• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electron-impact ionization cross section calculations for lithium-like ions

    2022-01-23 06:36:04GuoJieBian卞國杰JyhChingChang張稚卿KeNingHuang黃克寧ChenShengWu武晨晟YongJunCheng程勇軍KaiWang王凱andYongWu吳勇
    Chinese Physics B 2022年1期
    關(guān)鍵詞:時能循跡王凱

    Guo-Jie Bian(卞國杰) Jyh-Ching Chang(張稚卿) Ke-Ning Huang(黃克寧) Chen-Sheng Wu(武晨晟)Yong-Jun Cheng(程勇軍) Kai Wang(王凱) and Yong Wu(吳勇)

    1National Key Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    2Department of Physics,National Tsing Hua University,Hsinchu 300,China

    3Institute of Atomic and Molecular Physics,Sichuan University,Chengdu 610065,China

    4School of Physics and Information Technology,Shaanxi Normal University,Xi’an 710119,China

    5Hebei Key Laboratory of Optic-electronic Information and Materials,The College of Physics Science and Technology,Hebei University,Baoding 071002,China

    6HEDPS,Center for Applied Physics and Technology,and College of Engineering,Peking University,Beijing 100871,China

    Keywords: total cross sections,electron-impact ionization,excitation-autoionization,distorted-wave

    1. Introduction

    Electron-impact ionization is an important physical process in plasma environment. Nonequilibrium plasma simulations, such as magnetic confinement fusion, inertial confinement fusion, and astrophysics, require a large amount of data on cross sections of electron-impact ionization,in which ionization cross sections directly affect the charge transfer and energy transport of the plasma state.[1-6]A great deal of attention has been paid to the electron-impact ionization for lithium isoelectronic sequence due to the K-L excitationautoionization process, which plays an important role in ionization dynamics.[7,8]Although much work has been devoted to improving the theory of electron-impact ionization, there are still discrepancies between theoretical predictions and experimental data for some members of the sequence.[9,10]Therefore, it is of vital importance to investigate behavior of electron-impact ionization along the isoelectronic sequence.

    Experimentally, the modulated crossed-beam technique is commonly used in measurements of electron-impact ionization. Lithium isoelectronic sequence has been extensively investigated in lowZions. Absolute cross sections have been measured for Be+, B2+, C3+, N4+, O5+, and Ne7+ions[7,11-17]in the energy range of 18-2000 eV.Wonget al.[18]measured cross sections for Ti19+, V20+, Cr21+, Mn22+, and Fe23+ions at approximately 2.3 times ionization energy with typical uncertainties of 10%. Moreover, Ba53+ion was measured at 22 keV,[19]and U89+ion was also be measured.[20]

    Theoretically, extensive calculations have been performed with various methods.The most commonly used method for direct ionization is the Coulomb-Born approximation,[21]in which the continuum electrons are regarded as Coulomb or distorted waves. Younger[22,23]introduced several applications of the Coulomb-Born and distorted-wave approximations, which produced results for hydrogen-, helium- and lithium-like ions. However, performance of the Coulomb-Born method is poor and, in many cases, it overestimates total cross sections. The electron exchange in transition matrix elements and Coulomb distortion waves are observed to be vital.Jakubowicz and Moores[9]discussed the Coulomb-Born exchange and distorted-wave exchange approximations, which solved the problems in the inclusion of exchange for the positive ions. When the indirect process is dominant, the close-coupling method is considered to be an effective prescription to describe the quasibound states of the target ion.[9]Fursa and Bray[24]presented the electron-helium scattering with convergent close-coupling formulations. This method requires numerous computations and applies only to a system with few valence electrons. The initial and final states of electron-impact ionization process for neutral helium were studied in the R-matrix basis,[25]which is a combined distorted-wave and close-coupling approach. A special feature of this method is the consistency of the initial bound state and the final continuum state of the ions. Furthermore, the R-matrix method, which is independent of the energy of the scattered electrons in the inner region, was extended to the electron-impact ionization of Ne7+.[10]

    In recent years,the two-potential distorted-wave(TPDW)approximation, which uses different asymptotic charges for the distorting potential to study the mutual screening of the faster and slower electrons, has been developed and widely used in the calculation of electron-, positron-, and protonimpact ionizations of hydrogen-, helium-, and beryllium-like ions.[26-34]Compared with other theoretical and experimental data, generally more reliable results are obtained in these works.

    2. Theory

    whereJ0is the total angular momentum of the target,andTfiis the appropriate transition amplitude. The real amplitudedαis defined by the reduced matrix element of the partial-wave amplitude in channelα,

    whereσκpandσκsare the Coulomb phase shifts of the two outing electrons,the index i refers to the incident electron,JαandJare the total angular momentum of the residual ion and of the entire collision complex,andHIis the appropriate interaction Hamiltonian.

