• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    BER Performance of Finite in Time Optimal FTN Signals for the Viterbi Algorithm

    2020-05-14 01:23:20SergeyMakarovIlyaLavrenyukAnnaOvsyannikovaSergeyZavjalov

    Sergey B.Makarov|Ilya I.Lavrenyuk|Anna S.Ovsyannikova|Sergey V.Zavjalov

    Abstract—In this article,we consider the faster than Nyquist(FTN)technology in aspects of the application of the Viterbi algorithm(VA).Finite in time optimal FTN signals are used to provide a symbol rate higher than the “Nyquist barrier”without any encoding.These signals are obtained as the solutions of the corresponding optimization problem.Optimal signals are characterized by intersymbol interference(ISI).This fact leads to significant bit error rate(BER)performance degradation for “classical”forms of signals.However,ISI can be controlled by the restriction of the optimization problem.So we can use optimal signals in conditions of increased duration and an increased symbol rate without significant energy losses.The additional symbol rate increase leads to the increase of the reception algorithm complexity.We consider the application of VA for optimal FTN signals reception.The application of VA for receiving optimal FTN signals with increased duration provides close to the potential performance of BER,while the symbol rate is twice above the Nyquist limit.

    1.Introduction

    Faster than Nyquist(FTN)random binary signal sequencess(t)with the signal piece of duration larger than one sym bol intervalTcould provide a symbol rate higher than the “Nyquist barrier”without any encoding,as in[1]to[6].The high bandwidth efficiency is achieved by transmitting information using signals with the durationTs=LT(L=2,3,…)and energyEs,which is focused mainly on a relatively small(less than 20% of the durationTs)time interval.Such signals are generated using a digital filter,which provides a narrow band of occupied frequencies ΔFand a specific information transfer rate.Message transmission occurs under intersymbol interference (ISI)conditions,caused by the overlapping of adjacent signals,which leads to the significant reduction of the bit error rate(BER)performance of reception at high channel message rates.

    To increase the BER performance of message reception,algorithms for coherent “reception in the whole”packets of sequences of FTN signals are used.It is shown in[3]and[4]that when using FTN signals built on the basis of root raised cosine(RRC)pulses with a value of the roll-off factor of the frequency response,the energy losses are about 12 dB with a probability of error per bitp=10–3.These costs exceed the potential signal-to-noise ratio for given BER of 5 dB.

    It is reasonable to formulate the problem of reducing energy costs due to the transition from the method of generating signals using bandpass filtering to the application of the method of constructing signals based on the solution of the optimization problem in the form ofs(t),as in[6]to[10],with the introduction of a constraint on the cross-correlation coefficient or Euclidean distance,as in[7]and[11]to[14].

    The criterion for optimizing the shape of such FTN signals is based on the principle of choosing the maximum density of the energy spectrumG(f),determined by the rate of out-of-band emissions ofG(f)outside the band ΔF.The occupied frequency band ΔFis determined by the level of the decline in the energy spectrum(for example,ΔF–50dB).As shown in[13]to[15],the shape of the optimal FTN signals of the durationTs=LTchanges as the message transmission rateRincreases.There is a decrease in the time interval,where the main part of the energy is concentrated;thus,this leads to an expansion of the occupied frequency band of the energy spectrum of the transmitted random sequence of signals.

    A random sequence consisting of binary modulatedNtime-limited single optimal FTN signalssopt(t)with the durationTs=LT(L=2,3,…)and energyEopthas the following form:

    where the valuescn=±1 have equal probabilities of occurrence for each valuen.The coefficientξ(0<ξ<1)determines the symbol rate,which is equivalent to the bit rate in the case of the binary alphabet.A feature of such signals is the controlled level of ISI.The energy reception efficiency is estimated by calculating the Euclidean distance.The square of the Euclidean distanced2(i,k) between different realization of two random sequencesyi(t)andyk(t)in (1)determines BER and can be calculated by the following formula:

    The minimum normalized Euclidean distance is defined as

    As a transmission channel,we consider the channel with the additive white Gaussian noise(AWGN)n(t)with an average power spectral density ofN0,which allows us to estimate the place of optimal FTN signals on the Shannon plane and to compare their efficiency with the Shannon boundary.

    This paper considers the possibility of using time-limited optimal binary FTN signals to increase the BER performance of message reception when approaching high specific transmission rates in a channel with AWGN.

    2.Forms of Optimal Binary FTN Signal Sequences

    For example,Fig.1 shows the implementation forms of a random sequence as(1)of optimal FTN signals[10],[16]-[18]with the durationTs=8Tforξ=1/2 (R=2 /T,Fig.1 (a))andξ=1/2.5 (R=2.5/T,Fig.1 (b)).In these figures,the sequence ofcnhas the form:+1,+1,–1,and +1.Thin lines indicate the forms of single signals corresponding tocn,and thick lines indicate the total sequences of signals.It can be seen that the ISI level is quite high in these sequences.

    Fig.1.Sequence of optimal FTN signals with symbol rates:(a)R=2/T and(b)R=2.5/T.

