• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stability analyses of leeward streamwise vortices for a hypersonic yawed cone at 6 degree angle of attack

    2020-05-20 02:43:26CHENXiCHENJianqiangDONGSiweiXUGuoliangYUANXianxu
    空氣動力學學報 2020年2期
    關鍵詞:實線方根流向

    CHEN Xi, CHEN Jianqiang, DONG Siwei, XU Guoliang, YUAN Xianxu,*

    (1. State Key Laboratory of Aerodynamics, Mianyang 621000, China; 2. Computational Aerodynamics Institute of China Aerodynamics Research and Development Center, Mianyang 621000, China)

    Abstract:The stability of leeward streamwise vortices over a Mach 6 yawed cone with 6 degree angle of attack is investigated by using direct numerical simulation (DNS) and stability analyses including spatial BiGlobal and plane-marching parabolized stability equations (PSE3D). It is found that a pair of strong streamwise vortices inducing low-speed mushroom structure simultaneously emerge in the vicinity of the leeward plane. Theoretical results indicate that both low-frequency sinuous modes and high-frequency varicose modes may play an important role in the breakdown of the streamwise vortices.

    Keywords:instability of streamwise vortices;hypersonic boundary layer flow; DNS;spatial BiGlobal method;PSE3D method

    0 Introduction

    Laminar-turbulent boundary layer transition is one of key factors affecting vehicles that operate atsustained hypersonic speeds. A cone at a certain angle of attack (AoA) is frequently encountered in practice, and at the same time is also one of the simplest flow configuration to study the three-dimensional boundary layer transition. For a yawed cone, the pressure within the windward plane is much higher than that within the leeward plane. The resulting pressure gradient drives the fluid to move away from the windward plane towards the leeward plane, inducing strong cross flow in between and a pair of counter-rotating streamwise vortices near the leeward plane. The cross flow may support crossflow instabilities which eventually lead to turbulence through secondary

    instabilities, as has been extensively investigated[1-2]. On the other hand, although the transition within the leeward plane has been experimentally measured under various conditions[3-4], numerically documented[5]and theoretically considered[6], the underlying mechanism remains largely unclear.

    Since the leeward transition is most likely caused by the breakdown of streamwise vortices, the corresponding transition mechanism may thus be similar to other flow configurations with streamwise vortices being dominant. A typical example is the centerline transition of the HIFiRE-5 elliptic cone at zero AoA. Similar to the yawed cone, spanwise pressure gradients also cause cross flow over the elliptic cone surface and induce a pair of streamwise vortices and a mushroom-like low-speed streak around the center line. Since the centerline flow structures exhibit prominent variations in both the span and wall-normal directions, two-dimensional stability analysis or BiGlobal analysis should be utilized in order to adequately predict the stability characteristics along the center line. Choudhari et al.[7], without accounting for curvature effects, are the first to perform BiGlobal calculations for the centerline stability. Their results highlighted the necessity of considering spanwise variations in the vicinity of the center line. Through spatial BiGlobal analysis with the curvature effects being taken into account, Paredes and Theofilis[8-10]showed the coexistence of varicose and sinuous centerline modes whose wavenumbers and growth rates are nearly coincident at a low unit Reynolds number (1.89 × 106/m). Later, Paredes et al.[11]analyzed a larger unit Reynolds number (1.015 × 107/m) case for the same model, and found that the varicose mode is more unstable. The differences of these two cases are attributed to different mode distributions that the centerline instabilities in the latter case peak closer to the symmetry plane than those in the former, and thus are more sensitive to the symmetry characteristics. Recently, Li et al.[12]demonstrated that varicose and sinuous modes both possess two branches of instabilities, i.e., Y mode and Z mode. Y mode, similar to the unstable modes identified by Paredes and his coworkers, locates at the shoulder region of the mushroom structure, while Z mode resides in the stem region, with lower phase velocities, growth rates and frequencies than Y mode. Choudhari et al.[13]considered the centerline instabilities of the elliptic cone at a small AoA (-1.2°) under the HIFiRE5b flight experiment condition at one instant where a cold wall condition was prescribed. Their PSE3D results showed that sinuous fluctuations can first reach a peak N-factor of approximately 15 at the transition location estimated from the flight data. Similar centerline vortex structures also emerge in another flight model, BoLT. The centerline instabilities were experimentally measured[14-16]and numerically calculated via the dynamic mode decomposition method[17]. Their results indicate the presence of low-frequency disturbances. Nevertheless, detailed instability characteristics remain to be solved through extensive stability analyses. Beside the centerline structures on these three dimensional boundary layers, G?rtler vortices in a concave wall also manifest as a pair of counter-rotating streamwise vortices as well as low-speed mushroom structures. In contrast to the centerline instabilities of the elliptic cone, varicose and sinuous modes of G?rtler vortices exhibit quite different characteristics concerning with growth rates, frequencies and mode shapes (see, e.g., recent works of Chen et al.[18]and Li et al.[19]).

    In this paper, the boundary layer transition in the vicinity of the leeward plane on a yawed cone at Mach 6 is studied with help of DNS and stability analyses for the first time. The objective is to uncover the underlying transition mechanism, and to make comparison with other streamwise-vortices transitions.

