Definition3.1[3]A subset U of a generalized metric space (X,d) is generalized Scott open if for every forward Cauchy net {xi}iand every Yoneda limit x of {xi}i, if x∈U then there is some ε>0 and some index i such that the open ball B(xj,ε) is contained in U for all j≥i. The generalized Scott open subsets of (X,d) form a topology, called the generalized Scott topology on (X,d).

    Proposition3.2Let (X,≤) be a poset, then the Scott topology on (X,≤) and the generalized Scott topology on (X,ω(≤)) coincide.

    The generalized Scott topology on a generalized metric space (X,d) and Scott topology on the underlying order of (X,d) are incomparable in general. Take [0,1] with the usual metric. Then the generalized Scott topology is strictly coarser than Scott topology on its underlying order. The following example shows that not every generalized Scott open subset of a generalized metric space is open with respect to the Scott topology on its underlying ordered set.

    Example3.3Let X=[0,1]∪{a}. Define a map d:X×X→[0,∞] as follows:

    Then (X,d) is a generalized metric space and {1} is generalized Scott open. But {1} is not Scott open.

    RemarkIn the definition of the generalized Scott topology, we require that there exists a fixed ε such that the open ball B(xj,ε) is contained in U whenever j≥i. It is natural to ask whether this requirement can be relaxed to “for any j≥i, there exists an εjsuch that the open ball B(xj,εj) is contained in U″. The answer is negative, as we now see.

    We call a subset U quasi-generalized Scott open if for every forward Cauchy net {xi}iand every Yoneda limit x of {xi}i, if x∈U then there is some index i such that for all j≥i, there exists εj>0, B(xj,εj) contained in U. It is readily verified that quasi-generalized Scott open subsets form a topology on X, called the quasi-generalized Scott topology. The following example shows that the generalized Scott topology and the the quasi-generalized Scott topology are different in general.

    Let X={a}∪{an|n∈Z+}∪{bn∣n∈Z+}. Define d:X×X→[0,∞] as follows.

    Then the open ball B(a,2) is not generalized Scott open, but it is quasi generalized Scott open.

    Proposition3.4A subset U of a generalized metric space (X,d) is generalized Scott open if and only if for every flat weight φ, and every colimit a of φ, a∈U implies that there exist b>0 and z∈X such that φ(z)

    ProofNecessity. Suppose a is a colimit of a flat weight φ and a∈U. Then there exists a forward Cauchy net {xi}i∈Isuch that

    φ=infisupj≥id(-,xj)

    and a is a Yoneda limit of {xi}i∈I. Since U is generalized Scott open, there exist i∈I and b>0 such that for all j≥i, B(xj,b)?U. Since {xi}i∈Iis forward Cauchy, there exists i′∈I, φ(xj)

    φ(z)

    and

    B(z,b)?U.

    Sufficiency. Suppose a is a Yoneda limit of a forward Cauchy net {xi}i∈Iand a∈U. Let

    φ=infisupj≥id(-,xj),

    there exist b>0 and z∈X such that φ(z)0, such that φ(z)

    B(xj,ε)?B(z,b)?U.

    Proposition3.5[6]Let (X,d) be a continuous generalized metric space. B′(x,ε) is generalized Scott open for all x∈X,ε>0. Furthermore, the set {B′(x,ε)∣x∈X,ε>0}.

    forms a basis for the generalized Scott topology.

    The c-Scott topology is another way to generalize Scott topology to the metric setting.

    Definition3.6[11]A weight φ of a generalized metric space (X,d) is a Scott weight if φ:(X,d)→([0,∞],dR) is Yoneda contunuous.

    The set of all Scott weights of a generalized metric space (X,d) is denoted by SX.

    Definition3.7[11]The topology whose closed sets are given by {φ-1(0)∣φ∈SX} on a generalized metric space (X,d) is called the c-Scott topology on (X,d).

    Lemma3.8For every continuous generalized metric space (X,d), r?w(x,-) is a Scott weight for all x∈X,r∈[0,∞].