    The shape of the optimal FTN signal was obtained for the transmission rateR=2/T(Fig.1(a))with a restriction on the cross-correlation coefficientK0=0.01 for the rate of the out-of-band emission level 1/f4,as shown in[10]and[13]to[15].Fig.1(b)shows the sequence of these signals transmitted at a speed ofR=2.5/T.

    As can be seen from a comparison of the forms of the sequences shown in Figs.1(a)and(b),as the transmission speed increases,the influence of neighboring signals falling into this analysis interval increases significantly.

    Let us consider the energy spectra of FTN signals based on the optimal pulses and,for comparison,based on RRC pulses with a roll-off factorβ=0.3.The normalized energy spectra ∣S(f)∣2/∣S(0)∣2are represented in Fig.2.HereS(f)means the spectrum of the single pulse andS(0)means the absolute value of the spectrum at zero frequency.

    Fig.2 demonstrates the energy spectra for FTN pulses obtained for the transmission ratesR=1/TandR=2/Tand the energy spectra for FTN signals constructed on RRC pulses[3]-[6]for the transmission rateR=1/T.It can be seen that,atR=1/T,the shapes of the energy spectra of optimal FTN signals and signals based on RRC pulses are very close,but for the double-speed,they differ significantly.This is due to the fact that with an increase in the transmission rate by a factor of 2,the duration of the main lobesopt(t)decreases(see Fig.1(a)),which leads to the expansion of the spectrum.

    Fig.2.Comparison of the normalized energy spectra of optimal FTN signals.

    3.Application of the Viterbi Algorithm for Optimal FTN Signals Reception

    The presence of ISI when transmitting FTN signals significantly worsens the reception conditions even in channels without fading.The use of coherent elementwise reception algorithms involves the determination of the phase of the carrier wave,clock frequency,and cyclic synchronization in packet message transmission modes.These tasks are solved by the methods of constructing the message preamble.However,even in these close to ideal reception conditions,we need to consider the influence of ISI.The most effective reception algorithms in these conditions are the maximum likelihood sequence estimation (MLSE) reception algorithms with the implementation of weighted enumeration of all possible combinations of the received signals.The hardware complexity of implementing such algorithms does not allow us to achieve high absolute transmission rates.Therefore,it is advisable to consider well-known approximations,for example,the Viterbi algorithm(VA)[19],[20].

    Let us consider the maximum likelihood reception method.The task of receiving according to this method of MLSE is to find a sequence of symbolsthat would minimize the Euclidean distance between the corresponding sequence of optimal FTN signalsy(t)in(1)and the received noisy signalx(t)=y(t)+n(t).It is necessary to determine the numberp=1,2,…,2Nof the sequence,in the total number of variants of such sequences:

    whereyp(t)is thepth sequence of optimal FTN signals in(1),providing the minimum Euclidean distance;∥?∥2is the operator of the Euclidean norm(the Euclidean distance in the functional space of signals),andYis the set of all possible sequences of optimal FTN signals in (1).The complexity of this reception algorithm depends on the sequence lengthN.For example,for the binary alphabet and the duration of the packet of signals equal toN=10,it is necessary to analyze 1024 possible sequences of optimal FTN signals with ISI and calculate(4)for each of these sequences.

    The search for such a sequence can be implemented using VA,the computational complexity of which depends on the depth of ISI(durationTs),the size of a constellation,and the message transfer rate.

    Let us consider the application of VA for the example of receiving binary optimal FTN signals with the duration ofTs=2Tfor a transmission rate ofR=1/T.Suppose that during the formation of a message package,a known initial group of symbols is added,which allows starting the process of message demodulation using VA with known initial states.

    At each clock intervalT,the waveform is determined by a binary combination of 2 symbols(states).With each new clock interval,a combination change occurs.This process could be described conveniently by a trellis transition diagram,which is shown in Fig.3.The vertical axis shows the states that determine the possible combinations of signals in the current time interval.For the durationTs=2Tthere are 4 possible states(00,01,10,and 11).In the time intervalT,the values of current and previous symbols influence the shape of the total signal.The movement along the lattice diagram horizontal axis corresponds to the transition along the edges from the state in the interval(k–1)Tto the state in the clock intervalkT.From each state,a transition to certain two states is possible.

    Fig.3.Search by the trellis transition diagram with a known initial state.

    In the general case,when the duration of the signalsopt(t)isTs=LT,the size of the binary state will beL,and at each step of the algorithm,M LEuclidean distances between the received signal will be calculated at a given time interval(the number of states in the array will beM L).