    The direct-ionization cross sections can be calculated as

    Here,αiandβiare the Dirac 4×4 matrices,andpirepresents the momentum operator. Before the collision,subscript 1 represents the incident electron,andi=2,3,4 are the indices for bounded electrons. According to two-potential distorted-wave formulation,the potentialViis separated into the distorting potentialUiand the residual potentialWi. They are defined as

    The distorting potentials can be approximated as Coulomb potential from the nuclei and the average screened potential,corresponding to the asymptotic chargesZpandZs.In this work, three models of distorting potential are applied in the calculation, and some information of these potentials is listed in Table 1. Models TPDW00 and TPDW11 are two extreme models for the electron-impact ionization process.In model TPDW00, the scattered electrons are completely screened from each other,so they experience the same distorting potential as the incident electron. In model TPDW11,it is completely free from the mutual screening effects by scattered electrons, thus both outgoing electrons are only affected by the bound electrons and the nucleus. The model TPDW01 is closer to the real scene,where the faster electron is completely screened by the slower electron in the asymptotic region, so that the faster electron is affected by the asymptotic charge ofZ-3, and the slower electron is affected by the asymptotic charge ofZ-2. The average screened potential due to the residual electrons of helium-like ions inUpandUsis given by

    Considering the important contributions from the indirect ionization process, we calculate the cross sections of indirect ionization using the R-matix method,[37]in which the configuration space is divided into two regions at a spherical radiusr=a. For the boundary ofr

    where the(N+1)-electron exchange effects are important and must be taken into account. For the boundary ofr>a, the amplitude of the bound wave function is negligible, and then the exchange interaction between the bound and the continuous electrons can be ignored. For electron-impact ionization of lithium-like ions,the K-L excitation-autoionization process will cause a rapid enhancement of the cross sections at about four times the ionization energy. In present work,the intermediate states 1s2l2l′formed by the 1s electron excited ton=2 orbitals are included and partial wave contributions up to angular momentumL=7 are included to obtain converged ionization cross sections,in which the 1s2l2l′2Se,2Poresonances dominate the excitation-autoionization contributions.[9,10]

    The indirect-ionization cross sections is calculated as

    轉(zhuǎn)彎速度:當(dāng)鐵絲直徑為8 毫米時,轉(zhuǎn)彎速度為5000 時能完成循跡轉(zhuǎn)彎,但速度過慢,加速到5600 時能完成循跡且時間最短,當(dāng)加速到6000 時小車速度過快易沖出賽道。

    2.1. Total cross sections

    In the present work, we have calculated the total cross sections of electron-impact ionization for C3+, N4+, O5+,Ne7+and Fe23+ions with incident energiesuiin the range of threshold energy units from 1 to 10. The two-potential distorted-wave method is used in the lower energy region,and when the incident energy is above the autoionization threshold, the distorted-wave combined with the R-matrix method is employed to calculate the contributions from the excitation-autoionization process. The bound-state wavefunctions and ionization energies of Li-like ions are generated from a multi-configuration Dirac-Fock (MCDF) calculation,which is implemented in the relativistic MCDF code written by Desclaux.[39]

    One distinct feature of the ionization cross section for lithium-like ions is the important role played by the excitationautoionization mechanism at the energies between three and five times the direct ionization threshold,which is completely different from the cases of beryllium and boron sequences.For example,this effect contributes approximately 17%of the total ionization cross section of Ne7+, while it is smaller in Ne6+and not observed for Ne5+.[7]In addition,the contribution from the excitation-autoionization process is dominated by 1s2l2l′intermediate states. Therefore, the configurations of 1s2s2, 1s2s2p and 1s2p2are included, where the configurations of 1s2s22Seand 1s2s2p2Podominate the excitationautoionization contributions; the other resonances have minimal contributions to the cross sections.[9,10]The energies and total cross sections are given at autoionization resonance hump in Table 2, along with the other theoretical results and experimental data. Our calculations are close to the experiments and the Coulomb-Born exchange approximation with closecoupling results.[9]Generally,the model TPDW11 is in good agreement with the experimental measurements for the largest difference less than 5%. The only exception is for Ne7+ion,

    where the TPDW00 model behaves well and there is a 10%discrepancy between TPDW00 and TPDW11 models.

    Table 2. Energies E (eV)and total cross sections σ (10-3 a.u.)at the positions of autoionization resonances for lithium-like ions.

