• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Antioxidant and α-glucosidase inhibitiory activity of Cercis chinensis flowers

    2020-05-26 06:06:32JuanjuanZhangLiZhouLiliCuiZhenhuaLiuJinfengWeiWenyiKang

    Juanjuan Zhang, Li Zhou, Lili Cui, Zhenhua Liu, Jinfeng Wei,e,?,Wenyi Kang,?

    aNational R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China

    bKaifeng Key Laboratory of Functional Components in Health Food, Kaifeng, 475004, China

    cJoint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, 475004, China

    dZhengzhou City Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou, 450063, China

    eMinsheng College, Henan University, Kaifeng, Henan, 475004, China

    ABSTRACT

    Antioxidant and α-glucosidase inhibitiory active compounds of Cercis chinensis flowers were investigated with bio-assay guiding method. Ethyl acetate fraction (CLEa) and n-butanol fraction (CLBu) exhibited antioxidant and α-glucosidase inhibitiory activity in vitro, and the corresponding active fractions, EaFr.3,EaFr.5 and BuFr.1, exhibited higher antioxidant and α-glucosidase inhibitiory activity than those of other fractions. Eight compounds, ethyl gallate (1), stearic acid (2), docosanoic acid (3), 5α-stigmast-9(11)-en-3β-ol (4), kaempferol-3-O-α-rhamnopyranoside (5), vanillic acid (6), fisetin (7), and β-sitosterol (8),were isolated and identified from CLEa and CLBu. Ethyl gallate shown the highest antioxidant activity by scavenging DPPH radical and reducing ferric compared. Docosanoic acid and vanillic acid shown stronger α-glucosidase inhibitory activity than that of acarbose.

    Keywords:

    Antioxidative activity

    Cercis chinensis bunge

    Chemical component

    α-glucosidase

    1. Introduction

    Cercis chinensis Bunge, is widely distributed in most regions of China with furs, woods, roots, and flowers used as Chinese Traditional Medicine (TCM) [1]. Its main chemical constituents were reported to be flavonoid, phenolic acid, toluylene, xylogen and polysaccharides [2–4]. Mu et al. [5] found three new dibenz [b, f] oxepins: 6-methoxy-7-methyl-8-hydroxydibenz [b,f] oxepin, 1,8-dimethoxy-6-hydroxy-7-methyldibenz [b, f] oxepin,and 1-hydroxy-6,8-dimethoxy-7-methyldibenz [b, f] oxepin from C. chinensis. Shi et al. [6] determined the contents of myricetrin,quercitrin and afzelin in C. chinensis leaves by High Performance Liquid Chromatograph (HPLC) analysis. Pharmacological investigation showed that C. chinensis had antibacterial, antioxidant,hypoglycemic and tyrosinase activity [7–9]. Some reports have found that the ethonal extract of the C. chinensis leaf showed more remarkable anti-in flammatory and analgesic effects than that of water extract, and the ethonal extract and water extract also showed remarkable anti-hypoxia and anti-fatigue effects [10]. The red pigment from C. chinensis flowers could regulate blood glucose in diabetic rats induced by alloxan and the levels of lipids in hyperlipidemia rat induced by high-fat cream [11].

    α-Glucosidase inhibitors have been used as agents in the treatment for diabetes mellitus type 2 that work by preventing the digestion of carbohydrates such as starch and table sugar [12]. It has been known that a number of antidiabetic medicinal plants can be an important source of α-glucosidase inhibitors [13]. Free radicals is mostly considered to be associated with pathogenesis and be responsible for the initiation or/and development of many diseases such as atherosclerosis, in flammation, cancer, hypertension,ischemia-reperfusion, autoimmune diseases, agingand age-related diseases [14]. Antioxidants may have an important role in preventing or alleviating chronic diseases by reducing the oxidative damage to cellular components caused by free radicals [15]. A number of reports on the isolation and testing of plant-derived antioxidants in the maintenance and improvement of health and wellness have been described during the past decade [16,17]. At present, the studies of C. chinensis mainly focused on evaluating the biological activity of crude extracts and red pigment. On the bases of those, antioxidant activity and α-glucosidase inhibitiory activity of 70% ethanol extracts of C. chinensis flowers were investigated with activity guiding method. Eight compounds were identified from active fractions as ethyl gallate (1), stearic acid (2),docosanoic acid (3), 5α-stigmast-9(11)-en-3β-ol (4), kaempferol-3-O-α- rhamnopyranoside (5), vanillic acid (6), fisetin (7), and β-sitosterol (8). Compounds 2–6 and 8 were isolated from this genus for the first time.

    2. Materials and methods

    2.1. Chemical reagents and analytical instruments

    1,1-diphenyl-2-picrylhydrazyl [(DPPH, Tokyo Chemical Industry Co., Ltd. (TCI)], [2,2′-azino-bis(3-ethylbenzothi-azoline)-6-sulphonicacid] diamonium salt (ABTS, Fluka), 6-hydroloxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox, Aldrich),2,4,6-Tri(2-pyridyl)-s-triazine (TPTZ, Acros organics), butylated hydroxytoluene (BHT, Acros organics), butyl hydroxy anisd(BHA, Acros organics), propyl Gallate (PG, Acros organics), α-Glucosidase (EC 3.2.1.20), 4-N-trophenyl-α-D-glucopyranoside(PNPG, 026k1516), acarbose (Lot 20,120,523) and DMSO from Sigma. Sephadex LH-20 (Pharmacia), electronic balance (Mettler-Toledo), Multiskan MK3 microplate reader (Thermo Electron), NMR recoeded on a Bruker Avance Am-400 spectromete.

    2.2. Plant materials

    C. chinensis flowers were collected in Henan University, in April 2012. The samples were identified by Prof. Changqin Li (Henan University). A voucher specimen was deposited in National R & D Center for Edible Fungus Processing Technology, Henan University.