    ProofIt is easy to verify that φ=r?w(x,-) is a weight of (X,d), we only need to check that, for any forward Cauchy net {ai}iwhich has a Yoneda limit a,

    For any b∈X,

    w(x,b)+w(b,a)≥w(x,b)+

    Since (X,d) is continuous,

    Hence,

    Proposition3.9For a continuous generalized metric space (X,d), the c-Scott topology is equal to the generalized Scott topology.

    ProofSince for each x∈X and ε>0,

    (ε?w(x,-))-1(0,∞]=

    {y∣w(x,y)<ε}=B′(x,ε),

    then by Lemma 3.9, B′(x,ε) is open in the c-Scott topology. By Proposition 3.6, the c-Scott topology is finer than the generalized Scott topology. Hence, they are equal.

    It is known (Ref.[3, Proposition 6.9])that a non-expansive map between Yoneda complete generalized metric spaces is Yoneda continuous if and only if it is continuous with respect to the generalized Scott topology, this is also true for continuous generalized metric spaces.

    Proposition3.10Let (X,d) be a generalized metric space and (Y,ρ) be a continuous generalized metric space, a non-expansive map f:X→Y is Yoneda continuous if and only if f is continuous with respect to the generalized Scott topology.

    ProofThe necessity is contained in Ref.[3, Proposition 6.9], it remains to show that, if f is non-expansive and continuous with respect to generalized Scott topology, then for every forward Cauchy net {xi}iwith a Yoneda limit x and y∈Y,

    On one hand, since f is non-expansive,

    On the other hand, for every forward Cauchy net {ak}kwith a Yoneda limit a,

    It follows that

    If

    then there exists ε>0,

    Because Y is continuous, A=B′(y,w(y,f(x))+ε) is generalized Scott open in Y. Since f is continuous, then f←(A) is generalized Scott open in X. It is a contradiction. Hence

    Since (Y,ρ) is continuous, f(x) is a colimit of the flat weight w(-,f(x)),

    This completes the proof.

    In Ref.[4], Goubault-Larrecq introduced another topology, the d-Scott topology, for generalized metric spaces and showed that a non-expansive map between Yoneda complete generalized metric spaces is Yoneda continuous if and only if it is continuous with respect to the d-Scott topology, see Ref. [4, Proposition 7.4.52]. But, this is not true for continuous metric spaces, as we see now.

    For a generalized metric space (X,d), let (BX,≤) be the underlying order of the generalized metric space (BX,Bd) of formal balls in (X,d). Explicitly,

    BX={(x,r)∣x∈X,r∈[0,∞)}

    (x,r)≤(y,s)?r≥s+d(x,y).

    The d-Scott topology[4]on a generalized metric space (X,d) is defined to be the topology on X inherited from the Scott topology on the ordered set (BX,≤) via the embedding η:X→BX that sends each x to (x,0).

    Example3.11Let X=[0,1], define two maps d1,d2:X×X→[0,∞] on X as follows:

    (X,d1),(X,d2) are both continuous metric spaces, the identity map 1Xis non-expansive and continuous with respect to the d-Scott topology, but it is not Yoneda continuous.