    The total cross sections produced by using the models TPDW00, TPDW01 and TPDW11 for the ions C3+, N4+,O5+, Ne7+and Fe23+are presented in Figs. 1-5, along with available experimental data and theoretical results. Generally the ionization cross section is a slow and smooth varying function of the incident electron energy, but sharp peak appears at about four times the ionization energy. The cross sections using three models appear to be very similar with each other at the low energies, so we present the results in Table 3. The results generated by the TPDW00 model are smaller than TPDW01 and TPDW11 at less than 1.25 times the ionization energy and are larger in higher incident energy. At small incident energies, the model TPDW00 accurately describes continuous electrons because two electrons are screened each other by sharing a small kinetic energy. At large incident energies,the model TPDW01 or TPDW11 is expected to be more reliable,since at least one scattered electron possesses a large kinetic energy,which generates small screening effects. The results of three models become similar as the nuclear chargeZincreases because the nuclear potential dominates the cross section of highly charged ions such that the mutual screening effects of continuous electrons affect negligibly. We also present the excitation-autoionization contributions for C3+, N4+, O5+, Ne7+and Fe23+ions from Figs.1-5.Obviously,the excitation-autoionization mechanism plays a significant role for all the ions. The contributions are approximately 15%of the total cross section at formant in C3+,N4+,O5+, and Ne7+ions, while it is less than 7% for Fe23+ion.Another interesting feature is the shift of the resonant peak toward the lower energy with an increase in the number of nuclear charges. The peak position is about five times the ionization energy for C3+ion,but drops to about three times the ionization energy for Fe23+ion. Note that the cross sections caused by the direct inner-shell ionization are also considered when the incident electron energy is greater than the 1sionization energy threshold, and this contribution never exceeds 15%.

    Table 3. The total cross sections σ (10-3 a.u.) are calculated for lithium-like ions near the threshold with the models TPDW00,TPDW01 and TPDW11,respectively.

    Figure 1 shows the total cross sections for C3+, along with the theoretical values[9]and the experimental results[15]with their uncertainty of about 12%. The agreement between the Coulomb-Born exchange results and experiment is good below 2.5 times the ionization energy. After that, the discrepancy has become more pronounced. As is expected, the TPDW00 model results are much higher than experiment except near the threshold. The TPDW01 or TPDW11 model appears to be somewhat larger compared with the measurements before the peak of direct ionization, with a difference less than 6%. The TPDW11 model is in better agreement with experiment in the autoionization region than Coulomb-Born exchange. Figures 2 and 3 depict the two-potential data for N4+and O5+together with the experimental results,[17]and the theoretical values with the Coulomb-Born exchange method,[9]respectively. Here, the theoretical results containing the excitation-autoionization contributions are discussed.Similarly, the TPDW00 model is higher than experiment,while,this difference becomes smaller with the nuclear charge increasing. The Coulomb-Born exchange approximation is again smaller than our results of two-potential distorted-wave in direct process. However, since the distortion effects will be small at the high energies of autoionization region, the coulomb-wave and distorted-wave results tend to be close.For both ions,the TPDW11 results are in excellent agreement with the experiments.

    Fig. 1. Electron-impact ionization cross sections of C3+ (ionization energy = 64.385 eV). The solid curves represent the two-potential distorted-wave calculations with models TPDW00, TPDW01, and TPDW11 and the results of excitation-autoionization. The Coulomb-Born exchange results[9] with dashed curve and the experimental data[15] with solid dot are shown for comparison.

    Figure 4 shows the theoretical results of Ne7+,which include the excitation-autoionization contribution using closecoupling approximation[9]and with the distorted waves-Rmatrix method.[10]The Coulomb-Born exchange calculation underestimates the direct ionization contribution below the autoionization threshold, whereas the excitation-autoionization contribution is consistent with the present results. Moreover,the direct ionization cross sections of Riahiet al.[10]are lower than others and the excitation-autoionization contributions seem to be overestimated using the R-matrix method.With the nuclear charge increasing, the TPDW00 model is found to be closer to the measurements.[7,17]Our two-potential results provide an excellent estimation for incident energies in the ranging of threshold energy units from 1 to 10.

    Fig. 2. Electron-impact ionization cross sections of N4+ (ionization energy = 97.777 eV). The solid curves represent the two-potential distorted-wave calculations with models TPDW00, TPDW01, and TPDW11 and the results of excitation-autoionization. The Coulomb-Born exchange results[9] with dashed curve and the experimental data[17] with solid dots are shown for comparison.

    Fig. 3. Electron-impact ionization cross sections of O5+ (ionization energy = 138.006 eV). The solid curves represent the two-potential distorted-wave calculations with models TPDW00, TPDW01, and TPDW11 and the results of excitation-autoionization. The Coulomb-Born exchange results[9] with dashed curve and the experimental data[17] with solid dots are shown for comparison.

    Fig. 4. Electron-impact ionization cross sections of Ne7+ (ionization energy = 238.996 eV). The solid curves represent the two-potential distorted-wave calculations with models TPDW00, TPDW01, and TPDW11 and the results of excitation-autoionization. The Coulomb-Born exchange results[9] with dashed curve, the distorted waves-Rmatrix results[10]with dotted curve,and the experimental data[7,17]with solid dots are shown for comparison.

    Figure 5 shows our data of Fe23+ion, as well as theoretical data[9]and the experiment.[18]Our results are slightly higher than those of Coulomb-Born exchange approximation,in which the relativistic effect is not included. However, the relativistic corrections are important for the case of Fe23+ion.The effect of distortion decreases with increasing charge as expected,and all calculations are more or less consistent.

