趙亮 於楊
摘 要:基于廣義光滑模的定義,研究了Banach空間下的廣義光滑模與t之間的關(guān)系,證明了一致非方的三個等價條件以及關(guān)于廣義光滑模的四個等價命題。此外證明了Banach空間和超自反的Banach空間分別滿足limt→0ραX(t)t<12和ραX(t)<α+32tω(x)-1,t·ω(X)≤1的條件下具有一致正規(guī)結(jié)構(gòu),ραX(t)和ω(X)分別為廣義光滑模和弱正交系數(shù)。最后給出了x,y∈X當(dāng)‖x‖2+‖y‖2=2時關(guān)于廣義凸性模的一個不等式。
關(guān)鍵詞:廣義光滑模;廣義凸性模;一致非方;一致正規(guī)結(jié)構(gòu)
DOI:10.15938/j.jhust.2020.01.022
中圖分類號: O177.7
文獻(xiàn)標(biāo)志碼: A
文章編號: 1007-2683(2020)01-0144-05
Abstract:Based on the definitions of generalized modulus of smoothness, the relation between generalized modulus of smoothness and t in the Banach spaces is studied, which proves three equivalent conditions of uniform normal structure and four equivalent propositions of generalized modulus of smoothness. In addition, which is proved that the Banach space and the super reflexive Banach space satisfy conditions of limt→0ραX(t)t<12andραX(t)<α+32tω(x)-1,t·ω(X)≤1 have uniform normal structure.ραX(t)andω(X)are generalized modulus of smoothness and weak orthogonal coefficient respectively. Finally, which gives an inequality about the generalized convex modulus when ‖x‖2+‖y‖2=2,x,y∈X.
Keywords:
generalized modulus of smoothness;generalized modulus of convexity;uniformly nonsquare;uniform normal structure
0 引 言
作為近代泛函分析的重要分支,Banach空間幾何理論的研究一直備受數(shù)學(xué)研究者們的親睞。由于Banach空間幾何理論在不動點理論、控制論、鞅論、逼近論等諸多領(lǐng)域有廣泛的應(yīng)用,因此Banach空間幾何理論的研究具有重要意義。1936年,J.Clarkson刻畫了一致凸性的凸性模,它們在最佳逼近理論以及不動點理論中有著重要的應(yīng)用,1965年,W.A.Kirk證明了具有正規(guī)結(jié)構(gòu)自反的Banach空間具有不動點性質(zhì)。光滑性是作為凸性的對偶性質(zhì)提出來的,廣義光滑模的幾何意義在于描述一個Banach空間的光滑性,與光滑模比較起來,在對具體的Banach空間的光滑性進(jìn)行分析時,廣義光滑模中可選擇適當(dāng)?shù)摩吝M(jìn)行計算分析。
在對文[1-20]中關(guān)于凸性模、光滑模等的研究方法進(jìn)行分析后,本文基于廣義光滑模和廣義凸性模的定義和性質(zhì),對其做了進(jìn)一步研究,得到了廣義光滑模在Banach空間與t之間的關(guān)系,非平凡的Banach空間幾個等價條件,探究了Banach空間具有一致正規(guī)結(jié)構(gòu)用廣義光滑模刻畫的充分條件以及超自反的Banach空間滿足ραX(t)<α+32tω(x)-1,t·ω(X)≤1的條件下具有一致正規(guī)結(jié)構(gòu)。最后得到了關(guān)于廣義凸性模的一個不等式。
參 考 文 獻(xiàn):
[1] 趙亮, 張興. Banach空間中的廣義光滑模[J].哈爾濱理工大學(xué)學(xué)報,2016,21(4):112.ZHAO Liang, ZHANG Xing. Generalized Modulus of Smoothness in Banach Spaces[J]. Journal of Harbin University of Science and Technology,2016,21(4):112.
[2] 崔云安, 左占飛. 廣義凸性模在不動點中的應(yīng)用[J].黑龍江大學(xué)自然科學(xué)學(xué)報,2009,4(2):206.CUI Yunan, ZUO Zhanfei. The Application of Generalized Convex Modules in Fixed points [J]. Journal of Natural Science of Heilongjiang University,2009,4(2):206.
