• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Machine Learning Application for Prediction of Sapphire Crystals Defects

    2020-05-14 01:23:12YuliaVladimirovnaKlunnikovaMaximVladimirovichAnikeevAlexeyVladimirovichFilimonovRaviKumar

    Yulia Vladimirovna Klunnikova|Maxim Vladimirovich Anikeev|Alexey Vladimirovich Filimonov|Ravi Kumar

    Abstract—We investigate the impact of different numbers of positive and negative examples on machine learning for sapphire crystals defects prediction.We obtain the models of crystal growth parameters influence on the sapphire crystal growth.For example,these models allow predicting the defects that occur due to local overcooling of crucible walls in the thermal node leading to the accelerated crystal growth.We also develop the prediction models for obtaining the crystal weight,blocks,cracks,bubbles formation,and total defect characteristics.The models were trained on all data sets and later tested for generalization on testing sets,which did not overlap the training set.During training and testing,we find the recall and precision of prediction,and analyze the correlation among the features.The results have shown that the precision of the neural network method for predicting defects formed by local overcooling of the crucible reached 0.94.

    1.Introduction

    Machine learning methods are becoming increasingly popular in accelerating the design of new materials by predicting material properties.The minimization of various defects in the crystal structure is extremely important for the improvement and development of modern technologies for the artificial sapphire crystal growth.

    Sapphire monocrystals find wide applications in microelectronics,optics,and electronic equipment engineering.They can be used as the substrates for integrated circuits with high resistance to radiation and heat combined with low power consumption.The defects formed in the crystal are one of the key factors affecting the properties of the substrates cut from them and the possibility of their applications in microelectronics and optoelectronics.

    Theoretical and experimental studies were carried out with crystal growth by the Kyropoulos method[1]-[9].The Kyropoulos method is used for industrial production of sapphire crystals with a diameter of 300 mm and more.S.Kyropoulos has proposed the process,in which the seed is placed into a water-cooled crystal holder and is introduced to the melt in the melting pot.The crystal grows on the seed in the form of a hemisphere and is deepened into the melt.When the growing crystal reaches the pot’s surface,the crystal holder is lifted by several millimeters,and this process is repeated until the crystal has grown.Crystallographic orientation,the density and types of point defects,the density of single dislocations,lengths of block boundaries and their misorientations,the level of residual stresses,the heterogeneity,and the chemical purity define the sapphire monocrystal’s quality.Features of the crystal growing equipment,the total heating time,the degree of overheating,the seeding time,the speed of crystallization,the heater power output,the speed of the power decay,the voltage and its decay ratio,the crystal growth time,and the output of valid crystals(cracks,blocks,bubbles,residual stresses,etc.)are taken into account to predict the resulting quality of crystals[10].Nowadays there is a number of different studies of the properties and crystal structure defects(X-ray,optical methods,atomic force microscopy,and others).However,experiments alone do not make it possible to evaluate how crystal obtaining parameters affect their properties.In order to fulfill the aims of the research,it is necessary to estimate the correlation of numerous components and to find their optimal combinations for the optimization of the industrial crystal growth performance.

    2.Machine Learning for Materials Prediction

    The combination of experimental studies of the sapphire crystal growth by the Kyropolous method(see Fig.1)and machine learning methods allow finding the dependencies of the defects level in time and can reduce the number of unsuccessful attempts.The quantity and variety of defects in crystals are described by stochastic functions which depend on different technological parameters,such as the design features of the furnace,the temperature in different areas of the furnace and its variation over time,etc.

    Fig.1.Sapphire crystals obtained(a)by the Kyropolous method and(b)enlarged sapphire crystals.

    Prediction of crystal defects is an important and fundamental problem in materials science.Machine learning for the prediction of materials has been under investigation for several years.Only several works describe the neural network usage for the prediction of crystal properties[11]-[14].Data mining tools allow predicting the future trends and behavior that allows making decisions.The aim of this contribution is the incorporation of the findings into an overall prediction approach for the computational investigation of possible defects formation during the sapphire crystals growth.