    Fig. 5. Electron-impact ionization cross sections of Fe23+ (ionization energy =2046.634 eV). The solid curves represent the two-potential distorted-wave calculations with models TPDW00, TPDW01, and TPDW11 and the results of excitation-autoionization. The Coulomb-Born exchange results[9] with dashed curve and the experimental data[18] with solid dots are shown for comparison.

    2.2. Contributions from exchange effect

    Since the transition matrix element has been separated into direct,interchange,and capture parts in Eq.(10),we can explore the contributions from different terms in the potential,which is also of great interest in the studies of ionization dynamics. As an example, a separation of the contributions on the total cross sections of C3+and Fe23+ions from model TPDW01 are presented in Fig. 6. Obviously, the direct part plays a major role in both ions. The interchange terms increase the cross sections by 50% near the threshold and decrease them by about 10% after the peak. For C3+ion, the contributions from capture terms are negative and influence on the cross sections is less than 2%. For Fe23+,the trend of the capture terms is similar to the low-Zions, but the proportion decreases to 0.2%.

    It is observed that the capture terms have more contribution for lower-Zions, but become negligible for higher-Zions in the selected targets. The bound electrons of lower-Zions spread wider, so that there is more opportunity for incident electron to overlap and exchange energy with bound electrons. Simultaneously, because the incident electron spends more time to interact with target near the threshold, the exchange effects become more significant. Moreover, the radial integral〈WpbRλWsi〉in the interchange terms[40]become larger;thus the interchange terms contribute significantly near the threshold. However, the bound electrons are more tightly bound together, so there are fewer opportunities to exchange with the incident electron for higher-Zions.

    Fig. 6. Contributions from exchange effects on the cross sections of C3+ and Fe23+ in the model TPDW01.

    3. Conclusion

    We have applied the two-potential distorted-wave and Rmatrix methods to describe the electron-impact ionization with direct and indirect mechanisms for selected lithium-like ions.Several sets of asymptotic charges in three models TPDW00,TPDW01 and TPDW11 are used to characterize the effects of mutual screening from scattered electrons.The total cross sections obtained in the present work for the lithium isoelectronic sequence show good agreement with experimental results. It is found that the model TPDW00 better describes the electronimpact ionization process at lower incident energies,whereas the model TPDW01/TPDW11 works better at higher incident energies. With the nuclear charge increasing, the TPDW00 model becomes more reliable. The contributions from the exchange amplitudes, including the interchange and capture parts,are also discussed in the present work. The interchange term is important for all the isoelectronic sequence and the contribution of capture term only becomes non-negligible for the case of lower-Z ions. Furthermore, the K-L excitationautoionization processes are non-negligible for lithium-like ions, which contribute at most 7%-15% in the present total cross section calculations.This work can provide a set of highprecision ionization cross section data for related plasma simulations,and it can also provide a reference for future studies with more sophisticated methods.

    Acknowledgements

    This work is supported by the National Natural Science Foundation of China (Grant Nos. 11934004 and U1832201),the Science Challenge Project (Grant No. TZ2016005), and the CAEP Foundation(Grant No.CX2019022).