    2.3. Sample preparation

    Air-dried C. chinensis flowers (965 g) were extracted with 70%(V/V) ethanol at room temperature for 2 times, and 2 days for each time. An extract was obtained after removing ethanol. The extract (335 g) was suspended in deionized water and then successively partitioned with petroleum ether, ethyl acetate, and finally with n-butanol to obtain petroleum ether extract (CLPe, 8.33 g),ethyl acetate extract (CLEa, 11.71 g) and n-butanol extract (CLBu,23.00 g).

    CLEa (11.71 g) was applied to a silica gel H medium-pressure liquid chromatography and successively eluted with petroleum ether/ethyl acetate (from 100:1 to 7:3) and chloroform/acetone (from 10:1–8:2) to obtain 7 fractions: EaFr.1, EaFr.2, EaFr.3, EaFr.4, EaFr.5,EaFr.6 and EaFr.7.

    CLBu (23.00 g) was chromatographed on D101 macroporous resin, and successively eluted with 20% methanol, 40% methanol,60% methanol and methanol to obtain 4 fractions: BuFr.1, BuFr.2,BuFr.3 and BuFr.4.

    2.4. Inhibiting activity of α-glucosidase in vitro

    The α-glucosidase inhibitory activity was determined in accordance with a 96-well plate mothod described by Guo et al. [18,19].Every sample was dissolved in DMSO and the OD value was measured at 405 nm. Every reaction was carried out with three replications. Acarbose was used as a positive control. The inhibitory rates (%) were calculated according to the following formula:

    2.5. Antioxidant activity in vitro

    2.5.1. Scavening activity against DPPH radical

    DPPH method was carried out according to the literatures [20,21]. The fractions and compounds were prepared into 2.0 mg/mL and 1.0 mg/mL with methanol as preliminary screening concentration, respectively. Then every sample was stepwise diluted into 5 different concentrations. An aliquot composed of 10 μL samples and 175 μL 200 μmol/L of DPPH solution were added into 96-well plates. Mixtures were vigorously shaken and left 20 min in the dark at room temperature. The absorbance was then measured at 515 nm. All reactions were carried out with three replications. Inhibition of DPPH radical was calculated as follows:

    Where Ablankwas the absorbance of DPPH itself and Asamplewas the absorbance of the samples of DPPH with BHT, PG and BHA as positive control.

    2.5.2. Scavening activity against ABTS radical

    ABTS assay was carried as described in reference [22]. Before the analysis, ABTS radical cation was produced by reacting 7 mmol/L stock solution of ABTS with 2.45 mmol/L potassium persulfate and then the mixture was stood in the dark at room temperature for another 12 h. ABTS radical cation solution was diluted with methanol to produce a solution with an absorbance of 0.800 ± 0.03 at 734 nm. Then 10 μL samples were mixed with 200 μL ABTS radical cation solution. After 20 min response period at room temperature in darkness, the absorbance of the resulting solution and blank (with same chemicals, except for the sample) was measured at 734 nm. All reactions were carried out with three replications. ABTS radical inhibition was calculated in the following way:

    Where Ablankwas the absorbance of ABTS itself and Asamplewas the absorbance of the samples on ABTS.

    2.5.3. Scavening activity against FRAP radical

    FRAP assay was determined according to the method in references [23,24]. Every sample was determined in a series of different concentrations with methanol. 10 μL samples were mixed with 200 μL TPTZ working liquid that was freshly prepared. After the mixture was incubated at 37°C for 30 min, the absorbance of the resulting solution was measured by microplate reader at 595 nm with trolox as a reference. Results were expressed in μmol Trolox equivalents (TEAC) (TE)/g sample. All reactions were carried out with three replications.

    2.6. Statistical analysis

    The results were expressed as arithmetic mean ± standard deviation (SD). Statistical analysis was performed using SPSS19.0 software, and comparison between any two groups was evaluated using one-way analysis of variance (One-Way ANOVA). The difference between groups with P < 0.05 was regarded as statistically significant.

    2.7. Compounds isolation

    EaFr.2 (1.32 g) was subjected to a silica gel H medium-pressure liquid chromatography and eluted with petroleum ether/ethyl acetate (from 20:1 to 8:2) to obtain from A to C fractions. Fraction A was separated on a silica gel H with petroleum ether/chloroform(50:1 to 8:2), and further chromatographed on Sephadex LH-20 to give compound 3 (5 mg). EaFr.3 (0.63 mg) was chromatographed on a silica gel H and eluted with petroleum ether/chloroform/ethyl acetate (7:2:0.5) to obtain D and E fractions. Fraction E was applied to a silica gel H with petroleum ether/ethyl acetate(from 40:1 to 7:3), and further chromatographed on Sephadex LH-20 (petroleum ether/chloroform/ methanol = 9:9:2) to yield compound 2 (11.2 mg). EaFr.4 (0.82 g) was separated on silica gel H with petroleum ether/chloroform (20:1) to obtain F and G fractions. Fraction F was separated on silica gel H with petroleum ether/acetone (20:1) and Sephadex LH-20 to give compound 8 (7.0 mg). Fraction G was chromatographed on Sephadex LH-20 (petroleum ether/chloroform/ methanol = 9:9:2) to yield compound 4 (12.0 mg). EaFr.5 (0.70 g) was purified by silica gel H with petroleum ether/chloroform/ethyl acetate (5:4:1), and further chromatographed on Sephadex LH-20 (chloroform/methanol = 1:1)to yield compound 1 (15.0 mg).

    BuFr.1 (3.04 g) was separated on silica gel H with chloroform/acetone (50:1–8:2) to obtain H and I fractions. Fraction I was separated on silica gel H with chloroform/acetone/methanol(20:1:0.5) and chromatographed on Sephadex LH-20 (methanol)to give compound 5 (6.8 mg). BuFr.3 was chromatographed on Sephadex LH-20 (methanol), further chromatographed on ODS to obtain compound 6 (5.0 mg) and 7 (6.0 mg).