    Many studies in the defect prediction use techniques which originated from statistics and machine learning[15].Such techniques include logistic regression,support vector machine(SVM),classification trees,neural networks,the naive Bayes algorithm,k-nearest neighbour (kNN)algorithm,CN2 algorithm,induction algorithm,adaptive boosting algorithm(AdaBoost),random forest algorithm,and stochastic gradient descent(SGD)algorithm[16].

    The development and application concerning data mining algorithms require the use of powerful software tools.There are many available open source data mining tools like the Waikato environment for knowledge analysis(WEKA),Tanagra,the Konstanz information miner (KNIME),and Orange Canvas.In this paper,we use the Orange Canvas framework for defects prediction in sapphire crystals.Orange Canvas is a comprehensive,component-based framework for machine learning and data mining.It provides a platform for experiment selection,predictive modeling,and recommendation systems.Orange Canvas includes a set of components for data preprocessing,feature scoring and filtering,simulation,model evaluation,and exploration techniques.It is intended for both experienced users and researchers in machine learning,who want to develop and test their algorithm,with the easy-to-use visual programming environment.Orange Canvas allows easy prototyping of new algorithms and experimental procedures.For explorative data analysis,it provides a visual programming framework with an emphasis on interactions and creative combinations of visual components[16]-[25].

    We investigate the impact of different numbers of positive and negative examples on machine learning for sapphire crystals defects prediction.We obtain the models of crystal growth parameters influence on sapphire crystal growth.Training data are sent to the appropriate classifier(see Fig.2).Then we compare the results from the classifiers with the real experiment.The main goal of the research is to assess whether the proposed approach may be used on the defects prediction.

    Fig.2.Illustration for machine learning workflow.

    3.Sapphire Crystals Defects Prediction Results

    We present the receiver operating characteristic(ROC) analysis and comparison between the calculation parameters of Orange Canvas (see Fig.3 and Table 1,where AUC is the area under thr ROC curve,CA is the classification accuracy,and F1 is the F-score).These models allow predicting,for example,the defects formed as a result of local overcooling of the crucible walls in the thermal node,leading to the accelerated crystal growth.We also receive the prediction models for obtained thr crystal weight,blocks,crack,bubbles formation,and total defect characteristics.The models obtained for all data sets and they were later used for generalization on a different data set which does not include the data used on the training stage.During training and testing,we find the recall and precision of prediction,and analyze the correlation among the features.The results show that the neural network precision for defects formed as a result of local overcooling of the crucible was 0.94.The neural network determines the current situation as a known state and reproduces its reaction as accurately as possible.The experimental studies of the sapphire crystals growth by the Kyropoulos method describe the dependence of the defects level in time,and neural networks as a machine learning instrument make it possible to derive new dependencies from this data and predict the obtained crystal quality.The precision of SVM and naive Bayes algorithms was 0.857 and 0.801,respectively.The experimental data set has to be extended to specify models,improving the recall and precision for defects prediction.

    Data mining is often concerned with the development of predictive models.In order to apply predictive models in practice,they have to be integrated into the decision support systems.The comparison between calculation parameters of Orange Canvas can be applied for the universal expert system development for defects prediction during the sapphire crystals obtaining.The analysis allows the experts to find hidden information in data and improve the efficiency of prediction.The generalized structure of the expert system for defects prediction is presented in Fig.4.These investigations allow us to improve the expert system for defects prediction in sapphire crystals.We demonstrate the robustness and the predictive power of our method by performing the determination of defects.The designed software is a universal tool for studying the influence of the crystal growth parameters on the quality of sapphire crystals.It can be widely used to estimate and predict the defects of growing crystals.

    The class diagrams of the expert system for the sapphire defects prediction can be seen in Fig.5.In this diagram,the main classes include:

    Fig.3.ROC analysis of calculation parameters in Orange Canvas.

    Table 1:Comparison between calculation parameters of Orange Canvas.

    Fig.4.Generalized structure of the expert system knowledge base.

    -CCriteria—a class that represents a feature,which can be characterized by an object from the subject area.This class includes the name of the attribute and the weight of the attribute,which is necessary for evaluating its effect on the resulting output of the calculation.This class also combines a set of possible values for the criterion of the values contained in the collection of objects of the CFeature class.