    1 Flow configuration and basic state

    The model (Fig.1(a)) in the present study is a 7°straight circular cone with a nose radius of 1 mm placed at 6°angle of attack. The incoming flow conditions correspond to a free-stream unit Reynolds number of 1.0×107/m, Mach number of 6, static temperature of 79 K. Isothermal wall condition is utilized with the wall temperatureTW=300 K. The direct numerical simulation of boundary layer transition over the whole model was carried out using the OpenCFD developed by Li et al.[20]. The simulation strategy consists of two steps. First, the steady base flow of the entire cone is computed using the finite-volume algorithm with a second-order accurate scheme. In the second step, the calculated steady flow serves as initial and out-boundary conditions for the transition simulation which is performed for a smaller block (X∈[50 mm,700 mm]) without the nose part of cone. In the transition simulation, the inviscid fluxes are computed by using a seventh-order weighted essentially nonoscillatory (WENO) finite-difference scheme, while the viscous fluxes are discretized using a sixth-order central difference scheme. The time integration is performed using a third-order Runge-Kutta scheme. Steady blowing and suction fluctuations (wall-normal velocity varying in the range of ±0.1% of streamwise velocity), randomly distributed in the azimuthal and streamwise direction are forced in the range ofX∈[90 mm, 100 mm] to trigger the transition (see also Li et al.[5]).

    (a) Sketch of the cone model with the body oriented coordinate and flow conditions

    (b) Crossplane contours of streamwise velocity are shown at axial locations from X=120 mm to 350 mm with a step of approximately 16.4 mmFig.1 Model and time-averaged flow structure圖1 模型和時均流場結構

    A structured grid is used, with 3000 in the axial direction, 1500 in the azimuthal direction, and 300 in the surface normal direction, amounting to a total of 1.35 billion grid points. The grid convergence has been examined by comparing the base flow with a coarse grid with 0.5 billion points and the discrepancy is negligible.

    Figure 1(b) depicts the crossplane contours of time averaged streamwise velocity at selected stations along the cone length from the transition simulation. The velocity contours clearly indicate a roll up of low-speed fluid forming a huge mushroom structure in the vicinity of the leeward symmetry plane, along with a series of nearby cross vortices. The pair of vortex structures within the sides of the mushroom cap appear to be lifted up in the downstream due to the self induction of vortices in parallel, resulting in a rapid growth of the height of the mushroom structure.

    2 Linear stability theory

    2.1 Spatial BiGlobal method

    We consider the stability characteristics in the cross-section by decomposing the flow field in a body-oriented coordinate system as follows

    (1)

    (2)

    for the spatial approach whereαis to be solved withωbeing given. Here,A0,A1,A2are linear operators. The boundary conditions are

    (3)

    These linear operators are discretized using the fourth order finite difference scheme in theηdirection. Since we only focus on the modes whose mode shapes exclusively concentrate within the mushroom structure, the eigenvalue problem is not sensitive to the spanwise boundary conditions so that we can simply apply periodic boundary conditions and use Fourier collocation method in theθdirection. The eigenvalues are then determined by using the Arnoldi’s method. Because of the azimuthal symmetry of the basic state, the disturbances within the mushroom structure can be divided into symmetric (varicose) and antisymmetric (sinuous) modes on the basis of the distribution of the temperature perturbation. The sinuous modes are associated with zero temperature fluctuations at the symmetry plane, whereas the varicose modes have zero azimuthal temperature gradient fluctuations. Therefore, we only need to consider one side of the symmetry plane. The grid distribution and points number have been adjusted to assure the convergence of the eigenvalues.

    2.2 PSE3D method

    In contrast to the local stability analysis introduced above, PSE3D incorporate initial conditions and nonparallel effects. In the PSE3D formulation, the disturbance is decomposed into a rapidly varying wave-like part and a slowly varying shape function as follows

    (4)

    (5)

    (6)

    where

    (7)

    and the asterisk denotes the complex conjugate. This iteration continued until the latest change was less than 10-5. Note that the curvature effects have been included in the linear operators of both BiGlobal and PSE3D.

    3 Results and discussion

    3.1 Theoretical results

    Figures 2 and 3 show development of growth rates fromX=80 mm throughX=280 mm for unstable varicose and sinuous modes, respectively. It can be observed that leeward-plane instabilities are continually enhanced before approximatelyX=200 mm, and are gradually stabilized further downstream. For the varicose modes, modes V1 and V2 first appear; mode V1 remains to be mild, with the peak frequency increasing from around 50 kHz to 120 kHz in the downstream direction; after a rapid growth between the first two slices, mode V2 becomes dominant except at the fourth slice where mode V4 with higher frequencies is most unstable; other modes possess moderate growth rates, and thus may play a secondary role during the transition process. The results for the sinuous modes closely resemble those for the varicose modes. The most prominent discrepancy is that the low-frequency modes, S1 and S6, appear to be always dominant.