    2.8. Identification of the compounds

    After comparing the melting points and spectral data (1H-NMR,13C-NMR, and MS) of the literature values, compounds 1 to 8 were identified as ethyl gallate (1) [25], stearic acid (2) [26], docosanoic acid (3) [27], 5α-stigmast-9(11)-en-3β-ol (4) [28], kaempferol-3-O-α-rhamnopyranoside (5) [29], vanillic acid (6) [30], fisetin (7) [31],and β-sitosterol (8). And the chemical structures of compounds 1 to 8 are shown in Fig. 1.

    Fig. 1. Chemical structures of Compounds 1-8 isolated from C. chinensis flowers.

    Compound 1, colorless crystal, m.p. 151~154°C, EI-MS m/s: 198[M]+.1H-NMR (400 MHz, CDCl3) δ: 7.74 (2H, s, H-2,6), 4.18 (2H, q,H-2′), 1.08 (3H, t, H-3′).13C-NMR (100 MHz, CDCl3) δ: 121.6 (C-1),110.3 (C-2, 6), 147.7 (C-3, 5), 136.0 (C-4), 167.2 (C-1′), 60.6 (C-2′),14.6 (C-3′).

    Compound 2, white powder, m.p. 67~69°C, EI-MS m/s: 284 [M]+.1H-NMR (400 MHz, CDCl3) δ: 0.87 (3H, t, H-18), 1.20 (28H, m, H-4~17), 1.62 (2H, m, H-3), 2.34 (2H, t, H-2), 3.48 (1H, s, OH).13C-NMR(100 MHz, CDCl3) δ: 179.92 (C-1), 34.22 (C-2), 32.00 (C-3), 29.79-29.21 (C-4~15), 24.84 (C-16), 22.82 (C-17), 14.21 (C-18).

    Compound 3, white powder, m.p. 80~81°C, EI-MS m/s: 340 [M]+.1H-NMR (400 MHz, CDCl3) δ: 0.87 (3H, t, H-22), 1.25 (36H, m, H-4~21), 1.62 (2H, m, H-3), 2.34 (2H, t, H-2).13C-NMR (100 MHz,CDCl3) δ: 180.00 (C-1), 34.20 (C-2), 32.08 (C-3), 29.83-27.31 (C-4~19), 24.85 (C-20), 22.83 (C-21), 14.23 (C-22).

    Compound 4, white powder, m.p. 131~133°C, EI-MS m/s: 414[M]+.1H-NMR (400 MHz, CDCl3) δ: 0.67 (3H, s, H-18), 0.80 (3H,d, J = 8.4 Hz, H-29), 0.84 (6H, d, J = 7.6 Hz, H-26, H-27), 0.92 (3H, d,J = 6.4 Hz, H-21), 1.00 (3H, s, H-19), 3.52 (1H, m, H-3), 5.35 (1H, s,H-11).13C-NMR (100 MHz, CDCl3) δ: 37.44 (C-1), 31.85 (C-2), 71.98(C-3), 32.09 (C-4), 39.97 (C-5), 21.26 (C-6), 29.38 (C-7), 46.05 (C-8),140.97 (C-9), 36.69 (C-10), 121.89 (C-11), 42.49 (C-13), 56.96 (C-14), 24.47 (C-15), 28.41 (C-16), 56.26 (C-17), 12.15 (C-18), 19.56(C-19), 36.32 (C-20), 19.22 (C-21), 34.15 (C-22), 29.06 (C-23), 50.34(C-24), 26.32 (C-25), 19.97 (C-26), 18.95 (C-27), 23.27 (C-28), 12.07(C-29).

    Compound 5, yellow powder, m.p. 172~174°C, EI-MS m/s: 432[M]+.1H-NMR (400 MHz, C5D5N) δ: 1.47 (3H, d, J = 4.8 Hz, H-6′′),3.00~5.00 (glycosyl-H), 5.13 (1H, s, H-1′′), 6.34 (1H, s, H-6), 7.20(1H, s, H-8), 7.27 (2H, d, J = 8.8 Hz, H-3′, H-5′), 8.10 (2H, d, J = 12 Hz,H-2′, H-6′).13C-NMR (100 MHz, C5D5N) δ: 157.51 (C-2), 134.81 (C-3), 178.83 (C-4), 162.79 (C-5), 99.57 (C-6), 165.66 (C-7), 94.37 (C-8), 157.71 (C-9), 105.29 (C-10), 121.62 (C-1′), 131.27 (C-2′, C-6′),116.16 (C-3′, C-5′), 103.62 (C-1′′), 72.34 (C-2′′), 71.83 (C-3′′), 73.06(C-4′′), 71.77 (C-5′′), 18.11 (C-6′′).

    Compound 6, white powder, m.p. 211~212°C, EI-MS m/s: 168[M]+.1H-NMR (400 MHz, DMSO) δ: 3.81 (3H, s, ?OCH3), 6.85 (1H,d, J = 8.4 Hz, H-5), 7.43 (1H, s, H-2), 7.45 (1H, d, J = 7.2 Hz, H-6),9.84 (1H, s, ?OH).13C-NMR (100 MHz, DMSO) δ: 167.11 (?COOH),121.57 (C-1), 112.73 (C-2), 147.17 (C-3), 151.01 (C-4), 114.98 (C-5),123.41 (C-6), 55.52 (3?OCH3).