    The solid lines in Fig.3 indicate the appearance of the symbol “–1”,and the dotted lines indicate the appearance of “1”;the black states are the states corresponding to the transmitted sequence of symbolsin(4)equal to[1,1,–1,1,–1,–1,–1]with the initial state[00](Fig.3).In this example,the initial and final states are considered to be known.Their numbers depend on the durationTsof the signal and the constellation size.During demodulation,a part ofsopt(t)is received at each time interval.After that,the Euclidean distances between the received signalx(t)and the four possible forms of the expected reference signalsy(t)=sopt(t)+sopt(t–T)are calculated on the considered time intervalT.When the signal lengthsopt(t)is equal toTs=2Tand the transmission rateR=1/T,the shape of the expected signal at a given time interval is affected by the given transmitted signal and one previous signal.Each iteration VA is used to calculate the Euclidean distance and add the obtained values to the distance values(metrics)of all paths calculated in the previous iterations on the trellis diagram(Fig.3).After updating the metrics,a search for surviving paths is made.The metrics of all paths leading to the same state are compared,and the path with the smallest metric is selected.For a known initial and final state,the only sequence of transitions from the initial state[00]to the final state[00]is determined from the diagram in Fig.3.This sequence is optimal,as(4),in the considered sense of estimating the sequence of the transmitted symbols

    Fig.4.Search by the trellis diagram of transitions with an unknown initial state.

    The condition of a known initial and final state is not necessary,since the sequence of transitions starting with erroneously selected values of the first state is most likely to be interrupted at some stage of the calculation.An example of a grid search with an unknown initial state is shown in Fig.4.

    For an unknown initial state,the movement along the diagram in Fig.4 occurs simultaneously from all initial states and at the zero step,the metrics of all states(4 metrics)are calculated.The paths are determined from all states(00,01,10,and 11)to all possible(8 transitions)in the next step.As a result,after the first iteration(step 0 to step 1 in Fig.4),2 transitions lead to each state.The metrics of these transitions are added to the metrics of the initial states.There are 2 paths to each state in step 1.The path that has a smaller metric is selected,and the other is discarded.Thus,there are four surviving paths remained.Then in the second iteration (step 1 to step 2),8 transitions are calculated again.Their metrics are added to the previous metrics of the surviving paths(path metrics are updated).According to this algorithm,the movement along the diagram in Fig.4 occurs.

    When moving along the trellis diagram and removing non-surviving paths,there is a high probability that at thekth step in the first column of the diagram all paths merge into one and only one edge comes out from only one node.In this case,a decision about the first group of the received symbols can be done and then free up the memory resources of the demodulator.Thus,when passing through the trellis with a fixed interval(depth of reverse lookup),we can regularly make decisions about the next group of symbols.

    4.Simulation Model of Transmission and Reception of Optimal FTN Signals

    Let us evaluate the possibility of using time-limited optimal binary FTN signals to increase the BER performance of receiving messages using a simulation model.Fig.5 shows the schematic representation of the operation of VA,discussed in the previous section.

    Fig.5.Schematic representation of the VA operation.

    In accordance with the description of the work on the trellis transition diagram (Figs.3 and 4),the received signalx(t)is demodulated at time intervals[kT,(k+1)T].The Euclidean distances betweenx(t)and the reference signals are determined.Then,the path metrics are updated and the surviving paths are searched.The depth of the backtrace in the simulation model may be equal to the duration of the entire message packet.In this case,the sequence of the estimates of the transmitted symbols will be generated immediately after processing all the received signals.The depth of the backtrace also may be less than the duration of the packet.

    For example,if the packet size isN=100 symbols,then the depth of the reverse lookup is 20 symbols.Then the evaluation of the first symbol will be made after processing 20 times of interavls.The evaluation of the second symbol will be made after processing the 21st interval,etc.With this demodulation mode,there will be a fixed delay in receiving a message equal to the depth of the reverse lookup.

    Fig.6 shows a simulation model for transmitting and receiving optimal FTN signals,where S corresponds to an array of reference signals,Ldindicates the duration of the reference signal in the demodulator,andTbacktraceindicates the depth of the reverse lookup.

    The simulation model is implemented in the MATLAB environment.It implements three procedures:The formation of a sequence of optimal FTN signals in(1)with increased duration and a given symbol rate and the transmission over the channel with AWGN and reception according to the Viterbi algorithm.The generation of optimal FTN signals is implemented using the formation of digital delta pulses and further linear convolution with the impulse response of the forming digital filter,equivalent to a sequence of signal samples.The duration of the transmitted useful signal isTs=LT,and the duration of one clock interval is equal tondiscrete samples.The Baud rate is controlled by the parameterξ.There areξnsamples per time interval.

    5.Results of the Simulation

    To estimate the losses associated with the operation of VA with known and unknown initial states of the trellis,we consider the results of the simulation for different lengths of the message packet.Fig.7 shows the error probability values from the signal-to-noise ratio(Eb/N0,whereEb=Eopt)when using the VA reception of optimal FTN signals with the duration ofTs=8T(Fig.1)and a message transmission rateR=2/T.The packet lengths are 10 bits(Fig.7(a)),50 bits(Fig.7(b)),100 bits(Fig.7(c)),and 1000 bits(Fig.7(d)),respectively.

    Fig.6.Simulation model of message transmission using optimal FTN signals and VA demodulator.

    Fig.7.BER vs.Eb/N0 for different packet lengths:(a)10 bits,(b)50 bits,(c)100 bits,and(d)1000 bits.

    As can be seen from a comparison of the curves in these figures,the following conclusions can be done.Firstly,with the short packet durationN=10 bits(Fig.7(a))and the absence of information about the initial and final states of the message packet,the BER performance of reception is significantly reduced compared with the reception mode when these states are known.