    The similarity and difference between the varicose and sinuous modes can be further illustrated by Fig.4 which compares the growth rates and phase velocities, and by Fig.5 which compares the mode shapes atX=200 mm. Several observations can be made. First, each varicose-sinuous mode pair (with the same mode number, e.g. modes V1 and S1) bear a strong resemblance in phase velocities and mode shapes, while the growth rates may differ greatly. Second, the modes can be roughly divided into two groups according to phase velocities and mode shapes. Modes V1, V6, S1 and S6 possess low phase velocities (≈0.8) and reside almost exclusively in the stem region of the mushroom structure. Therefore they are conveniently referred to inner modes. The other modes possess higher phase velocities (≈0.9) and mainly concentrate on the shoulder region, hence can be referred to outer modes. It is interesting to note that the inner modes look similar to the “Z mode” of centerline instability for the HIFiRE-5 elliptic cone[12]and the stem mode of secondary instability for G?rtler vortices[18-19,21], while the outer modes appear to be closely related to the “Y mode” of centerline instability for the HIFiRE-5 elliptic cone[10,12]and other modes than the stem mode for G?rtler vortices. Since inner modes lie closer to the symmetry plane of the mushroom structure than the outer modes do, inner modes are thus more sensitive to the symmetry than outer modes. This explains why the inner modes exhibit remarkable discrepancies in growth rates for each varicose-sinuous mode pair, while the growth rates of each varicose-sinuous outer modes nearly coincide. Similar phenomenon has also been observed by Choudhari et al.[13]in the HIFiRE-5 model.

    (a) Growth rate

    Fig.4 Comparison of growth rate and phase velocity of unstable varicose modes (filled symbols) and sinuous modes (unfilled symbols) atX=180 mm

    圖4X=180 mm站位處,對稱模態(tài)(實心符號)和 反對稱模態(tài)(空心符號)的增長率和相速度分布對比

    Fig.5 Comparison of normalized mode shapes (temperature) for the unstable varicose modes V1~V6 (a~f) and sinuous modes S1~S6 (g~l) at X=200 mm. The frequency is chosen to be the most unstable component of each mode. The temperature base flow is also displayed.圖5 X=200 mm站位處的六個對稱模態(tài)(a~f)和反對稱模態(tài)(g~l)的形狀函數(溫度)分布對比 (所選頻率是各個模態(tài)最不穩(wěn)定的分量, 溫度基本流用實線表示)

    Figure 6 displays the normalized amplitude distribution of the streamwise velocity gradient components, |?U/?η| and |?U/?θ|. It can be observed that the instabilities all reside in the high-shear regions. In particular, modes V1, V3, V4 and V6 appear to be associated with the spanwise shear, while the other modes seem to be related to the wall-normal shear. The same holds for the sinuous modes.

    (a) |?U/?η| (b) |?U/?θ|

    Fig.6 The normalized amplitude distribution of the streamwise velocity gradients atX=200 mm (The solid lines show the streamwise velocity contours)

    圖6 歸一化后的流向速度梯度,X=200 mm (實線表示流向速度等值線)

    At last, the spatial structures of the dominant varicose and sinuous modes atX=120 mm andX=200 mm are reconstructed in Fig.7. The relative positions of the outer modes (a, c) and the inner modes (b, d) are clearly shown. In the upstream, the dominant varicose mode resides in the top of the mushroom structures, which is similar to the typical varicose instability of G?rtler vortices (see e.g. Chen et al.[18]). At the next slice, both instabilities manifest as helical structures, as are also observed in the HIFiRE-5 model[9], the BoLT model[17,22]and G?rtler vortex flows[23].

    To characterize the axial evolution of the unstable disturbances and establish a topological connection between the mode shapes at different axial stations, PSE3D are performed across a range of mode frequencies. The amplitude evolutions shown in Fig.8(a) clearly indicate that sinuous modes (solid lines) can reach much higherN-factors than varicose modes (dashed lines) do, of which the most amplified sinuous component is 80 kHz while the most amplified varicose components are 120 kHz originating from V2 and 260 kHz from V4. Figures 8(b, c) compares the amplitude evolutions obtained by DNS, BiGlobal and PSE3D for the most amplified varicose component 260 kHz and sinuous component 80 kHz, respectively. Two observations can be made. First, the theoretical results favorably agree with the DNS results. The discrepancies in the beginning and in the late stage are attributed to the transient behaviors of DNS disturbances (i.e., consisting of multiple types of fluctuations) and nonlinear effects of disturbances (appearing first in the varicose mode), respectively. Second, PSE3D and BiGlobal results are very close except for the initial stage where the initial profiles provided by BiGlobal will undergo a transient stage in PSE3D.

    The mode shape evolution of the dominant varicose (260 kHz) and sinuous (80 kHz) modes are shown in

    Fig.7 Spatial structures illustrated by isosurfaces of normalized temperature mode shape (±0.2) for mode V2, mode S1 atX=120 mm, and of mode V4 and mode S1 atX=200 mm, together with the base flow isosurface (1.87Te) (The streamwise scale is equal to two wavelengths of each mode)

    圖7 溫度等值面顯示的模態(tài)空間結構(流向尺度為兩個模態(tài)流向波長)

    (a) N-factors obtained by PSE3D for some sinuous modes (solid lines) and varicose modes (dashed lines); the most amplified modes have been labelled

    (b) The varicose mode of 260 kHz

    (c) The sinuous mode of 80 kHz

    Fig.8 Disturbance amplitude evolution of a single frequency. Comparison of amplitude evolutions from DNS, BiGlobal and PSE3D have been made for two most amplified mode. Note that the amplitude from DNS is obtained by the average of the (fast Fourier transformation) amplitudes in certain frequency bands (250~270 kHz and 70~90 kHz).