    Compound 7, yellow powder, m.p. 330~331°C, EI-MS m/s: 286[M]+.1H-NMR (400 MHz, C5D5N) δ: 8.44 (1H, dd, J = 8.4 Hz, H-6′),8.09 (1H, d, J = 8.8 Hz, H-6), 7.27 (1H, d, J = 8.8 Hz, H-2′), 6.73 (1H,s, H-5′), 6.34 (1H, s, H-8), 13.37 (1H, s, ?OH).13C-NMR (100 MHz,C5D5N) δ: 149.07 (C-2), 135.75 (C-3), 176.56 (C-4), 123.75 (C-5),116.19 (C-6), 162.79 (C-7), 100.01 (C-8), 155.41 (C-9), 116.60 (C-10), 122.78 (C-1′), 106.80 (C-2′), 134.70 (C-3′), 134.68 (C-4′), 105.82(C-5′), 111.60 (C-6′).

    Compound 8, white powder, m.p. 136~137°C, EI-MS m/s: 414[M]+. Compare it with β-sitosterol reference substance under TLC with three different spread layout, and they had the same Rf values and coloration. The fusion point of mixture of them had no change.

    3. Results and discussion

    3.1. α-Glucosidase inhibitory activity in vitro

    α-Glucosidase inhibitory activity of C. chinensis fractions was screened to determine the active constituent by α-glucosidase inhibitory model in vitro. The results demonstrated that the C. chinensis fractions had certain inhibitory activity, of which screening inhibition rates are shown in Table 1.

    Table 1α-Glucosidase inhibitory activity of the different extracts of C. chinensis.

    As shown in Fig. 2, α-glucosidase inhibitory rates of CLEa and CLBu were 100.17 ± 2.30 (P < 0.01) and 99.83 ± 1.61 (P < 0.001),respectively, and dramatically higher than that of acarbose 1(59.62% ± 0.68%). In Fig. 3, EaFr.2, EaFr.3, EaFr.4, EaFr.5, EaFr.6,BuFr.1, BuFr.2 and BuFr.3 all shown stronger α-glucosidase inhibitory activity than that of acarbose 2. In Fig. 4, compound 6 (98.87% ± 1.16%) (P < 0.001) shows the highest α-glucosidase inhibitory activity, and compound 3 (76.14% ± 1.03%) (P < 0.01)shows stronger α-glucosidase inhibitory activity than that of and acarbose 3 (62.17% ± 0.72%). Therefore, compound 3 was active compound in EaFr.2 and compound 6 was active compound in BuFr.3.

    Fig. 2. Inhibitory effect of extracts form C. chinensis against α-glucosidase.

    Fig. 3. Inhibitory effect of fractions form C. chinensis against α-glucosidase.

    Fig. 4. Inhibitory effect of compounds form C. chinensis against α-glucosidase.

    For studying the glycosidases action mechanisms, glycosidase inhibitors are the important tools, for some degenerative diseases,glycosidase are also prospective therapeutic agents, for example, diabetes, viral attachment and cancer [32,33]. Currently, the structure types α-glucosidase inhibitor from plants were diversity,for example, terpenes, alkaloids, quinines, flavonoids, phenylpropanoids, steroids and organic acids, alcohols and allyls [34]. It was for the first time to report α-glucosidase inhibitory activity of compound 3 and compound 6.

    3.2. Antioxidant activity in vitro

    3.2.1. DPPH free radical scavenging assays

    As shown in Fig. 5, CLEa and CLBu have ability to scavenge the DPPH radical (64.59% ± 0.45% and 84.26% ± 0.37%, respectively),which were stronger than that of BHA (56.84% ± 0.69%) as a positive control. In Fig. 6, all fractions exhibits better DPPH scavenging activity. Among the fractions, EaFr.3 showen higher antioxidant activity with inhibition ratio of 89.64% ± 0.68%, which was higher than that of BHT, BHA, and PG (58.35% ± 0.35%, 70.07% ± 0.64%, and 88.36 % ± 0.71%, respectively) as positive controls. In Fig. 7, compound 1 isolated from EaFr.5 exhibits strong activity against DPPH radical with the inhibition ratio 88.12% ± 1.03%, and was stronger than that of BHT and BHA (60.12% ± 0.75% and 79.03% ± 0.53%) but lower of PG (90.66% ± 1.14%).

    Fig. 5. The DPPH and ABTS scavenging activity of extracts from C. chinensis.

    Fig. 6. The DPPH and ABTS scavenging activity of fractions from C. chinensis.

    Fig. 7. The DPPH and ABTS scavenging activity of compounds from C. chinensis.

    3.2.2. ABTS free radical scavenging assays

    In ABTS tests, as shown in Fig. 5, CLBu scavenged ABTS radicals with the inhibition ratio being 95.88% ± 1.12% as compared with 94.43 ± 0.75% for CLEa. Both of them were stronger than that of PG (56.84% ± 0.58%). In Fig. 6, EaFr.1 and EaFr.2 show the weaker ABTS radical scavenging ability. Moreover, no significant difference was observed among other fractions and positive controls. In Fig. 7,compound 1 isolated from EaFr.5 exhibits strong activity against ABTS radical with the inhibition ratio 94.96% ± 1.21%, and very close to that of positive controls.

    3.2.3. Ferric reducing activity

    FRAP values for investigated extracts are shown in Fig. 8.CLEa and CLBu (TEAC were (1172.24 ± 41.64) μmol/g and(2525.09 ± 29.92) μmol/g, respectively) had the higher ferric reducing activity than that of BHT (TEAC was(1047.11 ± 137.02) μmol/g), and weaker than that of PG (TEAC was (14,782.22 ± 257.02) μmol/g). As shown in Fig. 9, the ferric reducing activity of fractions and positive controls were in the order: PG > BuFr.1 > BuFr.2 > BuFr.4 > EaFr.5 > BHA > EaFr.3> EaFr.7 > BHA > EaFr.6 > BuFr.3 > EaFr.4. In Fig. 10, the ferric reducing activity of compound 1 (TEAC was (9592.60 ± 270.90)μmol/g) isolated from EaFr.5 was higher than that of BHT and BHA (TEAC were (1301.03 ± 64.32) μmol/g and (2744.80 ± 80.14)μmol/g, respectively), and weaker than that of PG (TEAC was(10,541.82 ± 79.50) μmol/g).