    -CFeature—a class that represents one particular value from a certain set of permissible values related to a specific attribute.The class allows the user to set the name of the value and its numerical rating,defined in the range from 0 to 1.

    -CCriteriaCollection—a class that facilitates work with a variety of features that are available in the developed expert system.This class simplifies the search and selection of criteria in the developed system,their addition and deletion,and also includes internal means of checking features on the correctness.

    -CPattern—a class of the solution variant that is presented to the user of the expert system.The class includes a field for describing the solution received by the user after the search.Another attribute characterizing a solution is the range of values defined by the expert,which distinguishes the solution from others.

    -CPatternCollection—a class that represents a set of solutions specified by an expert.This class includes solutions,sorted in an ascending order,which speeds up and simplifies the search procedure.This class also allows to test for the correctness of the set of solutions.

    -CExpertSystemContainer—a class that encapsulates all static information about features and solutions provided by experts.

    -CTuple—a class that contains information about the selection of certain values of attributes.This sample is made by the user of the expert system.The accuracy of the solution,as a rule,increases when more features are set by the user.The CChooser instance is passed as an object of this class to find a solution.

    -CChooser—a class designed to search for a solution.In the beginning,a coefficient that is scaled to the interval of[0,1]is determined from the sample transmitted to it.This coefficient is then passed to the CPatternCollection object.The CPatternCollection object determines which of the intervals falls on the number,and then returns the solution.

    -CSerializer—a class that allows serializing and deserializing all the data stored in the CExpertSystemContainer.This class is necessary to save the developed expert system to a file on the disk and to load it.

    Fig.5.Class diagram of expert system for the sapphire defects prediction.

    The algorithms for data collection and analysis are designed to meet the following criteria:Analysis of initial technological data;statistical data processing;modeling of the influence of technological parameters on the quality of crystals;crystal quality prediction according to the initial data;decision making;analysis of reasons of possible deviations;model correction based on newly discovered data.

    Selected user interface elements of the expert system are shown in Fig.6.

    4.Conclusions

    Various machine learning methods are capable of finding optimal conditions for the sapphire monocrystal production with different efficiency.

    Fig.6.Expert system software interface.

    This research has been conducted as a comparison between data mining tools (the logistic regression,SVM,classification trees,neural networks,naive Bayes algorithm,kNN algorithm,CN2 induction algorithm,AdaBoost,random forest algorithm,and SGD algorithm) for the sapphire crystals defects prediction.We analyzed the fundamental interplay between the availability of materials data and the predictive capability of machine learning models.We studied the various data mining techniques available to predict the crystal defects and to find the best methods for prediction.

    The proposed models allow predicting the crystal quality.We obtained an automatic procedure and machine learning method for the fast crystals quality prediction.The industrial application of such methods will heighten the automatization level of production of crystals with the predefined combination of properties that can be important for a particular application in microelectronics and nanoelectronics.Solving these scientific and engineering problems requires the use of information technologies in crystals production on a new level.

    In order to make the data mining technique applicable to daily practice,they have to be integrated into the decision support systems.For this,we propose the schema where the predictive modules are developed separately with the Orange Canvas data mining tool,while for the decision support system we suggest to develop the special software.On the base of our study,we propose the software for analyzing the resulting crystals quality,which allows optimizing the process of the crystal growth.

    We expect to increase the experimental data in the future,so it will give new opportunities for prediction and increasing its accuracy.We plan to recognize crystal images from the furnace chamber and to forecast influence of the conditions on the crystal quality.