    国产精品免费一区二区三区在线| 最近最新中文字幕大全电影3| 亚洲av中文字字幕乱码综合| 身体一侧抽搐| av免费在线看不卡| 一边摸一边抽搐一进一小说| 亚洲国产精品久久男人天堂| av福利片在线观看| 精品久久久久久久久亚洲| 亚洲最大成人av| 国内精品宾馆在线| 久久久久久久久久久丰满| 熟妇人妻久久中文字幕3abv| 亚洲精品日韩av片在线观看| 亚洲精品粉嫩美女一区| 春色校园在线视频观看| 最近最新中文字幕大全电影3| 少妇高潮的动态图| 婷婷六月久久综合丁香| 午夜福利在线观看吧| 色视频www国产| 国产在线男女| 久久欧美精品欧美久久欧美| or卡值多少钱| 免费在线观看成人毛片| 亚洲精华国产精华液的使用体验 | 亚洲七黄色美女视频| 国产中年淑女户外野战色| 欧美一级a爱片免费观看看| 小说图片视频综合网站| 日韩三级伦理在线观看| 久久久久网色| 亚洲丝袜综合中文字幕| 国产免费一级a男人的天堂| 国产蜜桃级精品一区二区三区| 亚洲七黄色美女视频| 成人二区视频| 国产伦一二天堂av在线观看| 日韩中字成人| 一个人免费在线观看电影| 99热全是精品| 久久久久免费精品人妻一区二区| 亚洲欧美日韩无卡精品| 欧美zozozo另类| 国产精品久久久久久久久免| 伦理电影大哥的女人| eeuss影院久久| 校园人妻丝袜中文字幕| 国内久久婷婷六月综合欲色啪| 成年版毛片免费区| 国产私拍福利视频在线观看| 成人av在线播放网站| 成人综合一区亚洲| 国产三级中文精品| 日本爱情动作片www.在线观看| 桃色一区二区三区在线观看| 成人高潮视频无遮挡免费网站| 97人妻精品一区二区三区麻豆| 国产精品女同一区二区软件| 久久久国产成人精品二区| 亚洲,欧美,日韩| 欧美日本亚洲视频在线播放| 亚洲国产精品成人综合色| 晚上一个人看的免费电影| 天天一区二区日本电影三级| 日韩欧美一区二区三区在线观看| 能在线免费看毛片的网站| 在线播放国产精品三级| av在线蜜桃| 国产亚洲91精品色在线| 非洲黑人性xxxx精品又粗又长| 赤兔流量卡办理| 又粗又爽又猛毛片免费看| 久久久久久久午夜电影| 性欧美人与动物交配| 搞女人的毛片| 亚洲综合色惰| 麻豆国产av国片精品| 亚洲三级黄色毛片| 12—13女人毛片做爰片一| 国产黄a三级三级三级人| 午夜精品在线福利| 99久久精品一区二区三区| 又粗又爽又猛毛片免费看| 最近视频中文字幕2019在线8| 久久人人爽人人片av| 97超碰精品成人国产| 此物有八面人人有两片| 成人午夜高清在线视频| 国产成人a区在线观看| 国内精品美女久久久久久| 久久久久久久久久黄片| 韩国av在线不卡| 国产精品不卡视频一区二区| 日韩精品有码人妻一区| 国产精华一区二区三区| 少妇的逼水好多| 亚洲真实伦在线观看| 久久综合国产亚洲精品| 精品久久久久久久久久久久久| 国产精品久久久久久久电影| 变态另类丝袜制服| 麻豆乱淫一区二区| 国产精品1区2区在线观看.| 日韩欧美一区二区三区在线观看| 亚洲四区av| 欧美潮喷喷水| 在线观看一区二区三区| 插阴视频在线观看视频| 亚洲欧美成人精品一区二区| 热99在线观看视频| 国产人妻一区二区三区在| 午夜视频国产福利| 欧美bdsm另类| 麻豆国产av国片精品| 人人妻人人看人人澡| 久久99精品国语久久久| 美女内射精品一级片tv| av专区在线播放| 成年版毛片免费区| 日韩制服骚丝袜av| 午夜精品在线福利| 不卡视频在线观看欧美| 日韩欧美三级三区| 亚洲人与动物交配视频| 