    Fig. 8. The FRAP assay of extracts from C. chinensis.

    Fig. 9. The FRAP assay of fractions from C. chinensis.

    Fig. 10. The FRAP assay of compounds from C. chinensis.

    4. Conclusion

    CLEa, CLBu and fractions of C. chinensis flowers showed αglucosidase inhibitory and antioxidant activity. Based on the bio-assay guiding method was used and 8 compounds were isolated and identified from active fractions. Among them, docosanoic acid and vanillic acid had relatively stronger inhibitory effects on αglucosidase and were considered the active components of EaFr.2 and BuFr.3, respectively. Docosanoic acid and vanillic acid might be the potential inhibitors of on α-glucosidase for treatment of type 2 diabetes. Ethyl gallate had a significant antioxidant activity, and were the active components of EaFr.5. The above studies could provide theoretical basis for its application in α-glucosidase inhibitors and antioxidant activity.

    Declaration of Competing Interest

    The authors declare that they have no competing interests.

    Acknowledgements

    This work was supported by Key Project in Science and Technology Agency of Henan Province (192102110112, 192102110214 and 182102410083); Innovation Training Program for College Students(201910475107 and MSCXSY2019036).

    国产aⅴ精品一区二区三区波| 亚洲精品一卡2卡三卡4卡5卡| 亚洲专区中文字幕在线| 亚洲精品美女久久av网站| 天天操日日干夜夜撸| 国产97色在线日韩免费| 在线观看免费高清a一片| 午夜两性在线视频| 深夜精品福利| 国产av又大| 亚洲欧洲精品一区二区精品久久久| 老司机亚洲免费影院| 涩涩av久久男人的天堂| 99精国产麻豆久久婷婷| 久久久久久亚洲精品国产蜜桃av| 亚洲成人手机| 十八禁高潮呻吟视频| 高清视频免费观看一区二区| 免费看十八禁软件| 国产在线精品亚洲第一网站| 亚洲精品中文字幕在线视频| 日本精品一区二区三区蜜桃| 中文字幕人妻熟女乱码| 免费观看精品视频网站| 成人av一区二区三区在线看| 欧美日韩中文字幕国产精品一区二区三区 | 色播在线永久视频| av线在线观看网站| 亚洲九九香蕉| 欧美一级毛片孕妇| 色婷婷久久久亚洲欧美| 久久亚洲精品不卡| 成年人免费黄色播放视频| 中国美女看黄片| 午夜精品久久久久久毛片777| 色综合欧美亚洲国产小说| 美国免费a级毛片| 99国产极品粉嫩在线观看| 国产亚洲欧美在线一区二区| 国产97色在线日韩免费| 精品福利观看| 国产91精品成人一区二区三区| 亚洲一码二码三码区别大吗| 成熟少妇高潮喷水视频| 国产精品亚洲一级av第二区| 捣出白浆h1v1| x7x7x7水蜜桃| 热99国产精品久久久久久7| 欧美精品高潮呻吟av久久| 日韩欧美免费精品| 欧美另类亚洲清纯唯美| 一级a爱视频在线免费观看| 精品视频人人做人人爽| 十八禁人妻一区二区| 伦理电影免费视频| 欧美 日韩 精品 国产| 亚洲精品美女久久久久99蜜臀| 久久精品亚洲av国产电影网| 亚洲精品av麻豆狂野| 欧美日韩亚洲高清精品| 天天添夜夜摸| 欧美成人免费av一区二区三区 | 国产一区二区激情短视频| 别揉我奶头~嗯~啊~动态视频| 欧美最黄视频在线播放免费 | 侵犯人妻中文字幕一二三四区| 在线观看免费视频网站a站| 国产成人精品无人区| av网站在线播放免费| 亚洲午夜精品一区,二区,三区| avwww免费| 亚洲黑人精品在线| 黑人欧美特级aaaaaa片| 亚洲伊人色综图| 老司机影院毛片| 性少妇av在线| 成年人午夜在线观看视频| 日韩成人在线观看一区二区三区| 