    亚洲欧美精品专区久久| 色5月婷婷丁香| 伦理电影大哥的女人| 国产永久视频网站| 亚洲综合色惰| 日本av手机在线免费观看| 大香蕉97超碰在线| 国产成人精品一,二区| 黄色配什么色好看| 日韩伦理黄色片| 在线观看国产h片| 亚洲精品日本国产第一区| 国产大屁股一区二区在线视频| 国产成人freesex在线| 日韩人妻高清精品专区| 97在线视频观看| 国产精品国产三级专区第一集| 街头女战士在线观看网站| 国产精品久久久久久精品电影| 97在线视频观看| 亚洲婷婷狠狠爱综合网| 国产精品久久久久久精品古装| 国产高清三级在线| 看免费成人av毛片| 日产精品乱码卡一卡2卡三| 美女国产视频在线观看| 黄色怎么调成土黄色| 午夜福利视频1000在线观看| 日韩免费高清中文字幕av| 日本欧美国产在线视频| 国产 一区 欧美 日韩| 伦精品一区二区三区| 成年女人看的毛片在线观看| 少妇人妻 视频| 亚洲激情五月婷婷啪啪| 大码成人一级视频| 丰满少妇做爰视频| 极品教师在线视频| 欧美老熟妇乱子伦牲交| 精品国产一区二区三区久久久樱花 | 亚洲内射少妇av| 亚洲欧美日韩无卡精品| 日韩av不卡免费在线播放| 午夜福利高清视频| 欧美区成人在线视频| 波野结衣二区三区在线| av在线亚洲专区| 免费av观看视频| 国产成人午夜福利电影在线观看| a级一级毛片免费在线观看| 少妇的逼水好多| 美女被艹到高潮喷水动态| 日韩视频在线欧美| 大话2 男鬼变身卡| 亚洲国产精品专区欧美| 久久韩国三级中文字幕| 91精品国产九色| 一级毛片aaaaaa免费看小| 亚洲精品一二三| 男人舔奶头视频| 久久ye,这里只有精品| 亚洲天堂av无毛| 五月玫瑰六月丁香| 春色校园在线视频观看| 熟妇人妻不卡中文字幕| 人人妻人人爽人人添夜夜欢视频 | 高清欧美精品videossex| 啦啦啦啦在线视频资源| 亚洲精品一二三| 在线看a的网站| 日韩不卡一区二区三区视频在线| 最近中文字幕高清免费大全6| 国产 精品1| 精品人妻一区二区三区麻豆| 一个人看视频在线观看www免费| 我的老师免费观看完整版| 欧美bdsm另类| 啦啦啦中文免费视频观看日本| 97热精品久久久久久| 欧美3d第一页| 高清视频免费观看一区二区| 午夜福利在线在线| 美女国产视频在线观看| 成人无遮挡网站| 特大巨黑吊av在线直播| 99re6热这里在线精品视频| 男人舔奶头视频| 一级片'在线观看视频| 好男人视频免费观看在线| 一级av片app| 成人午夜精彩视频在线观看| 天天躁夜夜躁狠狠久久av| 丰满人妻一区二区三区视频av| 欧美一区二区亚洲| 成人鲁丝片一二三区免费| 秋霞伦理黄片| 国产爱豆传媒在线观看| av又黄又爽大尺度在线免费看| 国产免费视频播放在线视频| 丝瓜视频免费看黄片| 国产成人一区二区在线| 亚洲欧美精品专区久久| 噜噜噜噜噜久久久久久91| 日韩亚洲欧美综合| 精品一区二区三卡| 欧美xxⅹ黑人| 日韩av免费高清视频| 亚洲va在线va天堂va国产| 亚洲av不卡在线观看| 亚洲精华国产精华液的使用体验| 2022亚洲国产成人精品| 97在线视频观看| 麻豆成人午夜福利视频| 久久精品国产a三级三级三级| 不卡视频在线观看欧美| 日本色播在线视频| 91在线精品国自产拍蜜月| 一级黄片播放器| 熟妇人妻不卡中文字幕| 色综合色国产| www.色视频.com| 免费观看性生交大片5| 麻豆精品久久久久久蜜桃| 秋霞伦理黄片| 亚洲真实伦在线观看| 有码 亚洲区| 老司机影院成人| 最近最新中文字幕大全电影3| 国产精品.