    圖8 PSE3D預測的單頻擾動幅值演化(N值曲線)及與BiGlobal和DNS結果的對比(其中N值曲線中不同模態(tài)最不穩(wěn)定的頻率分量用彩色線條標記)

    Figs.9(a-f) and (h-l), respectively. For the varicose mode, the disturbances initially locate at the mushroom cap, and gradually shift down to the shoulder region with another small peak emerging in the inner side since the slice of Fig.9(c). In contrast, the fluctuations of the sinuous mode reside in the stem region in the upstream region, and gradually spread outwards along with the rolling of the fluid, inducing another peak in the cap.

    3.2 Statistic results from DNS

    In this subsection, the statistic results from DNS are presented to highlight the transition process upon comparison with the results from the stability analyses above. Figure 10 displays the normalized r.m.s. distribution at three streamwise slices. The spectra obtained at the local r.m.s. peak positions are also shown. In the upstream, the disturbances concentrate on the top of the mushroom structure, which is consistent with the predominance of mode V2 there (see Fig.7(a)). However, the corresponding spectrum exhibits a peak frequency of approximately 600 kHz, nearly three times higher than the dominant frequency (around 200 kHz) of mode V2. Where such high-frequency disturbances arise is unclear yet. At the next slice, r.m.s. distribution forms new local maximums in the shoulder and stem regions of the mushroom structure, in addition to a weak one on the head. The dominant disturbance frequencies for the head region are in range of [160 kHz, 220 kHz], and move to a slight higher frequency range for the shoulder region. The spectra and the filtered r.m.s. distribution (in Fig.11) indicate that the disturbances at these two regions consist of the outer modes, of which the disturbances at the shoulder region likely evolve mode V4/S4 with the disturbances in the head region being mainly contributed by other outer modes. At the stem region, two peaks appear in the spectrum, one similar to that at the shoulder region, the other one lying in a much lower frequency range, which indicates the coexistence of two types of instabilities there. Comparison between the filtered r.m.s. distribution (Fig.11(c)) with the mode shapes from the PSE3D results indicates that the low-frequency peak corresponds to mode S1. For the last slice, the r.m.s. has spread to the whole mushroom structure. The spectrum at the shoulder region displays a broad plateau for [0,200 kHz], while the spectrum at the stem region shows a prominent peak at approximately 90 kHz. The high-frequency disturbances in the range of [200 kHz, 400 kHz] become relatively insignificant compared to the spectra at the previous one. This trend is consistent with the results of stability analyses which predict that low-frequency instabilities gradually take over in the downstream region.

    Fig.9 Mode shape (normalized temperature fluctuations) evolution of the dominant varicose mode at f=260 kHz (a~f) and of the dominant sinuous mode at f=80 kHz (g~l) predicted by PSE3D. The slices start from X=112.7 mm to X=261.7 mm with a step of approximately 28 mm. The temperature base flow is shown by the solid lines.圖9 PSE3D得到的最不穩(wěn)定對稱模態(tài)(260 kHz)和反對稱模態(tài)(80 kHz)的形狀函數沿流向的演化

    Fig.10 Normalized root-mean-square distribution of temperature disturbances at three slices, (a)X=120 mm, (b)X=200 mm, (c)X=280 mm, together with the base flow isolines. The corresponding spectra at the sampling points (denoted by the symbols) are also shown in (d,e,f).

    圖10 三個流向站位處的DNS擾動均方根分布和極值點處的頻譜

    Fig.11 Normalized root-mean-square distribution of temperature disturbances over certain frequency ranges at X=200 mm, together with the base flow isolines.圖11 X=200 mm處DNS特定頻段處的擾動均方根分布

    4 Conclusions

    In this paper, sophisticated stability analyses (spatial BiGlobal and PSE3D) and DNS are performed to reveal the leeward-plane transition mechanisms on a hypersonic yawed cone for the first time. The low-speed mushroom structure induced by the leeward streamwise vortices is shown to be susceptible to multiple unstable modes. The unstable modes can be further classified as outer modes and inner modes. Outer modes with higher phase velocities and frequencies, reside in the shoulder and head regions of the mushroom structure, whereas inner modes being located at the stem region possess lower phase velocities and frequencies. Both outer modes and inner modes contain varicose and sinuous components. The sinuous components dominate for inner modes, while for outer modes the varicose components are more unstable in the upstream but gradually collapse with the sinuous components in the downstream. Good agreement between the stability analysis and DNS results are obtained, except that the disturbances from DNS in the upstream region show much higher frequencies than prediction.

    Stability of leeward streamwise vortices is found to bear a remarkable resemblance with instabilities of streamwise vortices in other flow configurations (e.g. elliptic cone, the BoLT model and G?rtler vortex flows) in the sense that varicose and sinuous instabilities coexist, covering a wide unstable frequency range from tens to hundreds of kHz.