日韩人妻精品一区2区三区| 日韩欧美在线二视频 | 女警被强在线播放| 一本大道久久a久久精品| 欧美av亚洲av综合av国产av| 天天操日日干夜夜撸| 色尼玛亚洲综合影院| 欧美成人午夜精品| 美女高潮到喷水免费观看| 精品一区二区三区四区五区乱码| 天天躁日日躁夜夜躁夜夜| 久久久国产欧美日韩av| 久久天躁狠狠躁夜夜2o2o| 久久午夜综合久久蜜桃| 国产精品综合久久久久久久免费 | 老司机影院毛片| 丝袜人妻中文字幕| 女人被狂操c到高潮| 免费在线观看日本一区| 国产精品98久久久久久宅男小说| 巨乳人妻的诱惑在线观看| 十八禁网站免费在线| 午夜亚洲福利在线播放| 亚洲色图 男人天堂 中文字幕| 国产97色在线日韩免费| 脱女人内裤的视频| 成年人午夜在线观看视频| 亚洲专区中文字幕在线| av不卡在线播放| 精品一区二区三区视频在线观看免费 | 午夜91福利影院| 三上悠亚av全集在线观看| 久久精品国产亚洲av香蕉五月 | 91在线观看av| 丝袜在线中文字幕| 亚洲成人国产一区在线观看| cao死你这个sao货| 十分钟在线观看高清视频www| 看免费av毛片| 丝袜在线中文字幕| 欧美黑人欧美精品刺激| 嫁个100分男人电影在线观看| 国产男女内射视频| 天天躁夜夜躁狠狠躁躁| 黑人巨大精品欧美一区二区mp4| 老熟妇乱子伦视频在线观看| 国产亚洲精品一区二区www | 无遮挡黄片免费观看| 亚洲,欧美精品.| 欧美激情高清一区二区三区| 在线观看免费午夜福利视频| 久久热在线av| 国产精品免费视频内射| 国产亚洲精品第一综合不卡| 国产精品二区激情视频| 色精品久久人妻99蜜桃| 精品午夜福利视频在线观看一区| 一级,二级,三级黄色视频| 伦理电影免费视频| 丰满饥渴人妻一区二区三| 亚洲av美国av| 免费看十八禁软件| 9191精品国产免费久久| 在线永久观看黄色视频| 国产成人一区二区三区免费视频网站| 激情在线观看视频在线高清 | 国产成人精品久久二区二区免费| 午夜福利乱码中文字幕| 国产国语露脸激情在线看| 欧美乱色亚洲激情| 一二三四社区在线视频社区8| 视频区图区小说| 老司机亚洲免费影院| 18禁国产床啪视频网站| 夜夜夜夜夜久久久久| 精品福利观看| 国产精品一区二区在线观看99| 自拍欧美九色日韩亚洲蝌蚪91| 变态另类成人亚洲欧美熟女 | 乱人伦中国视频| 深夜精品福利| 午夜福利在线观看吧| 日本撒尿小便嘘嘘汇集6| 国产成人免费无遮挡视频| 午夜两性在线视频| 在线视频色国产色| 日本精品一区二区三区蜜桃| 亚洲av熟女| 性少妇av在线| 亚洲精品久久午夜乱码| 国产亚洲av高清不卡| av欧美777| 国产伦人伦偷精品视频| 国产成人av教育| 黄色a级毛片大全视频| 久热爱精品视频在线9| 在线观看一区二区三区激情| 90打野战视频偷拍视频| 制服诱惑二区| 亚洲欧洲精品一区二区精品久久久| 激情在线观看视频在线高清 | 国产区一区二久久| 黑人操中国人逼视频| 嫩草影视91久久| 成人亚洲精品一区在线观看| 99精品久久久久人妻精品| 久久精品亚洲熟妇少妇任你| 美女高潮到喷水免费观看| 一级片'在线观看视频| 精品国产超薄肉色丝袜足j| 极品教师在线免费播放| 午夜免费鲁丝| 少妇被粗大的猛进出69影院| 国产成人免费观看mmmm| 亚洲国产欧美日韩在线播放| 久久精品成人免费网站| 国产精品久久久久成人av| 国产一卡二卡三卡精品| 国产亚洲欧美精品永久| 日韩欧美国产一区二区入口| 欧美日韩成人在线一区二区| 好看av亚洲va欧美ⅴa在| 人妻 亚洲 视频| 99香蕉大伊视频| 757午夜福利合集在线观看| 亚洲男人天堂网一区| 亚洲欧美激情综合另类| 不卡一级毛片| av超薄肉色丝袜交足视频| 真人做人爱边吃奶动态| 国产不卡av网站在线观看| 免费不卡黄色视频| 身体一侧抽搐| 久久天躁狠狠躁夜夜2o2o| 色播在线永久视频| 91精品三级在线观看| 女人被狂操c到高潮| 妹子高潮喷水视频| 中文字幕另类日韩欧美亚洲嫩草| 国精品久久久久久国模美| 午夜福利乱码中文字幕| 可以免费在线观看a视频的电影网站| 日本黄色视频三级网站网址 | 精品一区二区三区视频在线观看免费 | 一本一本久久a久久精品综合妖精| 色婷婷av一区二区三区视频| 美女视频免费永久观看网站| 久久精品91无色码中文字幕| 欧美性长视频在线观看| 国产又爽黄色视频| 午夜福利在线免费观看网站| 国产麻豆69| 看黄色毛片网站| 不卡一级毛片| 午夜免费观看网址| 久久久久久久久久久久大奶| 校园春色视频在线观看| 欧美激情久久久久久爽电影 | 国产精品一区二区免费欧美| 精品福利观看| 亚洲片人在线观看| 久久久久久久久久久久大奶| 美女扒开内裤让男人捅视频| 精品国产一区二区三区久久久樱花| 无人区码免费观看不卡| 亚洲av片天天在线观看| av中文乱码字幕在线| 中文字幕人妻丝袜制服| 中文字幕色久视频| 91在线观看av| 极品少妇高潮喷水抽搐| 91成年电影在线观看| 国产国语露脸激情在线看| 中文字幕av电影在线播放| 三上悠亚av全集在线观看| 国产欧美日韩精品亚洲av| 一边摸一边抽搐一进一小说 | 黄色女人牲交| 国产精品偷伦视频观看了| 精品卡一卡二卡四卡免费| 人妻一区二区av| 亚洲第一欧美日韩一区二区三区| 