少妇高潮的动态图| 床上黄色一级片| 少妇熟女欧美另类| 黄色日韩在线| 丰满乱子伦码专区| 亚洲精品456在线播放app| 国产白丝娇喘喷水9色精品| 99久久中文字幕三级久久日本| 欧美色视频一区免费| 小蜜桃在线观看免费完整版高清| 亚洲欧洲国产日韩| 99久久精品国产国产毛片| 99久久精品一区二区三区| 中文欧美无线码| 91久久精品国产一区二区成人| 国产av一区在线观看免费| 麻豆久久精品国产亚洲av| 中国国产av一级| 午夜精品国产一区二区电影 | 亚洲av第一区精品v没综合| 亚洲久久久久久中文字幕| 中文亚洲av片在线观看爽| 一边亲一边摸免费视频| 午夜精品国产一区二区电影 | 一个人观看的视频www高清免费观看| 99久久成人亚洲精品观看| av在线蜜桃| 中国国产av一级| 国产精品久久电影中文字幕| 亚洲一区二区三区色噜噜| 日韩强制内射视频| 亚洲人成网站在线播| av.在线天堂| 变态另类丝袜制服| 亚洲不卡免费看| 日本黄大片高清| 中国国产av一级| 国产久久久一区二区三区| 亚洲欧美精品自产自拍| 一级毛片久久久久久久久女| 国产成人a区在线观看| 久久久午夜欧美精品| 成人午夜高清在线视频| 赤兔流量卡办理| 欧美bdsm另类| 三级毛片av免费| 婷婷亚洲欧美| 国产视频首页在线观看| av在线老鸭窝| 村上凉子中文字幕在线| 高清毛片免费观看视频网站| 天天一区二区日本电影三级| 久久久精品94久久精品| 丝袜喷水一区| 91av网一区二区| 99久久精品国产国产毛片| 国产亚洲精品av在线| 一区福利在线观看| 精品无人区乱码1区二区| 大香蕉久久网| 亚洲欧洲日产国产| 国产亚洲av片在线观看秒播厂 | 尾随美女入室| 精品午夜福利在线看| 久久精品久久久久久久性| 一级黄色大片毛片| 免费大片18禁| 啦啦啦韩国在线观看视频| 亚洲精品成人久久久久久| 日本欧美国产在线视频| 黄色一级大片看看| 丰满乱子伦码专区| 成人美女网站在线观看视频| 少妇被粗大猛烈的视频| 在线免费观看不下载黄p国产| 亚洲av二区三区四区| 九色成人免费人妻av| 中文字幕制服av| 国产精品一区二区性色av| 国产黄色小视频在线观看| 丝袜喷水一区| 精品国产三级普通话版| 国产视频内射| 麻豆久久精品国产亚洲av| 日日干狠狠操夜夜爽| 中文字幕久久专区| 国产蜜桃级精品一区二区三区| 少妇人妻精品综合一区二区 | 少妇裸体淫交视频免费看高清| 尤物成人国产欧美一区二区三区| 久久国产乱子免费精品| 亚洲最大成人手机在线| 老熟妇乱子伦视频在线观看| 嫩草影院精品99| 国产在视频线在精品| 日韩精品青青久久久久久| 久久午夜福利片| 国产在线男女| 长腿黑丝高跟| 久久精品国产鲁丝片午夜精品| 中文字幕av成人在线电影| 色播亚洲综合网| 精品久久久久久久人妻蜜臀av| 日韩精品有码人妻一区| 男人狂女人下面高潮的视频| 欧美+亚洲+日韩+国产| 成人无遮挡网站| 久久亚洲国产成人精品v| 丰满人妻一区二区三区视频av| 99热这里只有是精品在线观看| 欧美三级亚洲精品| 久久午夜福利片| 中文资源天堂在线| a级毛片免费高清观看在线播放| 国产精品永久免费网站| 亚洲精品成人久久久久久| 国产精品一区www在线观看| 亚洲av二区三区四区| 我要看日韩黄色一级片| 免费一级毛片在线播放高清视频| av免费在线看不卡| 久久精品国产亚洲av天美| 神马国产精品三级电影在线观看| 亚洲欧美日韩高清专用| 欧美日韩综合久久久久久| 观看美女的网站| 国产色婷婷99| 