    Energy losses are more than 7 dB with an error probability ofр=10–2.With a packet length of 50 bits(Fig.7(b)),the energy loss is about 4 dB atр=2×10–3.An increase in the packet length toN=100 allows one to reduce energy losses to 3 dB atр=2×10–3(Fig.7(c)).Secondly,starting from a packet length of 1000 bits(Fig.7(d)),the lack of information about the initial and final states of a message packet during demodulation using VA does not affect the BER performance of message reception.

    Consider the results of receiving optimal FTN signals of the durationTs=8T(Fig.1)with a reduced observation interval fortanalysis(see Fig.1).In this case,during the demodulation procedure,only the central part closest to the main lobe of the signalsopt(t)will be considered.Such a statement of the demodulation problem is interesting from the point of view of reducing the computational cost to perform the search procedure by the trellis transition diagram (Figs.3 and 4).Fig.8 shows the dependence of the BER performance onEb/N0forR=2/Tfor various values ofLwith the duration of the transmitted optimal FTN signalTs=8T.It is seen that a decrease in the observation interval of signals fromLd=8 toLd=6 andLd=4 leads to the appearance of energy losses in the range of error probabilitiesp=10–4no more than 0.2 dB.With a further decrease in the observation interval toLd=2,the energy losses increase significantly and reach 4 dB atp=10–2.

    Let us compare the BER performance of receiving optimal FTN signals and signals based on the RRC pulse.Fig.9 shows the results of the simulations of transmission and reception of optimal FTN signals and signals based on RRC pulses of the duration ofTs=8Tfor message ratesR=2/TandR=2.5/Twith the packet duration ofN=1000.

    As can be seen from the comparison of the dependence in Fig.9,for optimal FTN signals at a transmission rate ofR=2/T,the error probabilityp=10–3is achieved atEb/N0=7.1 dB,and for signals based on RRC pulses that is achieved atEb/N0=9.0 dB.With an increase in the transmission rate of messages toR=2.5/T,the probability of errorsp=10–2is achieved atEb/N0=9.5 dB,and for signals based on RRC pulses the probability of errorsp=8×10–2is achieved atEb/N0=10 dB.For comparison,Fig.9 shows the potential BER curve for receiving binary signals with a rectangular envelope of the durationTand energyEs=Eb.As can be seen from a comparison of the curves in Fig.9,the application of VA for receiving optimal FTN signals with the duration of 8Tand a symbol rate 2 times higher than the Nyquist limit[2],[3],[15],[21]provides close to the potential performance of BER.Energy losses are less than 0.3 dB with an error probability ofp=10–4.

    Fig.8.BER vs.Eb/N0 for various parameters Ld.

    Fig.9.BER performance of optimal FTN signals and FTN RRC signals for different symbol rates.

    6.Conclusions

    The use of finite time optimal FTN signals in channels with AWGN makes it possible to obtain the high BER performance at message rates above the Nyquist barrier.It is shown that the application of VA for receiving optimal FTN signals with the duration of 8Twhen using a message symbol rate twice as high as the Nyquist limit provides the performance close to potential BER.Energy losses are not more than 0.3 dB with an error probability ofp=10–4.

    The use of optimal FTN signals at a symbol rate greater than the Nyquist limit by a factor of 2 is achieved at lower energy costs than that when using signals based on RRC pulses for the same symbol rate.So for the probability of errorsp=10–3,the energy gain is about 2 dB.With an increase in the transmission speed up to 2.5 times higher than the Nyquist limit,this gain reaches 4.5 dB with an error probability ofp=8×10–2.

    Using VA to receive message packets consisting of optimal FTN signals is advisable with a packet length of at least 1000 bits when using the binary constellation.In this case,it is not required to use additional reception algorithms at the initial stage of demodulation or information about the initial and final states of the message packet.

    Acknowledgement

    The authors would like to express sincere appreciation to Peter the Great St.Petersburg Polytechnic University Supercomputing Center(http://www.scc.spbstu.ru)for the used computational resources in this paper.