    猜你喜歡
    時能循跡王凱
    戒不掉的甜
    食品與生活(2023年2期)2023-04-06 15:49:58
    基于DFT算法的電力巡檢無人機(jī)循跡檢測系統(tǒng)設(shè)計
    王凱室內(nèi)設(shè)計作品選登
    基于單片機(jī)的智能循跡小車的設(shè)計
    電子測試(2018年15期)2018-09-26 06:01:14
    智能差分循跡小車設(shè)計
    電子制作(2017年1期)2017-05-17 03:54:20
    基于MC9S12XS128處理器的智能循跡小車分析研究
    電子制作(2016年11期)2016-11-07 08:43:49
    微笑的境界
    “靖王”王凱:我自己看《瑯琊榜》也會哭
    金色年華(2016年2期)2016-02-28 01:38:42
    由一道習(xí)題錯解想到的
    我想有對翅膀
    看免费成人av毛片| 中国美女看黄片| 国产免费男女视频| 97人妻精品一区二区三区麻豆| 一夜夜www| 免费观看人在逋| 亚洲成人精品中文字幕电影| 久久精品久久久久久噜噜老黄 | 日本a在线网址| 日韩一本色道免费dvd| 久久久久久久久久久丰满 | 熟妇人妻久久中文字幕3abv| 免费人成在线观看视频色| 九色国产91popny在线| 99热这里只有是精品在线观看| 免费观看的影片在线观看| 少妇裸体淫交视频免费看高清| 深夜a级毛片| 国内精品久久久久精免费| 最新中文字幕久久久久| 亚洲国产欧洲综合997久久,| www日本黄色视频网| 白带黄色成豆腐渣| 免费观看精品视频网站| 欧美潮喷喷水| 亚洲黑人精品在线| 成人av一区二区三区在线看| 欧美激情国产日韩精品一区| 午夜视频国产福利| 精品午夜福利视频在线观看一区| 日韩强制内射视频| 午夜福利18| 91狼人影院| 免费在线观看日本一区| 又爽又黄无遮挡网站| 69av精品久久久久久| 亚洲av美国av| 亚洲精品一区av在线观看| 国产精品不卡视频一区二区| 免费黄网站久久成人精品| 午夜亚洲福利在线播放| 亚洲精品一区av在线观看| 久久热精品热| 91狼人影院| 亚洲精品乱码久久久v下载方式| 51国产日韩欧美| 日韩av在线大香蕉| 免费不卡的大黄色大毛片视频在线观看 | 18+在线观看网站| 99在线视频只有这里精品首页| 日本成人三级电影网站| 天堂网av新在线| 国产一区二区亚洲精品在线观看| 免费看光身美女| 老女人水多毛片| 色视频www国产| 欧美日韩综合久久久久久 | 久久久久国内视频| av.在线天堂| 午夜免费激情av| 一进一出抽搐gif免费好疼| 成人二区视频| 91久久精品国产一区二区成人| 不卡视频在线观看欧美| 一级av片app| 97碰自拍视频| 老司机福利观看| 国产三级在线视频| 久久精品国产亚洲av天美| 国产熟女欧美一区二区| 精品久久久久久久久亚洲 | 亚洲精品成人久久久久久| 少妇人妻精品综合一区二区 | 亚洲午夜理论影院| 草草在线视频免费看| 深夜精品福利| 免费观看在线日韩| 亚洲成av人片在线播放无| 亚洲人成网站在线播| 一夜夜www| www.色视频.com| 黄色配什么色好看| 国产色爽女视频免费观看| 乱系列少妇在线播放| 亚洲内射少妇av| 97人妻精品一区二区三区麻豆| 久久精品国产亚洲av涩爱 | 久99久视频精品免费| 国产伦精品一区二区三区视频9| 嫩草影院新地址| 一本久久中文字幕| 精品午夜福利视频在线观看一区| 国产精品伦人一区二区| 干丝袜人妻中文字幕| 日韩欧美免费精品| 99在线视频只有这里精品首页| 啦啦啦啦在线视频资源| 国内毛片毛片毛片毛片毛片| 日本黄色片子视频| 黄色女人牲交| 亚洲午夜理论影院| 国模一区二区三区四区视频| 欧美绝顶高潮抽搐喷水| 两个人的视频大全免费| 亚洲成人久久爱视频| 国产精品久久久久久亚洲av鲁大| 国产三级中文精品| 亚洲人成伊人成综合网2020| 中国美女看黄片| 黄片wwwwww| 日本熟妇午夜| 麻豆精品久久久久久蜜桃| 一个人观看的视频www高清免费观看| 黄色一级大片看看| 久久久色成人| 欧美bdsm另类| 欧美日韩国产亚洲二区| 99热只有精品国产| 麻豆国产av国片精品| 国产伦精品一区二区三区视频9| 久久久久精品国产欧美久久久| 国产av不卡久久| 偷拍熟女少妇极品色| 国产一区二区在线观看日韩| 网址你懂的国产日韩在线| 亚洲国产精品合色在线| 校园春色视频在线观看| 欧美一级a爱片免费观看看| 久久人妻av系列| 国产淫片久久久久久久久| 中国美女看黄片| 