[3] 崔云安. Banach空間幾何理論及應(yīng)用[M].北京,科學(xué)出版社,2001:33.CUI Yunan. Geometric Theory and Application of Banach Space [M].Bej Jing, Science Press,2001:33.
[4] 趙亮, 王薇薇, 張興. Banach空間具有正規(guī)結(jié)構(gòu)的判定[J].哈爾濱理工大學(xué)學(xué)報,2018,23(4):142.
ZHAO Liang, WANG Weiwei, ZHANG Xing. The Determination of Banach Space with Normal Structure [J]. Journal of Harbin University of Science and Technology,2018,23(4):142.
[5] GAO J. On Some Geometric Parameters in Banach SpacesAn[J].Journal of Mathematical Analysis and Applications,2007,334:114.
[6] 王豐輝. Banach空間的模與常數(shù)及其在不動點理論中的應(yīng)用[D].新鄉(xiāng):河南師范大學(xué),2006.
[7] 趙亮, 崔云安. Musielak-Orlicz序列空間的非方常數(shù)[J].哈爾濱商業(yè)大學(xué)學(xué)報,2006,2(3): 112.ZHAO Liang, CUI Yunan. The Non Square Constant of Musielak-Orlicz Sequence Space[J]. Journal of Harbin University of Commerce, 2006, 2(3): 112.
[8] BARONTI M, PAPINI P L. Convexity, Smoothness and Moduli[J].Nonlinear Analysis,2009(70):2457.
[9] DANES J. On Local and Global Moduli of Convexity[J].Commen. Math. Univ. Carolinae,1976(67):413.
[10]BYNUM W L. Normal Structure Coefficients for Banach Spaces[J].Pacific J. Math,1980(86):427.
[11]YANG C, WANG F. On a Generalized Modulus of Convexity[J].Acta. Math. Sci,2007,27B(4): 838.
[12]SAEJUNG S. Sufficient Conditions for Uniform Normal Structure of Banach Spaces and Their Dualspaces[J].J. Math. Anal. Appl,2007(330):597.
[13]SAEJUNG S. Characteristic of Convexity of a Banach Space and Normal Structure[J].J. Math. Anal. Appl,2008(337):123.
[14]BANASS J. On Moduli of Smoothness of Banach Spaces[J].Bull. Pol. Acad. Sci. Math, 1986(34):287.
[15]楊長森, 趙俊峰. 凸性模估計定理的推廣[J].數(shù)學(xué)學(xué)報,1998,4(1):81.YANG ChangSsen, ZHAO Junfeng. A Generalization of the Convex Module Estimation Theorem [J]. Acta Mathematica Sinica, 1998, 4(1): 81.
[16]楊長森, 左紅亮. Hahn-Banach定理在凸性模定義中的應(yīng)用[J].數(shù)學(xué)物理學(xué)報,2001,21(1):133.YANG Changshen, ZUO Hongliang. The Application of Hahn-Banach Theorem in the Definition of Convex Modules [J]. Acta of Mathematical Physics, 2001, 21(1): 133.
[17]鄭亞男. 廣義高繼常數(shù)與廣義光滑模的一些性質(zhì)[J].河南師范大學(xué)學(xué)報,2011,4(2):12.ZHENG Yanan. Some Properties of Generalized High Heritability and Generalized Smooth Modules [J]. Journal of Henan Normal University, 2011, 4(2): 12.
[18]杜世維. Banach空間的幾何常數(shù)在不動點中的應(yīng)用[D].哈爾濱:哈爾濱理工大學(xué),2011:26.
[19]GAO J. Normal Structure and Smoothness in Banach Spaces[J].Nonlinear Funct. Anal. Appl,2005,10(1):103.
[20]崔云安, 張帆, 張曉月. Banach空間的凸性模與正規(guī)結(jié)構(gòu)[J].哈爾濱理工大學(xué)學(xué)報,2009,2(1):26.CUI Yunan, ZHANG Fan, ZHANG Xiaoyue. Convex Modules and Normal Structures of Banach Spaces [J]. Journal of Harbin University of Science and Technology, 2009, 2(1): 26.
(編輯:溫澤宇)