    国产高清视频在线观看网站| 成人午夜高清在线视频| 久久久久久国产a免费观看| 成年女人永久免费观看视频| 露出奶头的视频| 91在线精品国自产拍蜜月 | av中文乱码字幕在线| 国产真人三级小视频在线观看| 一个人免费在线观看的高清视频| 免费在线观看成人毛片| 国产亚洲精品综合一区在线观看| 97碰自拍视频| 黄色视频,在线免费观看| 成人性生交大片免费视频hd| 可以在线观看毛片的网站| 国产精品久久久久久久电影 | 香蕉丝袜av| 国产精品美女特级片免费视频播放器 | 91九色精品人成在线观看| ponron亚洲| 在线免费观看的www视频| 亚洲五月天丁香| 精品日产1卡2卡| 亚洲自偷自拍图片 自拍| 午夜福利在线在线| 我要搜黄色片| 国产精品久久电影中文字幕| 一级黄色大片毛片| 宅男免费午夜| 亚洲欧美日韩高清专用| 一级毛片精品| 亚洲专区中文字幕在线| 最近视频中文字幕2019在线8| 狂野欧美白嫩少妇大欣赏| 91老司机精品| www.自偷自拍.com| 久久中文字幕一级| 校园春色视频在线观看| 国语自产精品视频在线第100页| 欧美在线黄色| 狠狠狠狠99中文字幕| 国产成人欧美在线观看| 亚洲欧美精品综合一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品中文字幕一二三四区| 国产精品亚洲av一区麻豆| 韩国av一区二区三区四区| 亚洲av成人不卡在线观看播放网| 琪琪午夜伦伦电影理论片6080| 99精品久久久久人妻精品| 啦啦啦韩国在线观看视频| 欧美三级亚洲精品| 色哟哟哟哟哟哟| 亚洲国产欧美一区二区综合| 中文亚洲av片在线观看爽| 成人精品一区二区免费| 亚洲va日本ⅴa欧美va伊人久久| 国产99白浆流出| 午夜影院日韩av| 丰满人妻一区二区三区视频av | 久久久久久人人人人人| 中文字幕人成人乱码亚洲影| www.999成人在线观看| 一个人免费在线观看电影 | 亚洲国产日韩欧美精品在线观看 | 19禁男女啪啪无遮挡网站| 后天国语完整版免费观看| 高潮久久久久久久久久久不卡| 精品国产超薄肉色丝袜足j| 天堂动漫精品| 午夜激情欧美在线| 免费看光身美女| 啦啦啦免费观看视频1| 搡老妇女老女人老熟妇| 一卡2卡三卡四卡精品乱码亚洲| 欧美激情久久久久久爽电影| 国产精品久久久人人做人人爽| 亚洲黑人精品在线| 九色国产91popny在线| 欧美日韩黄片免| 床上黄色一级片| 久99久视频精品免费| 天堂av国产一区二区熟女人妻| 男人舔女人的私密视频| 嫩草影院精品99| av片东京热男人的天堂| 日本熟妇午夜| 色综合亚洲欧美另类图片| 18禁裸乳无遮挡免费网站照片| 观看免费一级毛片| 两个人的视频大全免费| 听说在线观看完整版免费高清| 最新在线观看一区二区三区| 亚洲午夜精品一区,二区,三区| 精品国产三级普通话版| 日韩高清综合在线| 国产激情偷乱视频一区二区| 丁香欧美五月| 亚洲国产精品成人综合色| 午夜成年电影在线免费观看| 亚洲成人久久性| 色综合站精品国产| 成熟少妇高潮喷水视频| 国产午夜福利久久久久久| 99在线人妻在线中文字幕| 无人区码免费观看不卡| www日本在线高清视频| 男女下面进入的视频免费午夜| 亚洲五月天丁香| 久久午夜综合久久蜜桃| 午夜福利在线在线| 国产精品久久视频播放| 99国产精品99久久久久| 男人舔女人下体高潮全视频| 国产欧美日韩一区二区精品| 亚洲av片天天在线观看| 久久精品夜夜夜夜夜久久蜜豆| 十八禁人妻一区二区| 国产又黄又爽又无遮挡在线| 蜜桃久久精品国产亚洲av| 麻豆一二三区av精品| 久久久久久大精品| 国产亚洲欧美在线一区二区| 欧美zozozo另类| 久久天躁狠狠躁夜夜2o2o| 国产伦人伦偷精品视频| 免费搜索国产男女视频| 国产日本99.免费观看| 精品一区二区三区av网在线观看| 国产精品一区二区三区四区免费观看 | 成人无遮挡网站| 桃色一区二区三区在线观看| 欧美一级a爱片免费观看看| 成年版毛片免费区| 国产野战对白在线观看| 午夜福利欧美成人| 男人的好看免费观看在线视频| 天堂网av新在线| 又粗又爽又猛毛片免费看| 一个人免费在线观看电影 | 麻豆国产97在线/欧美| 欧美色欧美亚洲另类二区| 不卡av一区二区三区| 久久婷婷人人爽人人干人人爱| 国产亚洲av嫩草精品影院| 少妇的逼水好多| 五月伊人婷婷丁香| 亚洲欧美日韩高清专用| 757午夜福利合集在线观看| 日韩欧美一区二区三区在线观看| 国产成人一区二区三区免费视频网站| 