    猜你喜歡
    實線方根流向
    關于調整上海道路非必要超長實線及高速監(jiān)控探頭強光燈建議
    方根拓展探究
    小溪啊!流向遠方
    井岡教育(2020年6期)2020-12-14 03:04:42
    秋天來啦
    娃娃畫報(2019年10期)2019-12-17 08:02:09
    戒煙
    詩潮(2019年8期)2019-08-23 05:39:48
    疊疊看 真神奇
    啟蒙(3-7歲)(2019年3期)2019-04-03 01:39:28
    均方根嵌入式容積粒子PHD 多目標跟蹤方法
    自動化學報(2017年2期)2017-04-04 05:14:28
    十大漲幅、換手、振副、資金流向
    揭開心算方根之謎
    流向逆轉的啟示
    亚洲九九香蕉| 欧美日韩亚洲综合一区二区三区_| 人成视频在线观看免费观看| 久久九九热精品免费| 麻豆av在线久日| 大型av网站在线播放| 成人亚洲精品一区在线观看| 熟女av电影| 成人免费观看视频高清| 19禁男女啪啪无遮挡网站| 国产精品久久久人人做人人爽| 午夜福利一区二区在线看| av在线app专区| 久久久国产欧美日韩av| 久久久欧美国产精品| 国产在线观看jvid| 91成人精品电影| 亚洲欧美色中文字幕在线| 免费看不卡的av| 亚洲国产日韩一区二区| 19禁男女啪啪无遮挡网站| 久久久国产精品麻豆| 十八禁网站网址无遮挡| 美女高潮到喷水免费观看| 亚洲成av片中文字幕在线观看| av视频免费观看在线观看| 国产av一区二区精品久久| 80岁老熟妇乱子伦牲交| 亚洲成人国产一区在线观看 | 日本猛色少妇xxxxx猛交久久| 日韩制服骚丝袜av| 自拍欧美九色日韩亚洲蝌蚪91| 成人国产av品久久久| 99国产精品一区二区三区| 午夜福利视频精品| 啦啦啦视频在线资源免费观看| 男男h啪啪无遮挡| 中文字幕av电影在线播放| 色视频在线一区二区三区| 我的亚洲天堂| 国产1区2区3区精品| 国产精品一二三区在线看| 国产欧美日韩一区二区三 | 后天国语完整版免费观看| 久久国产精品人妻蜜桃| 亚洲精品国产av蜜桃| 看免费成人av毛片| 99热网站在线观看| 曰老女人黄片| 国产91精品成人一区二区三区 | 欧美激情高清一区二区三区| 高清av免费在线| 亚洲午夜精品一区,二区,三区| 青春草视频在线免费观看| 亚洲七黄色美女视频| 狂野欧美激情性xxxx| 人妻人人澡人人爽人人| 国产免费又黄又爽又色| 1024视频免费在线观看| 免费在线观看日本一区| 亚洲精品一区蜜桃| 色94色欧美一区二区| 操出白浆在线播放| 女人爽到高潮嗷嗷叫在线视频| 久久精品国产a三级三级三级| 成人免费观看视频高清| 国产一区亚洲一区在线观看| 夜夜骑夜夜射夜夜干| 免费黄频网站在线观看国产| 日韩av不卡免费在线播放| 多毛熟女@视频| 亚洲欧美精品综合一区二区三区| 亚洲av美国av| 日本一区二区免费在线视频| 日韩免费高清中文字幕av| 新久久久久国产一级毛片| 大陆偷拍与自拍| 桃花免费在线播放| 欧美日韩精品网址| 精品人妻在线不人妻| 日韩一本色道免费dvd| 黑人猛操日本美女一级片| 久久久久国产精品人妻一区二区| 精品少妇黑人巨大在线播放| 桃花免费在线播放| 亚洲精品第二区| 亚洲国产精品999| 青草久久国产| 在线观看免费高清a一片| 乱人伦中国视频| 天天添夜夜摸| 国产精品 欧美亚洲| 一级黄色大片毛片| 国产成人一区二区在线| 一区二区av电影网| 亚洲自偷自拍图片 自拍| 国产日韩欧美在线精品| 欧美亚洲 丝袜 人妻 在线| 欧美大码av| 欧美成人午夜精品| 波野结衣二区三区在线| 多毛熟女@视频| 黄网站色视频无遮挡免费观看| 久久精品国产亚洲av涩爱| 精品熟女少妇八av免费久了| 欧美国产精品va在线观看不卡| 男女无遮挡免费网站观看| 中国美女看黄片| 久久热在线av| 人人妻,人人澡人人爽秒播 | 欧美乱码精品一区二区三区| 考比视频在线观看| 黄色片一级片一级黄色片| 久久精品国产综合久久久| 在线观看人妻少妇| 亚洲精品久久久久久婷婷小说| 久久99热这里只频精品6学生| 在线看a的网站| 18禁裸乳无遮挡动漫免费视频| 热99国产精品久久久久久7| 久久精品熟女亚洲av麻豆精品| 日韩av不卡免费在线播放| 9色porny在线观看| 亚洲av综合色区一区| 黄色视频不卡| 一级片'在线观看视频| 九色亚洲精品在线播放| 国产精品九九99| 国产成人91sexporn| 99国产精品一区二区三区| av视频免费观看在线观看| 青草久久国产| 免费在线观看视频国产中文字幕亚洲 | 99久久人妻综合| 免费观看人在逋| 欧美中文综合在线视频| 亚洲精品国产av蜜桃| 国产熟女欧美一区二区| 亚洲国产精品一区三区| 午夜福利视频在线观看免费| 久久天躁狠狠躁夜夜2o2o | 黑丝袜美女国产一区| 一级片'在线观看视频| 建设人人有责人人尽责人人享有的| 亚洲精品美女久久av网站| 亚洲伊人久久精品综合| 日韩一区二区三区影片| 欧美日韩综合久久久久久| av网站在线播放免费| 一区二区三区激情视频| 中文字幕人妻丝袜制服| 黄色a级毛片大全视频| 亚洲国产精品国产精品| 18在线观看网站| 亚洲 欧美一区二区三区| 亚洲精品国产av蜜桃| 人人妻人人爽人人添夜夜欢视频| 欧美精品一区二区大全| 一级,二级,三级黄色视频| 最黄视频免费看| 欧美国产精品一级二级三级| 精品高清国产在线一区| 婷婷色av中文字幕| 建设人人有责人人尽责人人享有的| 国产一区有黄有色的免费视频| 赤兔流量卡办理| 肉色欧美久久久久久久蜜桃| 中文欧美无线码| 男女国产视频网站| 一本综合久久免费| 9热在线视频观看99| 精品亚洲成国产av| 狠狠婷婷综合久久久久久88av| 一本色道久久久久久精品综合| 欧美性长视频在线观看| 亚洲精品久久成人aⅴ小说| 亚洲一码二码三码区别大吗| 午夜久久久在线观看| 国产精品99久久99久久久不卡| 美女中出高潮动态图| cao死你这个sao货| 成年女人毛片免费观看观看9 | 午夜激情久久久久久久| 9191精品国产免费久久| 美女视频免费永久观看网站| 亚洲av在线观看美女高潮| 午夜福利乱码中文字幕| 少妇裸体淫交视频免费看高清 | 女性被躁到高潮视频| 熟女av电影| 性少妇av在线| 一区二区三区激情视频| 99国产精品一区二区蜜桃av | 国产免费现黄频在线看| 国产高清国产精品国产三级| 少妇精品久久久久久久| 日韩伦理黄色片| 我要看黄色一级片免费的| 国产不卡av网站在线观看| 午夜老司机福利片| 国产精品一二三区在线看| 99国产综合亚洲精品| 欧美少妇被猛烈插入视频| 天天躁夜夜躁狠狠躁躁| 1024视频免费在线观看| 99国产精品一区二区三区| 99re6热这里在线精品视频| 女人精品久久久久毛片| 亚洲精品在线美女| 电影成人av| 午夜福利视频精品| 高清视频免费观看一区二区| 国产亚洲欧美精品永久| 久久精品国产a三级三级三级| a级毛片在线看网站| 亚洲,一卡二卡三卡| 国产又爽黄色视频| 日本wwww免费看| 9191精品国产免费久久| 日本欧美视频一区| 日韩制服骚丝袜av| 欧美精品亚洲一区二区| 欧美老熟妇乱子伦牲交| 色综合欧美亚洲国产小说| 每晚都被弄得嗷嗷叫到高潮| 汤姆久久久久久久影院中文字幕| a级毛片黄视频| 国产精品.久久久| 黑人猛操日本美女一级片| 亚洲国产精品国产精品| 中文欧美无线码| 色婷婷久久久亚洲欧美| 成人亚洲欧美一区二区av| 国产精品一区二区在线不卡| 美女午夜性视频免费| 亚洲一卡2卡3卡4卡5卡精品中文| 精品少妇一区二区三区视频日本电影| 国产亚洲精品久久久久5区| 校园人妻丝袜中文字幕| 欧美黑人精品巨大| 亚洲成国产人片在线观看| 免费在线观看影片大全网站 | 国产在视频线精品| 男女床上黄色一级片免费看| 欧美国产精品一级二级三级| 国产日韩欧美在线精品| 两人在一起打扑克的视频| 超碰97精品在线观看| 亚洲七黄色美女视频| 啦啦啦视频在线资源免费观看| 国产精品久久久人人做人人爽| e午夜精品久久久久久久| 久久久欧美国产精品| 亚洲欧美成人综合另类久久久| 777久久人妻少妇嫩草av网站| 亚洲国产日韩一区二区| 多毛熟女@视频| 女人高潮潮喷娇喘18禁视频| 一区在线观看完整版| 精品福利观看| 亚洲中文av在线| 欧美精品av麻豆av| 男女无遮挡免费网站观看| 亚洲国产av新网站| 妹子高潮喷水视频| 婷婷色麻豆天堂久久| 国产在视频线精品| 成人亚洲欧美一区二区av| 人人妻人人添人人爽欧美一区卜| 91麻豆精品激情在线观看国产 | 99九九在线精品视频| 亚洲av美国av| 国产精品一区二区在线不卡| 午夜福利一区二区在线看| 18禁裸乳无遮挡动漫免费视频| 久久久久久人人人人人| 电影成人av| 免费在线观看日本一区| 国产一区有黄有色的免费视频| 这个男人来自地球电影免费观看| 久久99热这里只频精品6学生| 91成人精品电影| 国产精品久久久久久人妻精品电影 | 我要看黄色一级片免费的| 欧美av亚洲av综合av国产av| 亚洲av电影在线进入| 亚洲欧洲国产日韩| 精品久久久精品久久久| 狠狠精品人妻久久久久久综合| 老汉色av国产亚洲站长工具| 观看av在线不卡| 黄色怎么调成土黄色| 