亚洲少妇的诱惑av| 日本一区二区免费在线视频| 不卡一级毛片| 在线观看免费日韩欧美大片| 亚洲欧美日韩另类电影网站| 久久久久久久精品吃奶| 国产精品乱码一区二三区的特点 | 人人妻人人爽人人添夜夜欢视频| 成熟少妇高潮喷水视频| tube8黄色片| av福利片在线| 身体一侧抽搐| 在线观看午夜福利视频| 国产精品一区二区精品视频观看| а√天堂www在线а√下载 | 桃红色精品国产亚洲av| 在线观看免费视频日本深夜| 狠狠狠狠99中文字幕| 一区二区三区国产精品乱码| 捣出白浆h1v1| 免费在线观看日本一区| 一二三四社区在线视频社区8| svipshipincom国产片| 精品久久久久久,| 18禁黄网站禁片午夜丰满| 亚洲熟女毛片儿| 69av精品久久久久久| 黑人操中国人逼视频| 国产欧美亚洲国产| 免费在线观看日本一区| 捣出白浆h1v1| 精品国内亚洲2022精品成人 | 久久草成人影院| 国产在线一区二区三区精| 久久久国产成人免费| 国产亚洲av高清不卡| 久久久久久久精品吃奶| 国产精品国产高清国产av | 一二三四在线观看免费中文在| 欧美激情高清一区二区三区| 亚洲中文日韩欧美视频| 大香蕉久久网| 啦啦啦在线免费观看视频4| 国产精品免费一区二区三区在线 | 精品亚洲成国产av| aaaaa片日本免费| 日韩免费av在线播放| 在线观看免费日韩欧美大片| 一区二区三区激情视频| 超色免费av| 欧美日韩精品网址| 交换朋友夫妻互换小说| 欧美不卡视频在线免费观看 | 美女扒开内裤让男人捅视频| 精品国产一区二区三区四区第35| 婷婷丁香在线五月| 一a级毛片在线观看| 18禁裸乳无遮挡动漫免费视频| 丝瓜视频免费看黄片| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩亚洲高清精品| 欧美日韩福利视频一区二区| 一进一出抽搐gif免费好疼 | 亚洲国产欧美网| 一本一本久久a久久精品综合妖精| 很黄的视频免费| 欧美日韩av久久| 亚洲熟妇熟女久久| e午夜精品久久久久久久| 国产精品亚洲一级av第二区| 国产一区二区激情短视频| 黄色片一级片一级黄色片| 国产亚洲精品一区二区www | 自拍欧美九色日韩亚洲蝌蚪91| 国产精品亚洲一级av第二区| 99国产精品免费福利视频| 人人妻人人澡人人看| 亚洲一区二区三区不卡视频| 精品一区二区三卡| 国产成人av教育| 欧美不卡视频在线免费观看 | 亚洲伊人色综图| 久久久久久久久久久久大奶| 看免费av毛片| 国产又爽黄色视频| 青草久久国产| 亚洲午夜理论影院| 久久久精品免费免费高清| 欧美人与性动交α欧美精品济南到| 国产亚洲精品一区二区www | 丰满迷人的少妇在线观看| 伊人久久大香线蕉亚洲五| 免费人成视频x8x8入口观看| 精品高清国产在线一区| 99热只有精品国产| 国产成人免费观看mmmm| 亚洲五月色婷婷综合| 大香蕉久久网| 自拍欧美九色日韩亚洲蝌蚪91| 天堂俺去俺来也www色官网| 性色av乱码一区二区三区2| 欧美久久黑人一区二区| 亚洲男人天堂网一区| 久久人人爽av亚洲精品天堂| 十八禁网站免费在线| 高潮久久久久久久久久久不卡| 午夜福利,免费看| 久久人人爽av亚洲精品天堂| 亚洲熟妇熟女久久| 色播在线永久视频| 少妇裸体淫交视频免费看高清 | 一区二区三区激情视频| 麻豆国产av国片精品| 亚洲国产欧美日韩在线播放| 黄色片一级片一级黄色片| 男人舔女人的私密视频| 色婷婷av一区二区三区视频| 天天影视国产精品| 国产精品免费大片| 91麻豆精品激情在线观看国产 | 亚洲精品中文字幕在线视频| 18禁黄网站禁片午夜丰满| www.自偷自拍.com| 亚洲一区高清亚洲精品| 99re在线观看精品视频| 国内久久婷婷六月综合欲色啪| 国产精品国产av在线观看| 熟女少妇亚洲综合色aaa.| 久久精品aⅴ一区二区三区四区| 欧美另类亚洲清纯唯美| 18禁国产床啪视频网站| 国产精品电影一区二区三区 | 欧美日韩瑟瑟在线播放| 久久亚洲真实| 热re99久久国产66热| 国产精品自产拍在线观看55亚洲 | 一边摸一边抽搐一进一小说 | 最新在线观看一区二区三区| 欧美在线黄色| 欧美精品av麻豆av| 亚洲精品美女久久av网站| 美女福利国产在线| 黄频高清免费视频| 变态另类成人亚洲欧美熟女 | a级毛片在线看网站| 亚洲国产精品合色在线| 18在线观看网站| 妹子高潮喷水视频| 国产精品秋霞免费鲁丝片| 国产在线一区二区三区精| 欧美黄色淫秽网站| 午夜福利乱码中文字幕| 人人澡人人妻人| 一本一本久久a久久精品综合妖精| 免费观看精品视频网站| 成在线人永久免费视频| 色婷婷久久久亚洲欧美| 十八禁人妻一区二区| 侵犯人妻中文字幕一二三四区| 51午夜福利影视在线观看| 久久人人爽av亚洲精品天堂| 国产xxxxx性猛交| 很黄的视频免费| 丰满饥渴人妻一区二区三| 一级,二级,三级黄色视频| 757午夜福利合集在线观看| 欧美激情极品国产一区二区三区| 国产精品久久电影中文字幕 | 国产一区二区激情短视频| 国产精品永久免费网站| 亚洲美女黄片视频| 18禁黄网站禁片午夜丰满| 亚洲精品成人av观看孕妇| 久久中文字幕一级| 亚洲欧美日韩高清在线视频| 免费少妇av软件| 