老司机在亚洲福利影院| 久久久久久久午夜电影| 久久伊人香网站| 麻豆久久精品国产亚洲av| 久久久精品欧美日韩精品| 99久久综合精品五月天人人| ponron亚洲| 黄频高清免费视频| 精品久久久久久久久久免费视频| 亚洲美女黄片视频| 两性夫妻黄色片| 99久久99久久久精品蜜桃| 色噜噜av男人的天堂激情| 午夜福利视频1000在线观看| 欧美日韩国产亚洲二区| 亚洲精品色激情综合| 非洲黑人性xxxx精品又粗又长| 天天一区二区日本电影三级| 亚洲国产欧洲综合997久久,| 成人三级做爰电影| 又粗又爽又猛毛片免费看| 欧美zozozo另类| 啦啦啦观看免费观看视频高清| 久久人人精品亚洲av| 久久天躁狠狠躁夜夜2o2o| 人妻丰满熟妇av一区二区三区| 亚洲午夜精品一区,二区,三区| 久久久久国产一级毛片高清牌| 亚洲国产欧洲综合997久久,| 久久久久久大精品| 久久久久久久精品吃奶| 老司机午夜福利在线观看视频| netflix在线观看网站| 国产精品影院久久| 国产亚洲欧美在线一区二区| 久99久视频精品免费| 亚洲 欧美一区二区三区| 老汉色∧v一级毛片| 亚洲av美国av| 美女cb高潮喷水在线观看 | 伊人久久大香线蕉亚洲五| 久久久国产精品麻豆| 热99re8久久精品国产| 国产伦精品一区二区三区四那| 日韩精品中文字幕看吧| 国产三级黄色录像| 伦理电影免费视频| 成人三级黄色视频| 午夜福利视频1000在线观看| 曰老女人黄片| 天堂√8在线中文| 99久国产av精品| 亚洲中文字幕日韩| 亚洲av熟女| 可以在线观看毛片的网站| 国产不卡一卡二| 精品熟女少妇八av免费久了| 国产精品亚洲一级av第二区| av在线天堂中文字幕| 国产综合懂色| 国内揄拍国产精品人妻在线| 国产97色在线日韩免费| 成人av一区二区三区在线看| 麻豆av在线久日| 亚洲av片天天在线观看| 天堂√8在线中文| 欧美日韩亚洲国产一区二区在线观看| 精品人妻1区二区| 久久久久国内视频| 成人高潮视频无遮挡免费网站| 波多野结衣高清作品| 亚洲欧美精品综合久久99| 一区二区三区高清视频在线| 色播亚洲综合网| 日日摸夜夜添夜夜添小说| 在线观看一区二区三区| 美女高潮的动态| 身体一侧抽搐| 久久久久国内视频| 亚洲av五月六月丁香网| 色综合站精品国产| 亚洲欧美日韩高清在线视频| 一区福利在线观看| 免费看日本二区| 久久久久久人人人人人| 毛片女人毛片| 久久国产精品影院| 亚洲国产精品成人综合色| 人人妻人人看人人澡| 九九久久精品国产亚洲av麻豆 | 国产一区二区三区视频了| а√天堂www在线а√下载| 99精品在免费线老司机午夜| 99热只有精品国产| 黄色丝袜av网址大全| 亚洲自拍偷在线| 好男人在线观看高清免费视频| 在线十欧美十亚洲十日本专区| 亚洲精品国产精品久久久不卡| 国产久久久一区二区三区| 亚洲av成人不卡在线观看播放网| 午夜精品久久久久久毛片777| 国产毛片a区久久久久| 久久久国产精品麻豆| 久久人妻av系列| 美女免费视频网站| 欧美色欧美亚洲另类二区| 国产一区二区三区视频了| 一个人观看的视频www高清免费观看 | av中文乱码字幕在线| 国产aⅴ精品一区二区三区波| 国产精品亚洲一级av第二区| 五月玫瑰六月丁香| 视频区欧美日本亚洲| 成人一区二区视频在线观看| 国产成+人综合+亚洲专区| 成人av一区二区三区在线看| 床上黄色一级片| 免费在线观看成人毛片| 国产亚洲精品一区二区www| 人人妻,人人澡人人爽秒播| 99精品欧美一区二区三区四区| 国产欧美日韩一区二区精品| 在线免费观看不下载黄p国产 | 国产伦在线观看视频一区| 日本精品一区二区三区蜜桃| 国产人伦9x9x在线观看| 少妇人妻一区二区三区视频| 亚洲人成电影免费在线| 午夜两性在线视频| 亚洲精品久久国产高清桃花| 欧美日韩精品网址| 欧美激情在线99| 午夜日韩欧美国产| 久久精品影院6| 国产人伦9x9x在线观看| 国产高清激情床上av| 美女 人体艺术 gogo| 午夜福利在线观看免费完整高清在 | 神马国产精品三级电影在线观看| 亚洲成av人片免费观看| 夜夜看夜夜爽夜夜摸| 69av精品久久久久久| 亚洲午夜理论影院| 床上黄色一级片| 两个人看的免费小视频| 久久天堂一区二区三区四区| 亚洲欧洲精品一区二区精品久久久| 一级a爱片免费观看的视频| x7x7x7水蜜桃| www.