亚洲av免费在线观看| 国产精品久久久久久久久免| 免费看a级黄色片| 国产精品嫩草影院av在线观看| 国产毛片a区久久久久| 色哟哟·www| 亚洲国产精品久久男人天堂| 欧美日韩精品成人综合77777| 乱系列少妇在线播放| 在线a可以看的网站| 欧美性猛交╳xxx乱大交人| 日本一本二区三区精品| 日韩制服骚丝袜av| 免费黄网站久久成人精品| 日韩精品青青久久久久久| 国产精华一区二区三区| 插逼视频在线观看| 国产精品久久视频播放| 九草在线视频观看| 91在线精品国自产拍蜜月| 成人午夜精彩视频在线观看| 亚洲自偷自拍三级| 观看免费一级毛片| 精品一区二区免费观看| 久久韩国三级中文字幕| 久久精品国产亚洲av涩爱 | 国产成人freesex在线| 精品久久久久久久久av| 国产探花在线观看一区二区| 97超视频在线观看视频| 一本精品99久久精品77| 看非洲黑人一级黄片| 人妻系列 视频| 麻豆久久精品国产亚洲av| 精品久久久久久久末码| 伊人久久精品亚洲午夜| 国产黄色小视频在线观看| 国产午夜精品一二区理论片| 精品久久国产蜜桃| 欧美潮喷喷水| 亚洲精品粉嫩美女一区| 99精品在免费线老司机午夜| 亚洲国产欧美在线一区| 久久久久久久久久久丰满| 哪个播放器可以免费观看大片| 非洲黑人性xxxx精品又粗又长| 国内精品美女久久久久久| 成人无遮挡网站| 婷婷亚洲欧美| а√天堂www在线а√下载| 欧美高清成人免费视频www| av又黄又爽大尺度在线免费看 | 99精品在免费线老司机午夜| 又粗又硬又长又爽又黄的视频 | 精品久久久久久久久亚洲| 久99久视频精品免费| 夜夜看夜夜爽夜夜摸| 色播亚洲综合网| 伊人久久精品亚洲午夜| 最近中文字幕高清免费大全6| 免费av观看视频| 国产一区二区在线av高清观看| 国产在视频线在精品| 一区福利在线观看| 国产久久久一区二区三区| 婷婷色综合大香蕉| 国产精品蜜桃在线观看 | 久久久久网色| 寂寞人妻少妇视频99o| 高清毛片免费观看视频网站| 夜夜看夜夜爽夜夜摸| 欧美xxxx黑人xx丫x性爽| 久久鲁丝午夜福利片| 18禁在线播放成人免费| 欧美日韩国产亚洲二区| 一级毛片久久久久久久久女| 亚洲在久久综合| 国产一区二区三区在线臀色熟女| 日韩在线高清观看一区二区三区| 国产视频首页在线观看| 中文字幕av在线有码专区| 国产av不卡久久| 最近最新中文字幕大全电影3| 国产蜜桃级精品一区二区三区| 精品久久久久久成人av| 久久精品国产亚洲av香蕉五月| 午夜福利成人在线免费观看| 午夜a级毛片| 国产精品蜜桃在线观看 | 99热6这里只有精品| 日本免费一区二区三区高清不卡| 一进一出抽搐动态| 亚洲精品久久久久久婷婷小说 | 免费黄网站久久成人精品| 日韩中字成人| 日本三级黄在线观看| 久久精品夜夜夜夜夜久久蜜豆| 免费看日本二区| 黄片无遮挡物在线观看| 欧美3d第一页| 美女大奶头视频| 国产亚洲欧美98| 最好的美女福利视频网| 中出人妻视频一区二区| 3wmmmm亚洲av在线观看| 九九爱精品视频在线观看| 最新中文字幕久久久久| 蜜桃久久精品国产亚洲av| 精品久久久久久久久亚洲| 国产精品蜜桃在线观看 | 99热全是精品| 亚洲自拍偷在线| 干丝袜人妻中文字幕| 自拍偷自拍亚洲精品老妇| 美女 人体艺术 gogo| 欧美+亚洲+日韩+国产| 国产麻豆成人av免费视频| 色哟哟哟哟哟哟| 精品欧美国产一区二区三| 色哟哟哟哟哟哟| 国产片特级美女逼逼视频| 成人毛片60女人毛片免费| av女优亚洲男人天堂| 