麻豆国产av国片精品| 好男人在线观看高清免费视频| 两个人视频免费观看高清| 一级毛片久久久久久久久女| 国产精品人妻久久久影院| 在线免费十八禁| 国产淫片久久久久久久久| 国产美女午夜福利| 最新在线观看一区二区三区| 亚洲精品456在线播放app | 欧美激情国产日韩精品一区| 尾随美女入室| 日韩国内少妇激情av| 中文资源天堂在线| 九色国产91popny在线| 九色国产91popny在线| 如何舔出高潮| 亚洲人成伊人成综合网2020| 成年女人永久免费观看视频| 欧美日韩精品成人综合77777| 婷婷六月久久综合丁香| 少妇人妻一区二区三区视频| 国产乱人视频| 一进一出抽搐gif免费好疼| 日本熟妇午夜| 成年女人毛片免费观看观看9| 69av精品久久久久久| 精品乱码久久久久久99久播| 久久精品国产清高在天天线| 成人二区视频| 日韩强制内射视频| 人人妻人人澡欧美一区二区| 中文亚洲av片在线观看爽| 亚洲国产精品sss在线观看| 亚洲精华国产精华液的使用体验 | 国产精品三级大全| 日韩欧美在线二视频| x7x7x7水蜜桃| 熟女人妻精品中文字幕| 97热精品久久久久久| 美女xxoo啪啪120秒动态图| 亚洲自拍偷在线| 亚洲国产精品sss在线观看| 人妻制服诱惑在线中文字幕| 露出奶头的视频| 此物有八面人人有两片| 日本与韩国留学比较| 亚洲av中文av极速乱 | 啦啦啦韩国在线观看视频| 亚洲av成人精品一区久久| 亚洲av中文字字幕乱码综合| 久久久久久久久中文| 色尼玛亚洲综合影院| 一区二区三区免费毛片| 午夜福利视频1000在线观看| 免费在线观看成人毛片| 嫩草影院入口| 国产精品福利在线免费观看| 亚洲国产精品sss在线观看| 亚洲精品一卡2卡三卡4卡5卡| 网址你懂的国产日韩在线| 日本成人三级电影网站| 亚洲av二区三区四区| 国产高清不卡午夜福利| 少妇高潮的动态图| 成人国产综合亚洲| 国产亚洲精品久久久久久毛片| 日韩精品青青久久久久久| 国产男靠女视频免费网站| 久久国产乱子免费精品| 精品一区二区免费观看| 丰满乱子伦码专区| 日韩欧美免费精品| 69av精品久久久久久| 男人的好看免费观看在线视频| 色视频www国产| 99久国产av精品| 尤物成人国产欧美一区二区三区| 欧美国产日韩亚洲一区| 日韩一区二区视频免费看| 国产精品乱码一区二三区的特点| 日韩人妻高清精品专区| 中文字幕av成人在线电影| 亚洲中文字幕一区二区三区有码在线看| 波野结衣二区三区在线| 女同久久另类99精品国产91| 亚洲中文字幕日韩| 国产精品无大码| 五月伊人婷婷丁香| 校园春色视频在线观看| 亚洲性夜色夜夜综合| 搡老妇女老女人老熟妇| 国产美女午夜福利| 久久午夜亚洲精品久久| 干丝袜人妻中文字幕| 日本一本二区三区精品| 免费无遮挡裸体视频| 国产真实伦视频高清在线观看 | 亚洲va在线va天堂va国产| 免费看日本二区| 国产精品不卡视频一区二区| 日韩一本色道免费dvd| 久久精品影院6| 免费观看的影片在线观看| 国产高清三级在线| 日本黄色视频三级网站网址| 国产精品av视频在线免费观看| 午夜老司机福利剧场| 九色国产91popny在线| 动漫黄色视频在线观看| 高清日韩中文字幕在线| 99久国产av精品| 免费在线观看影片大全网站| 免费人成视频x8x8入口观看| 看片在线看免费视频| 一级a爱片免费观看的视频| 99久久精品国产国产毛片| 少妇裸体淫交视频免费看高清| 久久人妻av系列| 国产一区二区三区av在线 | 91在线精品国自产拍蜜月| 九色国产91popny在线| 国产精品福利在线免费观看| 熟女人妻精品中文字幕| 亚洲第一区二区三区不卡| 搡老妇女老女人老熟妇| 亚洲精华国产精华液的使用体验 | 精品人妻视频免费看| 日韩高清综合在线| 成人高潮视频无遮挡免费网站| 十八禁网站免费在线| 麻豆av噜噜一区二区三区| 九九在线视频观看精品| 两个人视频免费观看高清| 日韩一区二区视频免费看| 国产免费av片在线观看野外av| 乱系列少妇在线播放| 一个人看的www免费观看视频| 综合色av麻豆| 亚洲欧美日韩高清在线视频| 日韩欧美一区二区三区在线观看| 国产精品伦人一区二区| av中文乱码字幕在线| 亚洲四区av| 亚洲最大成人中文| 亚洲狠狠婷婷综合久久图片| 精品久久久久久久久久免费视频| 久久婷婷人人爽人人干人人爱| 久99久视频精品免费| 亚洲,欧美,日韩| 日韩欧美三级三区| 亚洲欧美精品综合久久99| 1000部很黄的大片| 久久天躁狠狠躁夜夜2o2o| 看片在线看免费视频| 免费电影在线观看免费观看| 别揉我奶头 嗯啊视频| 久久久午夜欧美精品| 