国产爽快片一区二区三区| 国产有黄有色有爽视频| 好男人视频免费观看在线| 老汉色av国产亚洲站长工具| 高潮久久久久久久久久久不卡| 久热这里只有精品99| 久久久久国产一级毛片高清牌| 亚洲av成人不卡在线观看播放网 | 日本av手机在线免费观看| 成人午夜精彩视频在线观看| 国产男女内射视频| 亚洲国产看品久久| 少妇的丰满在线观看| 国产爽快片一区二区三区| 久久九九热精品免费| 久久久久国产精品人妻一区二区| 日韩av不卡免费在线播放| 不卡av一区二区三区| 久久国产精品大桥未久av| 日日爽夜夜爽网站| 美女高潮到喷水免费观看| 高潮久久久久久久久久久不卡| 免费看不卡的av| 美女扒开内裤让男人捅视频| 成年动漫av网址| 在线av久久热| 亚洲少妇的诱惑av| 两人在一起打扑克的视频| 男人舔女人的私密视频| 久久精品久久久久久噜噜老黄| 欧美日韩黄片免| 视频在线观看一区二区三区| 97精品久久久久久久久久精品| 亚洲欧美一区二区三区黑人| 久久午夜综合久久蜜桃| 午夜免费成人在线视频| 高清黄色对白视频在线免费看| 黄片播放在线免费| 丝袜喷水一区| 成年美女黄网站色视频大全免费| 一本色道久久久久久精品综合| 五月天丁香电影| 免费看不卡的av| bbb黄色大片| 免费在线观看视频国产中文字幕亚洲 | 精品久久久精品久久久| 国产主播在线观看一区二区 | 国产视频一区二区在线看| 亚洲成人国产一区在线观看 | 国产日韩欧美亚洲二区| 久久九九热精品免费| 免费在线观看视频国产中文字幕亚洲 | 中文字幕亚洲精品专区| 国产免费现黄频在线看| 首页视频小说图片口味搜索 | 亚洲黑人精品在线| 欧美大码av| av天堂在线播放| 满18在线观看网站| 久久ye,这里只有精品| 亚洲精品国产区一区二| 成在线人永久免费视频| xxx大片免费视频| 国产精品久久久久久精品电影小说| 日韩欧美一区视频在线观看| 18禁黄网站禁片午夜丰满| 热re99久久精品国产66热6| 亚洲国产精品999| 国产精品秋霞免费鲁丝片| 九色亚洲精品在线播放| 亚洲精品美女久久久久99蜜臀 | 国产视频一区二区在线看| 国产精品av久久久久免费| 亚洲av电影在线观看一区二区三区| 十八禁高潮呻吟视频| 超色免费av| 又黄又粗又硬又大视频| 久久精品国产亚洲av涩爱| 国产精品免费大片| www.自偷自拍.com| 母亲3免费完整高清在线观看| 国产成人免费无遮挡视频| 久久天堂一区二区三区四区| 国产一区二区在线观看av| 丝袜脚勾引网站| 岛国毛片在线播放| 国产精品 欧美亚洲| 国产日韩欧美亚洲二区| 一区二区三区精品91| 一本大道久久a久久精品| 精品人妻熟女毛片av久久网站| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久久大尺度免费视频| 老鸭窝网址在线观看| av国产久精品久网站免费入址| 一区二区日韩欧美中文字幕| 精品一区二区三区四区五区乱码 | 午夜福利乱码中文字幕| 女警被强在线播放| 欧美 亚洲 国产 日韩一| 国产精品九九99| 日韩av免费高清视频| 三上悠亚av全集在线观看| 又大又爽又粗| 国产熟女欧美一区二区| 又粗又硬又长又爽又黄的视频| 少妇 在线观看| 亚洲中文av在线| 国产亚洲欧美精品永久| 国产无遮挡羞羞视频在线观看| 精品久久久久久久毛片微露脸 | 男女下面插进去视频免费观看| 亚洲色图综合在线观看| 日韩电影二区| 精品熟女少妇八av免费久了| 久久久久国产精品人妻一区二区| 色网站视频免费| www.熟女人妻精品国产| 国产一级毛片在线| 日本av免费视频播放| 免费在线观看视频国产中文字幕亚洲 | 国产精品免费视频内射| 欧美xxⅹ黑人| 精品国产国语对白av| 欧美日本中文国产一区发布| 亚洲av电影在线观看一区二区三区| 精品亚洲成国产av| 观看av在线不卡| 婷婷色av中文字幕| 91国产中文字幕| 久热爱精品视频在线9| 国产精品久久久久久人妻精品电影 | 免费在线观看完整版高清| 老司机午夜十八禁免费视频| 久久精品久久久久久久性| 午夜福利在线免费观看网站| 国产成人啪精品午夜网站| av线在线观看网站| 久久九九热精品免费| 老司机影院成人| 视频区欧美日本亚洲| 女警被强在线播放| 久久人人爽人人片av| 在线看a的网站| 精品国产国语对白av| 国产在线视频一区二区| www.