久久久| 国产黄色免费在线视频| 18禁在线播放成人免费| 亚洲精品成人av观看孕妇| 大又大粗又爽又黄少妇毛片口| 精品国产露脸久久av麻豆| 亚洲欧洲国产日韩| 欧美日韩国产mv在线观看视频 | 久久久久久久国产电影| 国产精品一区二区在线观看99| 哪个播放器可以免费观看大片| 18禁在线播放成人免费| 啦啦啦啦在线视频资源| 精品少妇黑人巨大在线播放| 亚洲av成人精品一二三区| 久久久久久久精品精品| 别揉我奶头 嗯啊视频| 成人亚洲精品一区在线观看 | 精品久久久噜噜| 全区人妻精品视频| 青春草亚洲视频在线观看| 如何舔出高潮| 久久久久性生活片| 国产黄a三级三级三级人| av国产久精品久网站免费入址| 少妇熟女欧美另类| 男人添女人高潮全过程视频| 网址你懂的国产日韩在线| 91aial.com中文字幕在线观看| 国产一区二区亚洲精品在线观看| 美女cb高潮喷水在线观看| 久久精品国产a三级三级三级| 少妇高潮的动态图| 一区二区三区精品91| 亚洲av一区综合| 熟妇人妻不卡中文字幕| 欧美精品人与动牲交sv欧美| 欧美激情在线99| 老师上课跳d突然被开到最大视频| 人妻夜夜爽99麻豆av| 亚洲最大成人av| 内地一区二区视频在线| 91午夜精品亚洲一区二区三区| 久久97久久精品| 日本一本二区三区精品| 精品久久久久久久久亚洲| 国产在视频线精品| 免费观看av网站的网址| 夫妻午夜视频| 日本三级黄在线观看| 永久免费av网站大全| 18禁在线播放成人免费| 欧美97在线视频| 亚洲真实伦在线观看| 18禁在线无遮挡免费观看视频| 男人添女人高潮全过程视频| 国产精品av视频在线免费观看| 国产精品嫩草影院av在线观看| 91精品一卡2卡3卡4卡| 少妇人妻 视频| 国产精品一区www在线观看| 欧美激情国产日韩精品一区| 亚洲av.av天堂| 国产美女午夜福利| 看十八女毛片水多多多| 欧美少妇被猛烈插入视频| 91精品国产九色| 亚洲欧美一区二区三区黑人 | 欧美日韩精品成人综合77777| 春色校园在线视频观看| 少妇高潮的动态图| 精品一区在线观看国产| 丝袜喷水一区| eeuss影院久久| 国产亚洲av嫩草精品影院| 亚洲精华国产精华液的使用体验| 国产男人的电影天堂91| 亚洲av不卡在线观看| 成人毛片60女人毛片免费| 视频中文字幕在线观看| 在线观看一区二区三区激情| 少妇丰满av| 亚洲精品日本国产第一区| 亚洲最大成人中文| 激情五月婷婷亚洲| 国产色爽女视频免费观看| 国产精品国产三级专区第一集| 国模一区二区三区四区视频| 伊人久久精品亚洲午夜| 国国产精品蜜臀av免费| 又黄又爽又刺激的免费视频.| 国产亚洲5aaaaa淫片| 久久久久九九精品影院| 久久久久国产网址| 搡老乐熟女国产| av线在线观看网站| 国产精品无大码| 国产精品嫩草影院av在线观看| 看免费成人av毛片| av在线天堂中文字幕| 丝袜喷水一区| 日韩制服骚丝袜av| 亚洲精品中文字幕在线视频 | 国产色婷婷99| www.