一区二区三区高清视频在线| 可以在线观看的亚洲视频| 欧美一区二区精品小视频在线| 国产精品一区www在线观看| 精品人妻偷拍中文字幕| 韩国av在线不卡| 2021天堂中文幕一二区在线观| 青春草国产在线视频 | av女优亚洲男人天堂| 久久久久久九九精品二区国产| 日韩 亚洲 欧美在线| 日韩一本色道免费dvd| 国产中年淑女户外野战色| 亚洲真实伦在线观看| 日本黄色视频三级网站网址| 狂野欧美激情性xxxx在线观看| 国产激情偷乱视频一区二区| 国产精品日韩av在线免费观看| 国产精品野战在线观看| 我要看日韩黄色一级片| 少妇熟女aⅴ在线视频| 亚洲国产精品成人综合色| 亚洲经典国产精华液单| 毛片女人毛片| 欧美精品一区二区大全| 在线免费观看不下载黄p国产| av天堂在线播放| 麻豆av噜噜一区二区三区| 欧美日韩在线观看h| 性欧美人与动物交配| eeuss影院久久| 亚洲不卡免费看| 国产私拍福利视频在线观看| 免费观看精品视频网站| 中国国产av一级| 精品少妇黑人巨大在线播放 | 久久精品国产亚洲网站| 自拍偷自拍亚洲精品老妇| 干丝袜人妻中文字幕| 97人妻精品一区二区三区麻豆| 欧美成人精品欧美一级黄| 日韩精品有码人妻一区| 国产亚洲av片在线观看秒播厂 | 欧美精品一区二区大全| 久久久久性生活片| eeuss影院久久| 国产乱人偷精品视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美日韩在线观看h| 欧美极品一区二区三区四区| 美女黄网站色视频| 精品久久久久久久人妻蜜臀av| av在线天堂中文字幕| 日韩,欧美,国产一区二区三区 | 国产在视频线在精品| 亚洲国产欧洲综合997久久,| 97超碰精品成人国产| 嫩草影院新地址| 国产精品乱码一区二三区的特点| 国模一区二区三区四区视频| 一区二区三区高清视频在线| 啦啦啦啦在线视频资源| 久久婷婷人人爽人人干人人爱| 老师上课跳d突然被开到最大视频| 亚洲国产欧美在线一区| 日韩成人伦理影院| 99国产精品一区二区蜜桃av| 国产精品久久久久久久电影| 狂野欧美白嫩少妇大欣赏| 国产午夜精品久久久久久一区二区三区| 欧美高清性xxxxhd video| 一区福利在线观看| 国产成人精品一,二区 | 日韩,欧美,国产一区二区三区 | 午夜久久久久精精品| 天堂√8在线中文| 人人妻人人看人人澡| 国产黄片视频在线免费观看| 人体艺术视频欧美日本| 国产人妻一区二区三区在| 国产三级在线视频| 蜜桃久久精品国产亚洲av| 亚洲av免费在线观看| 小蜜桃在线观看免费完整版高清| 亚洲欧美日韩卡通动漫| 亚洲欧美精品自产自拍| 麻豆精品久久久久久蜜桃| 免费观看a级毛片全部| 在线播放国产精品三级| 国产一区二区亚洲精品在线观看| 亚洲在久久综合| 国模一区二区三区四区视频| 在线观看av片永久免费下载| 99久国产av精品| 国产精品,欧美在线| 免费一级毛片在线播放高清视频| 国产黄片视频在线免费观看| av.