俺也久久电影网| 成人永久免费在线观看视频| 亚洲av日韩精品久久久久久密| 久久人妻av系列| 色噜噜av男人的天堂激情| 很黄的视频免费| 999久久久精品免费观看国产| 深夜精品福利| 高清在线国产一区| 日本 av在线| 国内精品久久久久久久电影| 12—13女人毛片做爰片一| 国产伦人伦偷精品视频| av在线亚洲专区| 亚洲18禁久久av| 校园春色视频在线观看| 日本色播在线视频| 欧美色欧美亚洲另类二区| 亚洲第一区二区三区不卡| 免费人成视频x8x8入口观看| 黄色配什么色好看| 观看美女的网站| 可以在线观看毛片的网站| 草草在线视频免费看| 在线看三级毛片| 欧美日韩黄片免| 欧美激情在线99| 欧美日韩国产亚洲二区| a级毛片a级免费在线| 日本一本二区三区精品| 国产精品免费一区二区三区在线| 亚洲图色成人| 色噜噜av男人的天堂激情| 成年免费大片在线观看| 日韩精品青青久久久久久| 欧美色视频一区免费| 九九在线视频观看精品| 日韩高清综合在线| 国产视频一区二区在线看| 最近中文字幕高清免费大全6 | 在线免费观看的www视频| 九九爱精品视频在线观看| 国产精品久久久久久亚洲av鲁大| 国产成人av教育| 国产极品精品免费视频能看的| 免费人成视频x8x8入口观看| 成年版毛片免费区| 成人午夜高清在线视频| 日韩国内少妇激情av| 深爱激情五月婷婷| 日韩在线高清观看一区二区三区 | 午夜久久久久精精品| 亚洲一级一片aⅴ在线观看| 干丝袜人妻中文字幕| 嫩草影视91久久| 最近在线观看免费完整版| 国产精品98久久久久久宅男小说| 亚洲国产精品成人综合色| 欧美日韩国产亚洲二区| 在线观看美女被高潮喷水网站| 黄色欧美视频在线观看| 国产精品人妻久久久影院| 中文字幕人妻熟人妻熟丝袜美| 午夜福利欧美成人| 婷婷丁香在线五月| 成人三级黄色视频| 亚洲一区高清亚洲精品| 亚洲 国产 在线| 最近在线观看免费完整版| 成年女人看的毛片在线观看| 男人的好看免费观看在线视频| h日本视频在线播放| 欧美性猛交╳xxx乱大交人| 看黄色毛片网站| 99在线人妻在线中文字幕| 欧美一级a爱片免费观看看| 亚洲综合色惰| 日韩欧美国产在线观看| 一进一出好大好爽视频| 尤物成人国产欧美一区二区三区| 国产精品,欧美在线| 成熟少妇高潮喷水视频| 最好的美女福利视频网| 成年免费大片在线观看| 美女大奶头视频| 1024手机看黄色片| 精品不卡国产一区二区三区| 色精品久久人妻99蜜桃| 欧美激情久久久久久爽电影| 嫩草影院新地址| 伊人久久精品亚洲午夜| 一个人免费在线观看电影| 小蜜桃在线观看免费完整版高清| 色综合站精品国产| 国产探花在线观看一区二区| 国产国拍精品亚洲av在线观看| 国产高清三级在线| 久久精品影院6| 免费在线观看日本一区| 九色成人免费人妻av| 欧美潮喷喷水| 变态另类丝袜制服| av专区在线播放| 色哟哟·www| 99精品在免费线老司机午夜| 国产精品三级大全| 国产亚洲精品av在线| 极品教师在线免费播放| 国产精品亚洲美女久久久| 观看美女的网站| 亚洲va日本ⅴa欧美va伊人久久| 国内毛片毛片毛片毛片毛片| av在线亚洲专区| 日本免费a在线| 中国美白少妇内射xxxbb| 欧美一区二区亚洲| 国内精品一区二区在线观看| 免费搜索国产男女视频| 国产黄片美女视频| 美女cb高潮喷水在线观看| 999久久久精品免费观看国产| 欧美色视频一区免费| 成人毛片a级毛片在线播放| 国产欧美日韩一区二区精品| 国产一级毛片七仙女欲春2| 成年人黄色毛片网站| 夜夜看夜夜爽夜夜摸| 在现免费观看毛片| 午夜福利高清视频| 精品无人区乱码1区二区| 亚洲精品一区av在线观看| 成年免费大片在线观看| 午夜福利欧美成人| 乱码一卡2卡4卡精品| 亚洲精品色激情综合| 99久国产av精品| 最新中文字幕久久久久| 尤物成人国产欧美一区二区三区| 天堂动漫精品| 国产精品电影一区二区三区| 黄色视频,在线免费观看| 国产成人一区二区在线| 91久久精品国产一区二区成人| 白带黄色成豆腐渣| 最后的刺客免费高清国语| 精品一区二区三区视频在线观看免费| 精品一区二区三区视频在线| 我的老师免费观看完整版| 最近最新免费中文字幕在线| 内射极品少妇av片p| 国产精品日韩av在线免费观看| 直男gayav资源| 国产 一区精品| 精品人妻熟女av久视频| 身体一侧抽搐| 午夜老司机福利剧场| 两性午夜刺激爽爽歪歪视频在线观看| 男女边吃奶边做爰视频| 国产 一区 欧美 日韩| 精品人妻视频免费看| 乱系列少妇在线播放| 欧美区成人在线视频| 91在线精品国自产拍蜜月| 久久久久久久久中文| 我的女老师完整版在线观看| 亚洲av不卡在线观看| 日日啪夜夜撸| bbb黄色大片| 久久香蕉精品热| 日本爱情动作片www.