張國志 張寧
摘 要:在可靠性統(tǒng)計中,壽命分布通常有4種:指數(shù)分布、韋布爾分布、極值分布、對數(shù)正態(tài)分布。但在有些實際問題中,一些元件的壽命用上述4種分布來刻畫往往與實際相差甚遠,這說明該元件壽命分布并不屬于熟知的這4種分布。由此給出了一種新型ZZ分布,該分布較好地刻畫了這類元件的壽命,并在截尾數(shù)據(jù)下對參數(shù)作出最佳線性無偏估計與簡單線性無偏估計。為了便于使用附錄中給出了估計所需要的數(shù)表。
關鍵詞:ZZ分布;截尾數(shù)據(jù);參數(shù)估計;簡單線性無偏估計;最佳線性無偏估計
DOI:10.15938/j.jhust.2020.01.023
中圖分類號: O231
文獻標志碼: A
文章編號: 1007-2683(2020)01-0149-05
Abstract:In reliability statistics, there are usually four types of life distributions: exponential distribution, Weibull distribution, extreme-value distribution and log-normal distribution. But in some real life applications, the results of statistical inference were found to be far from the truth if using the four life distributions to describe the life of some components. It shows that the component life distribution is not anyone of the four distributions. This paper proposes a new type of life distribution called ZZ distribution. This distribution is a better description of the life for such components. And based on censored data, the best linear unbiased estimation and the simple linear unbiased estimation of parameters were given. The required tables were given in the appendix.
Keywords:ZZ distribution; censored data; parameter estimation; simple linear unbiased estimation; best linear unbiased estimation
0 引 言
眾所周知常見的壽命分布有4種,指數(shù)分布、韋布爾分布、極值分布、對數(shù)正態(tài)分布。很多元件的壽命分布屬于這四種分布,因此在各種樣本形式下,關于這四種分布的可靠性統(tǒng)計推斷的研究非常之多。比如:Lee J. Bain[1]給出了截尾樣本下極值分布尺度參數(shù)的簡單線性無偏估計,在此基礎上Max Engelhardt和Lee J. Bain[2]考慮了極值分布次序統(tǒng)計量的影響,給出了更精確的簡單線性無偏估計,并與此樣本下的極大似然估計進行了對比。W. J. Szajnowski[3]研究了對數(shù)正態(tài)分布參數(shù)估計量,并用蒙特卡洛法模擬檢驗其合理性。A.Clifford Cohen和Betty Jones Whitten[4]對三參數(shù)對數(shù)正態(tài)分布的參數(shù)極大似然估計和矩估計做了修正。N.R. Farnum和P. Booth[5]給出了兩參數(shù)韋布爾分布的參數(shù)極大似然估計并對其唯一性進行了驗證。Zheng R[6]研究了三參數(shù)韋布爾分布參數(shù)估計方法并探究了其在可靠性分析中的應用。Davies I J[7]用最小二乘法估計了三參數(shù)韋布爾分布的尺度參數(shù)。J. William Shelnutt,Albert H. Moore和H. Leon Harter[8]研究了韋布爾分布線性估計。對于存儲產(chǎn)品,早期失效數(shù)據(jù)對壽命分布有較大影響,K. Muralidharan和P. Lathika[9]對韋布爾分布的早期失效數(shù)據(jù)做了分析。Wayne Nelson[10]研究了步進應力加速壽命試驗模型。N. Balakrishnan,Qihao Xie和D. Kundu[11]研究了指數(shù)分布在定時截尾數(shù)據(jù)形式下的簡單步加模型。C. Xiong[12]研究了簡單步加模型在II型數(shù)據(jù)截尾下參數(shù)統(tǒng)計推斷方法。在對參數(shù)做出估計后,對這些估計的分布進行研究非常必要。Thoman, D. R. ,L. J. Bain和C. E. Antle[13]研究了韋布爾分布參數(shù)在截尾數(shù)據(jù)形式下的簡單線性估計及極大似然估計的近似分布推斷方法。對參數(shù)近似分布及置信限[14]的研究也為參數(shù)置信區(qū)間的確定[15-17]奠定了基礎。
以上的研究工作都是基于常見的4種分布展開的,然而有些存儲產(chǎn)品,在廠家給出的設計壽命之前幾乎很少失效,過了設計壽命之后失效的比例大幅增加。這時根據(jù)樣本對壽命分布進行檢驗,往往做出的推斷是:或者拒絕這四種分布;或者接受某些分布,但統(tǒng)計推斷的結論與實際相差甚遠。因此,需要尋找一種新的壽命分布來刻畫這類元件壽命。下面給出的例子就是一個實際遇到的問題。對于這個實際問題,自然希望:①新分布的檢驗獲得通過;②新分布下平均壽命的估計接近實際。
4 結 論
本文針對可靠性統(tǒng)計中常見的四種壽命分布使用時具有局限性的問題,提出了新型ZZ分布刻畫一類元件存儲壽命的理論和方法,得到了預期的效果,在一定程度上豐富了壽命分布的研究內(nèi)容。在此基礎上給出了ZZ分布參數(shù)的簡單線性無偏估計與最佳線性無偏估計。
參 考 文 獻:
[1] LEE J. BAIN. Inferences Based on Censored Sampling From the Weibull or Extreme-Value distribution[J]. Technometrics, 1972, 14(3):693.