色视频.com| 性色av一级| 一级毛片黄色毛片免费观看视频| 亚洲,一卡二卡三卡| 亚洲av成人精品一区久久| 91aial.com中文字幕在线观看| 男人和女人高潮做爰伦理| 内射极品少妇av片p| 国产欧美另类精品又又久久亚洲欧美| 极品教师在线视频| 2021天堂中文幕一二区在线观| 18禁裸乳无遮挡免费网站照片| 麻豆成人av视频| 777米奇影视久久| 美女视频免费永久观看网站| 亚洲精品日韩在线中文字幕| 久久久色成人| 亚洲av二区三区四区| 男女国产视频网站| 国产免费又黄又爽又色| 亚洲av男天堂| 国产欧美日韩一区二区三区在线 | 91精品国产九色| 国产爱豆传媒在线观看| 午夜老司机福利剧场| 亚洲国产精品999| 日韩三级伦理在线观看| 亚洲天堂国产精品一区在线| 草草在线视频免费看| 免费在线观看成人毛片| 免费观看av网站的网址| 午夜老司机福利剧场| 内射极品少妇av片p| 男女边吃奶边做爰视频| 亚洲天堂国产精品一区在线| 99久久精品热视频| 久久久久久久大尺度免费视频| 日韩欧美 国产精品| 欧美xxxx黑人xx丫x性爽| 特级一级黄色大片| 18禁在线播放成人免费| 日韩在线高清观看一区二区三区| 九色成人免费人妻av| 亚洲精品乱码久久久v下载方式| 国产精品福利在线免费观看| 欧美xxxx性猛交bbbb| 亚洲第一区二区三区不卡| 亚洲aⅴ乱码一区二区在线播放| 小蜜桃在线观看免费完整版高清| 国产精品人妻久久久影院| 亚洲不卡免费看| 国产亚洲5aaaaa淫片| 精品一区二区三区视频在线| 亚洲国产高清在线一区二区三| 嫩草影院新地址| a级一级毛片免费在线观看| 亚洲一级一片aⅴ在线观看| 蜜桃亚洲精品一区二区三区| 神马国产精品三级电影在线观看| 丝袜脚勾引网站| 你懂的网址亚洲精品在线观看| 日本av手机在线免费观看| 国产探花在线观看一区二区| 亚洲精品乱久久久久久| 观看免费一级毛片| 菩萨蛮人人尽说江南好唐韦庄| 午夜激情福利司机影院| 少妇高潮的动态图| 国产亚洲91精品色在线| 国产 精品1| 91狼人影院| 少妇被粗大猛烈的视频| 一二三四中文在线观看免费高清| 免费看日本二区| 亚洲经典国产精华液单| 免费电影在线观看免费观看| 麻豆成人午夜福利视频| 亚洲性久久影院| 日韩精品有码人妻一区| 国产在视频线精品| 日韩欧美一区视频在线观看 | 亚洲丝袜综合中文字幕| av播播在线观看一区| 国产精品久久久久久av不卡| 国产一区有黄有色的免费视频| 日韩人妻高清精品专区| 女人十人毛片免费观看3o分钟| 天堂网av新在线| 国产亚洲5aaaaa淫片| 亚洲欧美中文字幕日韩二区| 身体一侧抽搐| 热99国产精品久久久久久7| 人人妻人人澡人人爽人人夜夜| av在线播放精品| 尾随美女入室| 舔av片在线| 一级毛片aaaaaa免费看小| 国产一区亚洲一区在线观看| 涩涩av久久男人的天堂| 久久久久久久久大av| 亚洲美女搞黄在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产91av在线免费观看| 国产 一区精品| 日韩一区二区三区影片| 亚洲精品日韩在线中文字幕| 人妻系列 视频| 日韩人妻高清精品专区| 亚洲欧美日韩另类电影网站 | 哪个播放器可以免费观看大片| 99热这里只有是精品在线观看| 久久久午夜欧美精品| 国产 精品1| 91久久精品电影网| 午夜爱爱视频在线播放| 亚洲精品自拍成人| 久久精品国产亚洲网站| 蜜臀久久99精品久久宅男| 黄色视频在线播放观看不卡| 午夜福利高清视频| 欧美xxxx黑人xx丫x性爽| 久久久欧美国产精品| 国产伦精品一区二区三区视频9| 狂野欧美激情性bbbbbb| 在线a可以看的网站| 美女xxoo啪啪120秒动态图| tube8黄色片| 国产一区二区在线观看日韩| 下体分泌物呈黄色| 岛国毛片在线播放| 国产一区亚洲一区在线观看| 免费在线观看成人毛片| av天堂中文字幕网| 夫妻午夜视频| 伊人久久国产一区二区| 日日啪夜夜撸| 