在线观看 | 国产亚洲精品综合一区在线观看| 国产成年人精品一区二区| 欧美高清性xxxxhd video| 2021天堂中文幕一二区在线观| 亚洲国产色片| av.在线天堂| 亚洲av日韩精品久久久久久密| 国产成人a区在线观看| 欧美精品国产亚洲| 国产欧美日韩精品一区二区| 舔av片在线| 亚洲av中文字字幕乱码综合| 男女之事视频高清在线观看| 色5月婷婷丁香| 制服丝袜大香蕉在线| 国产精品亚洲美女久久久| 亚洲国产精品成人综合色| 免费av不卡在线播放| a在线观看视频网站| 国产熟女欧美一区二区| 一本一本综合久久| 国产三级中文精品| 国产亚洲欧美98| 午夜a级毛片| 乱码一卡2卡4卡精品| 国产黄a三级三级三级人| 99热精品在线国产| 在线观看美女被高潮喷水网站| 免费无遮挡裸体视频| 毛片女人毛片| 亚洲 国产 在线| 日本黄色片子视频| 国产真实伦视频高清在线观看 | 午夜a级毛片| 又黄又爽又刺激的免费视频.| 国国产精品蜜臀av免费| 伦精品一区二区三区| 91久久精品国产一区二区成人| 成人特级黄色片久久久久久久| 成年人黄色毛片网站| 日日啪夜夜撸| 成人亚洲精品av一区二区| 久久久久久伊人网av| 啦啦啦观看免费观看视频高清| 亚洲无线在线观看| 日韩,欧美,国产一区二区三区 | 成年版毛片免费区| 日本一二三区视频观看| 又粗又爽又猛毛片免费看| 精品午夜福利视频在线观看一区| 日日撸夜夜添| 99久久精品一区二区三区| 露出奶头的视频| 色综合色国产| av女优亚洲男人天堂| 婷婷精品国产亚洲av在线| 欧美成人免费av一区二区三区| 99久久中文字幕三级久久日本| 成人精品一区二区免费| 国产伦人伦偷精品视频| 亚洲成人免费电影在线观看| 一进一出抽搐动态| 少妇被粗大猛烈的视频| 精品久久久噜噜| 我要看日韩黄色一级片| 精品福利观看| 精品欧美国产一区二区三| 精品人妻1区二区| 别揉我奶头 嗯啊视频| 少妇的逼好多水| 亚洲,欧美,日韩| 99riav亚洲国产免费| 久久欧美精品欧美久久欧美| 色av中文字幕| 日本精品一区二区三区蜜桃| 亚洲av中文字字幕乱码综合| 久久久久久久精品吃奶| 欧美日韩黄片免| 国产69精品久久久久777片| 高清日韩中文字幕在线| 国产精品不卡视频一区二区| 久久午夜福利片| 久久久久久九九精品二区国产| 国产v大片淫在线免费观看| 亚洲欧美日韩东京热| 日韩欧美国产一区二区入口| 女的被弄到高潮叫床怎么办 | 亚洲国产色片| 国产男靠女视频免费网站| 国产久久久一区二区三区| 国产精品无大码| 国内久久婷婷六月综合欲色啪| 丰满乱子伦码专区| 欧美+日韩+精品| 99久久精品国产国产毛片| 成人国产一区最新在线观看| 欧美高清性xxxxhd video| 哪里可以看免费的av片| 欧美绝顶高潮抽搐喷水| 久久亚洲真实| 不卡一级毛片| 欧美中文日本在线观看视频| 婷婷六月久久综合丁香| 成人欧美大片| 99国产精品一区二区蜜桃av| 精品一区二区三区人妻视频| 人妻久久中文字幕网| 久久婷婷人人爽人人干人人爱| 看黄色毛片网站| 狠狠狠狠99中文字幕| 精品一区二区三区视频在线观看免费| 日本黄色片子视频| 黄色女人牲交| 在线国产一区二区在线| 亚洲av熟女| 亚洲成人久久性| 啦啦啦啦在线视频资源| 国产高清视频在线观看网站| 欧美+日韩+精品| 久久国内精品自在自线图片| 久久欧美精品欧美久久欧美| 精品人妻一区二区三区麻豆 | 日日干狠狠操夜夜爽| 1000部很黄的大片| 99热这里只有精品一区| or卡值多少钱| .国产精品久久| 97超级碰碰碰精品色视频在线观看| 热99在线观看视频| 亚洲av中文字字幕乱码综合| 欧美成人一区二区免费高清观看| 自拍偷自拍亚洲精品老妇| 久久久久久久亚洲中文字幕| 午夜亚洲福利在线播放| 人妻夜夜爽99麻豆av| 国产精品久久电影中文字幕| 国产精品爽爽va在线观看网站| 亚洲成人免费电影在线观看| 桃色一区二区三区在线观看| 在线免费观看的www视频| 不卡视频在线观看欧美| 能在线免费观看的黄片| 国产高清激情床上av| 亚洲男人的天堂狠狠| 国产国拍精品亚洲av在线观看| 国产白丝娇喘喷水9色精品| 一级黄片播放器| 亚洲av免费在线观看| 老司机深夜福利视频在线观看| 亚洲va在线va天堂va国产| 亚洲av中文av极速乱 | 精品乱码久久久久久99久播| 亚洲欧美日韩东京热| 18禁黄网站禁片午夜丰满| 久久精品国产亚洲av香蕉五月| 午夜日韩欧美国产|