[2] MAX ENGELHARDT, LEE J. BAIN. Some Complete and Censored Sampling Results for the Weibull or Extreme-Value Distribution[J]. Technometrics, 1973, 15(3):541.
[3] SZAJNOWSKI W J. Estimators of Log-Normal Distribution Parameters[J]. IEEE Transactions on Aerospace and Electronic Systems, 1977, AES-13(5):533.
[4] CLIFFORD COHEN A, BETTY JONES WHITTEN. Estimation in the Three-Parameter Log-normal Distribution[J]. Journal of the American Statistical Association, 1980, 75(370):399.
[5] FARNUM N R, BOOTH P. Uniqueness of Maximum Likelihood Estimators for the 2-parameter Weibull Distribution[J]. IEEE Transactions on Reliability, 1997, 46(4):523.
[6] ZHENG R. Parameter Estimation of Three-parameter Weibull Distribution and Its Application in Reliability Analysis[J]. Zhendong Yu Chongji/Journal of Vibration & Shock, 2015, 34(5):78.
[7] DAVIES I J. Unbiased Estimation of the Weibull Scale Parameter Using Linear Least Squares Analysis[J]. Journal of the European Ceramic Society, 2017, 37(8):2973.
[8] WILLIAM SHELNUTT J, ALBERT H. MOORE, LEON HARTER H. Linear Estimation of the Scale Parameter of the First Asymptotic Distribution of Extreme Values[J]. IEEE Transactions on Reliability, 1973, 22(5):259.
[9] K. MURALIDHARAN, P. LATHIKA. Analysis of Instantaneous and Early Failures in Weibull Distribution[J]. Metrika, 2006, 64(3):305.
[10]WAYNE NELSON. Accelerated Life Testing-Step-Stress Models and Data Analyses[J]. IEEE Transactions on Reliability, 1980, 29(2):103.
[11]BALAKRISHNAN N, XIE QIHAO, KUNDU D. Exact Inference for a Simple Step-stress-model from the Exponential Distribution Under Time Constraint[J]. Annals of the Institute of Statistical Mathematics, 2009, 61(1):251.
[12]XIONG C. Inferences on a Simple Step-stress Model with Type-II Censored Exponential Data[J]. IEEE Transactions on Reliability, 1998, 47(2):142.
[13]THOMAN D R, BAIN L J, ANTLE C E. Inferences on the Parameters of the Weibull Distribution[J]. Technometrics, 1969, 11:445.
[14]MANN N R, FERTIG K W. Tables for Obtaining Conference Bounds and Tolerance Bounds Based on Best Linear Invariant Estimates of Parameters of the Extreme-value Distribution[J]. Technometrics, 1973, 15:87.
[15]BAIN L J, MAX ENGELHARDT. Simple Approximate Distribution Results for Confidence and Tolerance Limits for the Weibull Distribution Based on Maximum Likelihood Estimators[J]. Technometrics, 1981, 23(1):15.
[16]LAWLESS J F. Conditional Versus Unconditional Conference Intervals for the Parameters of the Weibull Distribution[J]. Technometrics, 1975, 68:665.
[17]MANN N R, FERTIG K W. Simplified Efficient Point and Interval Estimators for Weibull Parameters[J]. Technometrics, 1975, 17:361.
[18]張堯庭, 劉鴻翔. 可靠性統(tǒng)計分析中“倒掛”數(shù)據(jù)的處理方法[J]. 應用數(shù)學, 1991, 4(4):23.ZHANG Yaoting, LIU Hongxiang. Disordered Data Analysis in the Reliability Statistics[J]. Mathematica Applicata, 1991, 4(4):23.
[19]楊振海, 安保社. 基于成敗型不完全數(shù)據(jù)的參數(shù)估計[J]. 應用概率統(tǒng)計, 1994, 10(2):142.YANG Zhenhai, AN Baoshe. Parameter Estimation Based On Binary Data[J]. Chinese Journal of Applied Probability and Statistics, 1994, 10(2):142.
[20]茆詩松, 王玲玲. 可靠性統(tǒng)計[M]. 上海:華東師范大學出版社, 1989:141.
(編輯:王 萍)