精品久久久久久久末码| 精品视频人人做人人爽| 亚洲熟女精品中文字幕| 禁无遮挡网站| 亚洲在久久综合| 国产av不卡久久| 精品99又大又爽又粗少妇毛片| 久久热精品热| 最近中文字幕高清免费大全6| 亚洲在线观看片| av播播在线观看一区| 国产精品嫩草影院av在线观看| 一个人看视频在线观看www免费| 亚洲av福利一区| 嘟嘟电影网在线观看| av在线app专区| 人妻 亚洲 视频| 精品人妻视频免费看| 18禁裸乳无遮挡免费网站照片| 亚洲无线观看免费| 99热这里只有是精品在线观看| 六月丁香七月| 天堂俺去俺来也www色官网| 99久久九九国产精品国产免费| 日韩av免费高清视频| 18禁动态无遮挡网站| 国产熟女欧美一区二区| 一级毛片久久久久久久久女| 国产大屁股一区二区在线视频| 国产一区二区三区av在线| 下体分泌物呈黄色| 三级男女做爰猛烈吃奶摸视频| 听说在线观看完整版免费高清| 夜夜爽夜夜爽视频| 国产精品一及| 狠狠精品人妻久久久久久综合| 中文欧美无线码| 麻豆精品久久久久久蜜桃| 欧美精品人与动牲交sv欧美| 禁无遮挡网站| 插逼视频在线观看| 王馨瑶露胸无遮挡在线观看| 亚洲国产日韩一区二区| 深爱激情五月婷婷| 中文字幕久久专区| 99热网站在线观看| 特大巨黑吊av在线直播| 2021天堂中文幕一二区在线观| 国产精品一区www在线观看| 白带黄色成豆腐渣| 欧美另类一区| 国产 一区 欧美 日韩| 精品久久久久久久久亚洲| 欧美xxxx性猛交bbbb| h日本视频在线播放| 超碰av人人做人人爽久久| 男人添女人高潮全过程视频| 亚洲怡红院男人天堂| 国产69精品久久久久777片| 午夜福利网站1000一区二区三区| 色播亚洲综合网| 亚洲无线观看免费| 麻豆国产97在线/欧美| 亚洲天堂国产精品一区在线| 日本午夜av视频| 狂野欧美激情性bbbbbb| 日本-黄色视频高清免费观看| av卡一久久| 伊人久久精品亚洲午夜| 成人漫画全彩无遮挡| av专区在线播放| 大码成人一级视频| 久久久a久久爽久久v久久| 男女边摸边吃奶| 免费播放大片免费观看视频在线观看| 美女高潮的动态| 在线看a的网站| 午夜福利视频1000在线观看| 九九在线视频观看精品| 午夜福利视频精品| 亚洲欧美成人精品一区二区| 精品一区在线观看国产| 午夜免费观看性视频| 久久久久久国产a免费观看| 久久精品熟女亚洲av麻豆精品| 少妇的逼好多水| 女的被弄到高潮叫床怎么办| 国产 一区精品| 三级国产精品片| 午夜福利高清视频| 下体分泌物呈黄色| 国产爱豆传媒在线观看| 欧美xxxx性猛交bbbb| 亚洲精品久久久久久婷婷小说| 国产成人aa在线观看| 国产爱豆传媒在线观看| 国产片特级美女逼逼视频| 精品国产一区二区三区久久久樱花 | 18禁动态无遮挡网站| 亚洲精品日韩av片在线观看| 久久久久久久国产电影| 大陆偷拍与自拍| 18禁在线无遮挡免费观看视频| 亚洲国产日韩一区二区| 国产黄片视频在线免费观看| 久久精品国产亚洲av涩爱| 搡老乐熟女国产| 日韩成人伦理影院| 你懂的网址亚洲精品在线观看| 久久影院123| kizo精华| 免费av毛片视频| 91精品国产九色| 日本与韩国留学比较| 热99国产精品久久久久久7| 国产精品一区二区性色av| av女优亚洲男人天堂| 欧美日韩综合久久久久久| 美女内射精品一级片tv| 国产精品一区二区三区四区免费观看| 久久韩国三级中文字幕| 精品国产一区二区三区久久久樱花 | 色网站视频免费| 亚洲四区av| 黄色日韩在线| 亚洲高清免费不卡视频| av福利片在线观看| 天天躁日日操中文字幕| 成年版毛片免费区| 毛片一级片免费看久久久久| 五月开心婷婷网| 美女内射精品一级片tv| av.