在线天堂| 精品无人区乱码1区二区| 久久精品国产自在天天线| 丝袜喷水一区| 听说在线观看完整版免费高清| 少妇高潮的动态图| 国产片特级美女逼逼视频| 久久99蜜桃精品久久| 久久精品国产鲁丝片午夜精品| 变态另类丝袜制服| 日韩,欧美,国产一区二区三区 | 国内精品久久久久精免费| 青春草亚洲视频在线观看| 成年版毛片免费区| 成人性生交大片免费视频hd| www日本黄色视频网| 老女人水多毛片| a级毛片a级免费在线| www.av在线官网国产| 久久国内精品自在自线图片| 亚洲av中文av极速乱| 亚洲久久久久久中文字幕| 亚洲av成人av| 亚洲在久久综合| 亚洲欧美清纯卡通| 国产精品久久久久久亚洲av鲁大| 亚洲人成网站在线播| 国产成人精品婷婷| 亚洲无线观看免费| 99riav亚洲国产免费| 亚洲精品亚洲一区二区| 国产精品久久久久久久久免| 亚洲自偷自拍三级| 搞女人的毛片| 国内精品宾馆在线| 国产 一区精品| 老女人水多毛片| 嫩草影院精品99| 变态另类成人亚洲欧美熟女| 热99re8久久精品国产| avwww免费| 国内精品久久久久精免费| 欧美日韩乱码在线| 国产极品精品免费视频能看的| 日本黄色片子视频| 97超视频在线观看视频| 欧美日韩国产亚洲二区| av在线播放精品| 伦理电影大哥的女人| 亚洲精品久久国产高清桃花| 99国产极品粉嫩在线观看| 蜜桃亚洲精品一区二区三区| 久久精品久久久久久噜噜老黄 | 亚洲av二区三区四区| 精品一区二区三区视频在线| 3wmmmm亚洲av在线观看| 欧美潮喷喷水| 一个人观看的视频www高清免费观看| 91久久精品电影网| 成人亚洲精品av一区二区| 国产国拍精品亚洲av在线观看| 少妇熟女aⅴ在线视频| 久久久久网色| 男女下面进入的视频免费午夜| 国产精品电影一区二区三区| 亚洲国产精品成人综合色| ponron亚洲| 九九爱精品视频在线观看| 97在线视频观看| 伦理电影大哥的女人| 可以在线观看的亚洲视频| 精品国产三级普通话版| 少妇的逼水好多| 国产精品久久久久久av不卡| 日韩人妻高清精品专区| 亚洲人成网站在线播| 国产一区二区亚洲精品在线观看| 婷婷精品国产亚洲av| 久久精品夜色国产| 99热网站在线观看| 亚洲性久久影院| 午夜精品在线福利| 黄片wwwwww| 99久久精品一区二区三区| 国产精品久久久久久av不卡| 国产精品久久久久久亚洲av鲁大| 中文字幕人妻熟人妻熟丝袜美| 听说在线观看完整版免费高清| 亚洲中文字幕日韩| 免费看日本二区| 一边亲一边摸免费视频| 色综合色国产| 在线免费观看不下载黄p国产| 九九爱精品视频在线观看| 九九热线精品视视频播放| 小说图片视频综合网站| 干丝袜人妻中文字幕| 亚洲av成人av| 国产黄片美女视频| 久久人人爽人人片av| 99久久中文字幕三级久久日本| 国产精品99久久久久久久久| 麻豆国产av国片精品| 亚洲欧美成人综合另类久久久 | 国产精品久久久久久亚洲av鲁大| 国产亚洲av片在线观看秒播厂 | 男人舔女人下体高潮全视频| 国产午夜精品一二区理论片| 一本久久中文字幕| 亚洲精品成人久久久久久| 国产激情偷乱视频一区二区| 18禁在线无遮挡免费观看视频| 亚洲精品自拍成人| 丝袜喷水一区| 深爱激情五月婷婷| 国产熟女欧美一区二区| 晚上一个人看的免费电影| 久久久久久久午夜电影| 在线天堂最新版资源| 性欧美人与动物交配| 国产高清视频在线观看网站| 日本熟妇午夜| 国产精品一区www在线观看| 国产蜜桃级精品一区二区三区| 欧美日韩国产亚洲二区| 日本欧美国产在线视频| 成人国产麻豆网| 人人妻人人看人人澡| 国产精华一区二区三区| 精品人妻视频免费看| 国产欧美日韩精品一区二区| 亚洲精品影视一区二区三区av| av天堂在线播放| 黄色欧美视频在线观看| 亚洲精品影视一区二区三区av| 久久人人精品亚洲av| 国产精品电影一区二区三区| 一区二区三区四区激情视频 | 国产精品一二三区在线看| 黑人高潮一二区| 国语自产精品视频在线第100页| 韩国av在线不卡| 长腿黑丝高跟|