自偷自拍.com| 国产成人av教育| 国产午夜福利久久久久久| 亚洲精华国产精华精| 亚洲最大成人中文| 狠狠狠狠99中文字幕| 搡老熟女国产l中国老女人| 国产一区二区激情短视频| 精品一区二区三区av网在线观看| 亚洲av美国av| 亚洲在线自拍视频| 国产精品久久久久久精品电影| 国产v大片淫在线免费观看| 女人高潮潮喷娇喘18禁视频| 亚洲欧美激情综合另类| 又粗又爽又猛毛片免费看| 国产欧美日韩一区二区精品| 黄色 视频免费看| 国模一区二区三区四区视频 | 欧美乱妇无乱码| 女同久久另类99精品国产91| 在线观看午夜福利视频| 又紧又爽又黄一区二区| 又大又爽又粗| 久久香蕉精品热| 成在线人永久免费视频| 日韩有码中文字幕| 国产精品av视频在线免费观看| 久久精品影院6| 国产精品久久久久久人妻精品电影| xxxwww97欧美| 身体一侧抽搐| 亚洲五月婷婷丁香| 99国产精品一区二区三区| 十八禁网站免费在线| 久久热在线av| 国产精品久久久av美女十八| 亚洲欧美日韩高清专用| 国产极品精品免费视频能看的| 高清毛片免费观看视频网站| 亚洲电影在线观看av| 欧美成人一区二区免费高清观看 | 亚洲精品粉嫩美女一区| 脱女人内裤的视频| 哪里可以看免费的av片| 成人欧美大片| 亚洲国产欧美人成| 亚洲av中文字字幕乱码综合| 露出奶头的视频| 中文字幕av在线有码专区| 亚洲精品国产精品久久久不卡| 欧洲精品卡2卡3卡4卡5卡区| 最新美女视频免费是黄的| 免费观看人在逋| 国产亚洲av嫩草精品影院| 中文在线观看免费www的网站| 国产午夜福利久久久久久| 最近视频中文字幕2019在线8| 99热这里只有是精品50| 成年女人看的毛片在线观看| 嫩草影院精品99| 亚洲第一电影网av| 999久久久国产精品视频| 国产精品久久久久久人妻精品电影| 99精品在免费线老司机午夜| 中文字幕人成人乱码亚洲影| 国产成人影院久久av| 好看av亚洲va欧美ⅴa在| 日韩欧美三级三区| 欧美丝袜亚洲另类 | 国内少妇人妻偷人精品xxx网站 | 中文亚洲av片在线观看爽| 精品国产乱码久久久久久男人| 中文在线观看免费www的网站| 中文字幕人成人乱码亚洲影| 18美女黄网站色大片免费观看| 午夜精品一区二区三区免费看| 久久精品国产亚洲av香蕉五月| 日本在线视频免费播放| 宅男免费午夜| 免费在线观看日本一区| 亚洲中文av在线| 国产成人精品久久二区二区免费| 听说在线观看完整版免费高清| 搡老熟女国产l中国老女人| 叶爱在线成人免费视频播放| 亚洲va日本ⅴa欧美va伊人久久| 最近最新中文字幕大全免费视频| 免费av不卡在线播放| a级毛片在线看网站| 国产精品1区2区在线观看.| 国模一区二区三区四区视频 | bbb黄色大片| 久久精品人妻少妇| 国产69精品久久久久777片 | 亚洲欧美日韩高清在线视频| 亚洲av日韩精品久久久久久密| 亚洲av片天天在线观看| 亚洲av第一区精品v没综合| 国产精品乱码一区二三区的特点| 天天躁日日操中文字幕| 欧美三级亚洲精品| 18禁黄网站禁片午夜丰满| 国产精品久久久久久亚洲av鲁大| 日本黄色片子视频| 村上凉子中文字幕在线| 欧美成人免费av一区二区三区| 一区福利在线观看| 久久国产精品人妻蜜桃| 国产黄a三级三级三级人| 看免费av毛片| 听说在线观看完整版免费高清| 国产精品99久久久久久久久| 欧美黑人巨大hd| 黑人巨大精品欧美一区二区mp4| 一本久久中文字幕| 久久久久久九九精品二区国产| 非洲黑人性xxxx精品又粗又长| 最好的美女福利视频网| 成人性生交大片免费视频hd| 一进一出抽搐gif免费好疼| 99精品久久久久人妻精品| 日韩精品青青久久久久久| 最新在线观看一区二区三区| 久久久久久久精品吃奶| 国产精品1区2区在线观看.| 国产成人影院久久av| 日本黄大片高清| 99久久国产精品久久久| 久久人人精品亚洲av| 亚洲av电影不卡..在线观看| 色吧在线观看| 天堂av国产一区二区熟女人妻| 听说在线观看完整版免费高清| 日本熟妇午夜| 日韩高清综合在线| 国产爱豆传媒在线观看| 桃色一区二区三区在线观看| 亚洲美女视频黄频| 人妻丰满熟妇av一区二区三区| 亚洲无线在线观看| 亚洲va日本ⅴa欧美va伊人久久| 日本 欧美在线| 成年女人看的毛片在线观看| x7x7x7水蜜桃| 男人舔女人下体高潮全视频| 91老司机精品| 听说在线观看完整版免费高清| 在线十欧美十亚洲十日本专区| 麻豆av在线久日| 999精品在线视频| 很黄的视频免费| 美女免费视频网站| 最新美女视频免费是黄的| 床上黄色一级片| 一本综合久久免费| 免费看十八禁软件| 我的老师免费观看完整版| 男插女下体视频免费在线播放| 