在线天堂| 亚洲国产精品成人久久小说| 国产黄色免费在线视频| 欧美丝袜亚洲另类| 亚洲熟女精品中文字幕| 亚洲久久久久久中文字幕| 亚洲美女视频黄频| 亚洲精品乱码久久久v下载方式| 菩萨蛮人人尽说江南好唐韦庄| 又黄又爽又刺激的免费视频.| 精品久久久久久久久av| 日韩一区二区视频免费看| 国产亚洲91精品色在线| 亚洲人成网站在线观看播放| 男女边吃奶边做爰视频| 男女无遮挡免费网站观看| 日韩三级伦理在线观看| 成人一区二区视频在线观看| 久久精品综合一区二区三区| 成人综合一区亚洲| 亚洲国产欧美人成| 久久亚洲国产成人精品v| 国产高清有码在线观看视频| 久久久久久久久久久免费av| 18禁裸乳无遮挡免费网站照片| 内射极品少妇av片p| av卡一久久| 久久女婷五月综合色啪小说 | 伊人久久国产一区二区| 美女国产视频在线观看| 国产免费又黄又爽又色| 丰满乱子伦码专区| 亚洲无线观看免费| 久久精品久久精品一区二区三区| 国产色婷婷99| 日韩欧美一区视频在线观看 | 亚洲国产精品国产精品| 免费不卡的大黄色大毛片视频在线观看| 国产v大片淫在线免费观看| 自拍偷自拍亚洲精品老妇| 久久人人爽人人片av| 国产高潮美女av| 水蜜桃什么品种好| 亚洲精品,欧美精品| 51国产日韩欧美| 在线天堂最新版资源| 国产亚洲精品久久久com| 在线观看av片永久免费下载| 成人无遮挡网站| 欧美区成人在线视频| 男人和女人高潮做爰伦理| 欧美精品人与动牲交sv欧美| 日韩一区二区三区影片| 免费观看在线日韩| 精品久久久精品久久久| www.av在线官网国产| 亚洲国产最新在线播放| 成人亚洲精品一区在线观看 | 久久久久久久久久久免费av| 婷婷色综合www| 精品人妻偷拍中文字幕| 狂野欧美白嫩少妇大欣赏| 久久久久久九九精品二区国产| 免费在线观看成人毛片| av在线观看视频网站免费| 色视频www国产| 精品人妻偷拍中文字幕| 欧美丝袜亚洲另类| 国产精品一区二区三区四区免费观看| 日韩人妻高清精品专区| 国产精品99久久99久久久不卡 | 久久精品国产a三级三级三级| 丰满人妻一区二区三区视频av| 男女无遮挡免费网站观看| 国产视频首页在线观看| 精品少妇黑人巨大在线播放| 69av精品久久久久久| 免费av不卡在线播放| 热99国产精品久久久久久7| 国产乱人视频| 国产精品一二三区在线看| 久久国产乱子免费精品| 亚洲国产精品国产精品| 中文精品一卡2卡3卡4更新| 免费看不卡的av| 午夜免费鲁丝| 人人妻人人澡人人爽人人夜夜| 日本欧美国产在线视频| 亚洲av国产av综合av卡| 极品教师在线视频| 国产精品一及| 一级毛片aaaaaa免费看小| 免费大片18禁| 人人妻人人澡人人爽人人夜夜| 熟女人妻精品中文字幕| 一级毛片 在线播放| 亚洲最大成人中文| 最近的中文字幕免费完整| 欧美国产精品一级二级三级 | 熟女av电影| 热99国产精品久久久久久7| 视频区图区小说| 中国美白少妇内射xxxbb| 成年人午夜在线观看视频| 日韩制服骚丝袜av| 亚洲无线观看免费| 下体分泌物呈黄色| 亚洲av男天堂| 成人高潮视频无遮挡免费网站| 亚洲欧美日韩另类电影网站 | 青青草视频在线视频观看| 三级男女做爰猛烈吃奶摸视频| 亚洲精品中文字幕在线视频 | av在线观看视频网站免费| 男人添女人高潮全过程视频|