熟女人妻精品国产| 亚洲第一av免费看| 欧美另类一区| 男女床上黄色一级片免费看| 大片免费播放器 马上看| 国产熟女欧美一区二区| 国产黄色视频一区二区在线观看| 成年人黄色毛片网站| 成人国产一区最新在线观看 | 午夜福利一区二区在线看| 亚洲情色 制服丝袜| 国产精品九九99| 一本综合久久免费| 色精品久久人妻99蜜桃| 国产一级毛片在线| 十分钟在线观看高清视频www| 日韩电影二区| 色视频在线一区二区三区| 午夜福利免费观看在线| 热99国产精品久久久久久7| 亚洲激情五月婷婷啪啪| 在线亚洲精品国产二区图片欧美| 国产成人欧美在线观看 | 久久久久久久精品精品| 国产精品一区二区在线观看99| 婷婷色综合www| 男女边摸边吃奶| 欧美 日韩 精品 国产| 国产成人免费观看mmmm| 赤兔流量卡办理| 久久精品久久精品一区二区三区| 肉色欧美久久久久久久蜜桃| 亚洲欧美激情在线| 国产麻豆69| 青春草视频在线免费观看| 久久热在线av| 色网站视频免费| 老司机在亚洲福利影院| 日本av免费视频播放| 国产在线一区二区三区精| 国产一区亚洲一区在线观看| 久久av网站| 亚洲国产欧美网| 满18在线观看网站| 欧美日韩黄片免| 国产成人免费观看mmmm| 国产又色又爽无遮挡免| 91精品国产国语对白视频| 在线观看一区二区三区激情| 99久久精品国产亚洲精品| 人人妻,人人澡人人爽秒播 | 王馨瑶露胸无遮挡在线观看| 久久鲁丝午夜福利片| 午夜免费鲁丝| 欧美老熟妇乱子伦牲交| 制服人妻中文乱码| 久久亚洲精品不卡| 国产精品人妻久久久影院| 亚洲少妇的诱惑av| 国产成人91sexporn| 丝瓜视频免费看黄片| 亚洲欧洲国产日韩| 狠狠精品人妻久久久久久综合| 在线观看免费午夜福利视频| 老司机靠b影院| 最黄视频免费看| 久久久久久久大尺度免费视频| 久9热在线精品视频| 亚洲国产欧美日韩在线播放| 国产一区二区三区av在线| 热re99久久精品国产66热6| 久久九九热精品免费| 免费看av在线观看网站| 中文欧美无线码| av线在线观看网站| 激情五月婷婷亚洲| 欧美日本中文国产一区发布| 欧美精品啪啪一区二区三区 | 99热网站在线观看| 久久久欧美国产精品| 午夜日韩欧美国产| 男女免费视频国产| 亚洲av综合色区一区| 日韩大片免费观看网站| 亚洲男人天堂网一区| 99九九在线精品视频| 亚洲av国产av综合av卡| 十八禁高潮呻吟视频| 亚洲精品国产色婷婷电影| 国产精品.久久久| 黄色视频在线播放观看不卡| 欧美日韩福利视频一区二区| 成年动漫av网址| 丁香六月欧美| 一级片免费观看大全| 狠狠精品人妻久久久久久综合| 熟女少妇亚洲综合色aaa.| 国产欧美日韩精品亚洲av| 老司机亚洲免费影院| 久9热在线精品视频| 欧美97在线视频| 国精品久久久久久国模美| 亚洲国产精品一区二区三区在线| 晚上一个人看的免费电影| 大片电影免费在线观看免费| 国产欧美日韩精品亚洲av| 女性被躁到高潮视频| av福利片在线| 久久久精品免费免费高清| 亚洲成人手机| 视频在线观看一区二区三区| 女人高潮潮喷娇喘18禁视频| 黑人欧美特级aaaaaa片| 天堂中文最新版在线下载| 黄色 视频免费看| 久久久国产一区二区| 欧美日本中文国产一区发布| 丝袜脚勾引网站| 国产成人一区二区三区免费视频网站 | 天天操日日干夜夜撸| 久久久久久人人人人人| 国产精品 欧美亚洲| 国产男女超爽视频在线观看| 99热全是精品| e午夜精品久久久久久久| 人妻一区二区av| 热99国产精品久久久久久7| 别揉我奶头~嗯~啊~动态视频 | 色精品久久人妻99蜜桃| 97在线人人人人妻| 国产成人av激情在线播放| 亚洲一码二码三码区别大吗| 91字幕亚洲| 激情五月婷婷亚洲| 欧美日韩亚洲综合一区二区三区_| 免费看av在线观看网站| 啦啦啦在线观看免费高清www| 国产一区二区激情短视频 | 1024香蕉在线观看| 高清欧美精品videossex| 99香蕉大伊视频| 午夜免费观看性视频| 精品国产国语对白av| 91国产中文字幕| 亚洲国产看品久久| 国产成人精品久久二区二区免费| 这个男人来自地球电影免费观看| 波多野结衣av一区二区av| av在线播放精品| 1024视频免费在线观看| av在线老鸭窝| 丁香六月欧美| 国产精品国产三级专区第一集| 少妇精品久久久久久久| 丁香六月欧美| 免费高清在线观看视频在线观看| 在线观看一区二区三区激情| 久久国产亚洲av麻豆专区| 最新的欧美精品一区二区| 天天影视国产精品| 男男h啪啪无遮挡| 国产精品偷伦视频观看了| 国产日韩欧美在线精品| 美女福利国产在线| 国产精品偷伦视频观看了| 国产淫语在线视频| 精品少妇内射三级| 成人手机av| 亚洲精品久久成人aⅴ小说| 咕卡用的链子| 日本色播在线视频| 两个人免费观看高清视频| 一本综合久久免费| 99香蕉大伊视频| 欧美老熟妇乱子伦牲交| 成年人午夜在线观看视频| 老司机午夜十八禁免费视频|