国产精品一区二区精品视频观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品粉嫩美女一区| 午夜久久久久精精品| 久久国产乱子伦精品免费另类| 国产麻豆成人av免费视频| 日本五十路高清| 人妻久久中文字幕网| 97超视频在线观看视频| 9191精品国产免费久久| 免费人成视频x8x8入口观看| 欧美日韩黄片免| 亚洲欧美激情综合另类| 国产主播在线观看一区二区| 啦啦啦韩国在线观看视频| 国内毛片毛片毛片毛片毛片| 一二三四在线观看免费中文在| 99在线视频只有这里精品首页| 午夜福利在线在线| 日本在线视频免费播放| 亚洲国产欧美人成| 又黄又爽又免费观看的视频| 成年人黄色毛片网站| 婷婷精品国产亚洲av在线| 校园春色视频在线观看| АⅤ资源中文在线天堂| 亚洲最大成人中文| 久久久色成人| 婷婷精品国产亚洲av在线| 亚洲国产精品久久男人天堂| 麻豆国产97在线/欧美| 国产免费男女视频| 国产精华一区二区三区| 亚洲乱码一区二区免费版| 高清在线国产一区| 亚洲无线在线观看| 国产黄片美女视频| 一进一出抽搐动态| 午夜a级毛片| 啦啦啦韩国在线观看视频| 黄频高清免费视频| 国产一区二区三区视频了| 美女高潮的动态| 国产精品一及| 91九色精品人成在线观看| 久久精品91无色码中文字幕| 男人舔女人的私密视频| 国产成人啪精品午夜网站| 麻豆国产97在线/欧美| 在线十欧美十亚洲十日本专区| 毛片女人毛片| 欧美av亚洲av综合av国产av| 日本一本二区三区精品| 在线观看美女被高潮喷水网站 | 男插女下体视频免费在线播放| 久久久久久人人人人人| 久久久久国产一级毛片高清牌| 欧美黄色片欧美黄色片| 欧美乱色亚洲激情| 国产亚洲av嫩草精品影院| 欧美又色又爽又黄视频| 久久久久精品国产欧美久久久| 久久久国产精品麻豆| 国语自产精品视频在线第100页| 国产淫片久久久久久久久 | 老熟妇乱子伦视频在线观看| 在线观看日韩欧美| 一a级毛片在线观看| 99精品在免费线老司机午夜| cao死你这个sao货| 日韩人妻高清精品专区| 亚洲精品乱码久久久v下载方式 | 非洲黑人性xxxx精品又粗又长| 国产高清激情床上av| 99国产精品99久久久久| 麻豆av在线久日| av天堂在线播放| 精品久久久久久久久久久久久| 噜噜噜噜噜久久久久久91| 国产黄片美女视频| 精品无人区乱码1区二区| 免费av毛片视频| 亚洲国产日韩欧美精品在线观看 | 精品一区二区三区av网在线观看| 一夜夜www| 1000部很黄的大片| 一卡2卡三卡四卡精品乱码亚洲| 19禁男女啪啪无遮挡网站| 亚洲av五月六月丁香网| 午夜激情欧美在线| 国产精品一及| 老司机深夜福利视频在线观看| 亚洲成av人片免费观看| www.自偷自拍.com| 女人被狂操c到高潮| www日本黄色视频网| 国产免费av片在线观看野外av| 欧美极品一区二区三区四区| 国产精品久久久人人做人人爽| 最近最新中文字幕大全电影3| 日韩欧美三级三区| 99热精品在线国产| 极品教师在线免费播放| 欧美日韩精品网址| 一本久久中文字幕| 不卡一级毛片| 国产麻豆成人av免费视频| 日本与韩国留学比较| 欧美极品一区二区三区四区| 欧美午夜高清在线| 国产成人av激情在线播放| 日韩欧美三级三区| 国产aⅴ精品一区二区三区波| 岛国视频午夜一区免费看| 久久午夜综合久久蜜桃| 91麻豆精品激情在线观看国产| 色尼玛亚洲综合影院| 国产精品一区二区三区四区久久| 看片在线看免费视频| 性色av乱码一区二区三区2| 手机成人av网站| 嫩草影院入口| 国产一级毛片七仙女欲春2| 在线观看日韩欧美| 日本五十路高清| 校园春色视频在线观看| 久久中文看片网| 成人一区二区视频在线观看| 国产精品精品国产色婷婷| 岛国在线观看网站| 国产精品久久视频播放| 人妻夜夜爽99麻豆av| 久久久久性生活片| av欧美777| 欧美一级a爱片免费观看看| a级毛片a级免费在线| 国产免费男女视频| 欧美成人一区二区免费高清观看 | 制服丝袜大香蕉在线| 久久国产精品影院| 一级作爱视频免费观看| 欧美日本亚洲视频在线播放| 法律面前人人平等表现在哪些方面| 国产精品,欧美在线| 国产精品野战在线观看| 搡老妇女老女人老熟妇| 国产精品亚洲一级av第二区| 久99久视频精品免费| 午夜影院日韩av| 九色国产91popny在线| 欧美激情在线99| 午夜免费成人在线视频| 日韩大尺度精品在线看网址| 午夜福利在线观看吧| 搡老岳熟女国产|