国产精品美女特级片免费视频播放器 | 亚洲av成人不卡在线观看播放网| 黄片大片在线免费观看| 欧美激情久久久久久爽电影 | 悠悠久久av| 久久精品91无色码中文字幕| 老司机深夜福利视频在线观看| 欧美激情极品国产一区二区三区| 国产日韩一区二区三区精品不卡| 一级作爱视频免费观看| 久久人人97超碰香蕉20202| 十分钟在线观看高清视频www| 精品国产一区二区三区四区第35| 黑人欧美特级aaaaaa片| 老司机影院毛片| 757午夜福利合集在线观看| 国产黄色免费在线视频| 18禁观看日本| 中文字幕色久视频| 亚洲第一青青草原| 色播在线永久视频| 久久久久久久久久久久大奶| 国产成人欧美| 亚洲精品乱久久久久久| 国产91精品成人一区二区三区| 国精品久久久久久国模美| 叶爱在线成人免费视频播放| 一二三四在线观看免费中文在| 男人操女人黄网站| 新久久久久国产一级毛片| 国产精品免费大片| 欧美日本中文国产一区发布| 亚洲一区二区三区不卡视频| 在线观看午夜福利视频| 亚洲 国产 在线| 大码成人一级视频| 深夜精品福利| 午夜福利影视在线免费观看| 久久久久国内视频| 欧美+亚洲+日韩+国产| 精品久久蜜臀av无| 18禁国产床啪视频网站| 色播在线永久视频| 一级,二级,三级黄色视频| 欧美日韩亚洲高清精品| 中出人妻视频一区二区| 高清视频免费观看一区二区| 精品久久久精品久久久| 中亚洲国语对白在线视频| 12—13女人毛片做爰片一| 日本撒尿小便嘘嘘汇集6| 久久精品aⅴ一区二区三区四区| 怎么达到女性高潮| 狠狠婷婷综合久久久久久88av| 黑人巨大精品欧美一区二区mp4| 操出白浆在线播放| 丁香欧美五月| 91老司机精品| 黄频高清免费视频| 超碰97精品在线观看| 女人精品久久久久毛片| 午夜福利欧美成人| 国产男女内射视频| 国产不卡一卡二| 18禁裸乳无遮挡动漫免费视频| 亚洲精品在线观看二区| 欧美日韩福利视频一区二区| 飞空精品影院首页| 一级作爱视频免费观看| 老汉色∧v一级毛片| 桃红色精品国产亚洲av| 麻豆成人av在线观看| 啪啪无遮挡十八禁网站| 成年人午夜在线观看视频| 亚洲精品中文字幕一二三四区| 好看av亚洲va欧美ⅴa在| 欧美日韩亚洲综合一区二区三区_| netflix在线观看网站| 国产精品一区二区在线观看99| 男男h啪啪无遮挡| 久久精品人人爽人人爽视色| 啦啦啦视频在线资源免费观看| 五月开心婷婷网| 精品卡一卡二卡四卡免费| 天天添夜夜摸| 亚洲一区二区三区不卡视频| 欧美日韩乱码在线| 一边摸一边抽搐一进一出视频| 亚洲aⅴ乱码一区二区在线播放 | 黄色a级毛片大全视频| 国产午夜精品久久久久久| 真人做人爱边吃奶动态| 日韩视频一区二区在线观看| 久久精品国产综合久久久| 欧美激情高清一区二区三区| 老司机深夜福利视频在线观看| 亚洲av熟女| 一二三四在线观看免费中文在| 在线观看午夜福利视频| 天堂俺去俺来也www色官网| 99香蕉大伊视频| 国产精品影院久久| 中文字幕色久视频| 精品一品国产午夜福利视频| 国产高清国产精品国产三级| 中文字幕人妻丝袜一区二区| 国产成人免费无遮挡视频| 日韩熟女老妇一区二区性免费视频| 在线观看免费高清a一片| 午夜福利在线免费观看网站| 国产精品乱码一区二三区的特点 | 他把我摸到了高潮在线观看| 国产高清国产精品国产三级| 在线天堂中文资源库| 欧美乱色亚洲激情| 国产精品久久视频播放| 国产亚洲精品久久久久久毛片 | 黄网站色视频无遮挡免费观看| 制服诱惑二区| 好男人电影高清在线观看| x7x7x7水蜜桃| tube8黄色片| 夫妻午夜视频| 美女高潮喷水抽搐中文字幕| 精品国产乱子伦一区二区三区| 国产一区二区激情短视频| 9191精品国产免费久久| 日本a在线网址| 九色亚洲精品在线播放| 国产精华一区二区三区| 悠悠久久av| 免费不卡黄色视频| 国产又色又爽无遮挡免费看| 久久久久精品国产欧美久久久| 18禁国产床啪视频网站| 中文字幕人妻丝袜一区二区| 啦啦啦视频在线资源免费观看| 天天添夜夜摸| 成年人午夜在线观看视频| 在线观看午夜福利视频| 身体一侧抽搐| 日本vs欧美在线观看视频| 欧美在线黄色| 天堂动漫精品| 久久国产亚洲av麻豆专区| 久久久国产精品麻豆| 日韩免费高清中文字幕av| 日韩人妻精品一区2区三区| 成人18禁高潮啪啪吃奶动态图| 精品一区二区三区视频在线观看免费 | 国产在视频线精品| 一级,二级,三级黄色视频| 美女视频免费永久观看网站| 人人妻人人澡人人看| 日韩成人在线观看一区二区三区| 亚洲国产中文字幕在线视频| 亚洲,欧美精品.| 窝窝影院91人妻| 99精国产麻豆久久婷婷| 一边摸一边抽搐一进一出视频| 高清毛片免费观看视频网站 | 欧美 亚洲 国产 日韩一| av网站免费在线观看视频| 999久久久精品免费观看国产| 亚洲人成伊人成综合网2020| 国产精品香港三级国产av潘金莲| 精品久久久久久久久久免费视频 | 欧美午夜高清在线| 免费一级毛片在线播放高清视频 | 国产无遮挡羞羞视频在线观看| 美女 人体艺术 gogo| 天天影视国产精品| 丰满迷人的少妇在线观看| 一个人免费在线观看的高清视频| 美女国产高潮福利片在线看| 香蕉国产在线看| 色在线成人网| 成人影院久久| 久久精品人人爽人人爽视色|