• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust adaptive beamforming for constant modulus signal of interest①

    2017-06-27 08:09:22XuYougen徐友根YinBingjieLiuZhiwen
    High Technology Letters 2017年2期

    Xu Yougen (徐友根), Yin Bingjie, Liu Zhiwen

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, P.R.China)

    Robust adaptive beamforming for constant modulus signal of interest①

    Xu Yougen (徐友根)②, Yin Bingjie, Liu Zhiwen

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, P.R.China)

    It is required in the diagonally loaded robust adaptive beamforming the automatic determination of the loading level which is practically a challenging problem. A constant modulus restoral method is herein presented to choose the diagonal loading level adaptively for the extraction of a desired signal with constant modulus (a common feature of the phase modulation signals). By introducing the temporal smoothing technique, the proposed constant modulus restoral diagonally loaded robust adaptive beamformer provides increased capability compared with some existing robust adaptive beamformers in rejecting interferences and noise while protecting the signal-of-interest. Simulation results are included to illustrate the performance of the proposed beamformer.

    array signal processing, robust adaptive beamforming, diagonal loading, constant modulus

    0 Introduction

    Adaptive beamforming is widely used in many practical applications such as radar, sonar, seismology, wireless communications, space science, and medical imaging[1]. However, unlike the traditional sum-and-delay beamforming, adaptive beamforming is known to be much sensitive to even a small model error, for instance, mismatch in steering vector of the signal-of-interest (SOI) caused by imperfect array calibration look direction error and/or the presence of finite data samples[1]. For this reason, developing robust adaptive beamformers is of great interest.

    Early typical robust schemes include gain or derivative linear constraint, signal plus interference subspace projection, and norm constraint[1]. Recently established robust techniques include uncertainty-set constraint[2-4], covariance matrix enhancing or fitting[5-7], power matching[8], steering vector estimation[9], interference and noise covariance matrix reconstruction[10]. Other robust methods can be found in Ref.[11] and the references therein. The above mentioned approaches can be used conditionally to prevent cancellation of SOI while rejecting interferences and noise.

    Some of the above methods can also be interpreted as a special diagonal loading technique which is itself a popular robust approach. However, the adaptive determination of diagonal loading factor is very difficult[12]. Recently, automatic determination of diagonal loading level has been fulfilled from a SOI property restoral point of view. In Refs[13,14], the robustness of diagonally loaded beamformers is achieved by taking into account the noncircularity of SOI. In Refs[15,16], two robust beamformers termed the minimum constant modulus errors and the constant modulus diagonal loading (COMDIAL) are proposed, respectively, wherein the diagonal loading level is determined by exploiting the constant modulus feature of SOI. The purpose of this contribution is to enhance the performance of the COMDIAL beamformer via temporal smoothing without any user parameters or training procedures.

    The rest of the paper is outlined as follows. Section 1 introduces the constant modulus feature of a signal, the array signal model and the Capon beamformer. Section 2 describes the diagonally loaded beamformers and proposes a method exploiting the constant modulus feature of the SOI to determine the diagonal loading level automatically. Section 3 verifies the effectiveness of the proposed beamformer by simulations. Conclusions are drawn in Section 4.

    1 Problem formulation

    Consider a zero-mean complex-valued SOI, says0(t),whosemodulusisconstantandthus

    (1)

    (2)

    where a0is the steering vector of the SOI, amis the steering vector of them-th interferencesm(t),andn(t) is the noise vector. Throughout the paper, SOI interferences and noise are assumed to be independent zero-mean stationary random processes. The noise process is further assumed to be spatially white and circular.

    The output of the beamformer is given by

    yw(t)=wHx(t)

    (3)

    where w is the beamformer weight vector, and superscript “H” denotes Hermitian transpose. In the popular minimum variance distortion less response (MVDR) beamformer, weight vector w is designed as

    (4)

    where Rxx=E{x(t)xH(t)} is the array output covariance matrix. The solution to Eq.(4) can be determined by using the Lagrange multiplier technique, as

    (5)

    The practical counterpart of the above MVDR beamformer is the sample matrix inversion (SMI) beamformer wherein the presumed value of a0and the sample estimate of Rxxare used instead.

    In the presence of SOI steering vector mismatch and finite data samples, SOI may be misinterpreted by the SMI beamformer as an interfering signal to be suppressed, which causes signal cancellation problem. The purpose of this paper is to tackle this problem on the basis of diagonal loading and SOI temporal structure restoral.

    2 Proposed beamformer

    The weight vector of the diagonally loaded robust beamformer is determined as

    (6)

    (7)

    The solution to Eq.(6) can be also determined by using the Lagrange multiplier technique, as

    (8)

    Note that SOI is assumed to have a constant modulus, to suppress significantly the interferences and noise while preserving SOI, the diagonal loading level should be selected such that the output of the beamformer would be as close as possible tos0(t)and,thus

    (9)

    More precisely, regularization parameterαcanbedeterminedasfollows:

    (10)

    IfJ=1,thenschemeinEq.(10)reducestotheCOMDIALmethodinRef.[16]:

    (11)

    ItcanbeobtainedfromEq.(9):

    (12)

    whereL=KJ-(J-1)J/2.Therefore,regularizationparameterαcanbealternativelydeterminedas

    αCRDL=

    (13)

    The scheme for the determination ofαinEq.(13)ispreferablesincetheconstantmodulusrestoreisexploitedaftertheeffectoftheresidualnoisecontainedinthebeamformeroutputisreducedbythetemporalsmoothingprocess,whereasαdeterminedineitherEq.(10)orEq.(11)ismoresensitivetothenoiseresidueinthebeamformeroutput.

    Inaddition,notethat

    (14)

    The scheme in Eq.(13) thus can be simplified as

    αCRDL=

    (15)

    where

    (16)

    The above method is called the constant modulus restoral diagonal loading (CRDL) beamformer. The computational complexity of the proposed beamformer is composed of the complexity in the iterative optimization of regularization parameterαandthecomplexmultiplications.Acomplexmoduluscalculationrequirestwotimesofmultiplicationswhileacomplexmultiplicationrequiresfourrealmultiplications.Thewholeiterativeoptimizationprocessfordeterminingregularizationparameterαthusneeds6KJ+3J(1-J)multiplications.NotealsothatthemaincomputationalcomplexityoftheproposedCRDLruleisconsistedinthedeterminationofthediagonalloadinglevelanditisaboutΟ(9J2).

    3 Simulationresults

    Inthissection,severalnumericalexamplesarepresentedtoillustratetheperformanceoftheproposedCRDLbeamformer.AuniformlineararraywitheightsensorsspacedhalfwavelengthapartisusedtoextractaconstantmodulusBPSKSOIfromadditivewhiteGaussiannoiseandtwointerferences,oneisaBPSKsignal,andtheotherisaGaussianrandomprocess.ThepresumedSOIDOAis0°.TheinterferenceDOAsare30°and-40°,respectively.Thesignal-to-interferenceratio(SIR)is-10dB.Allthecurvesshownaretheaveragedresultsof500Monte-Carlosimulationtrials.

    Inthesimulations,theoutputsignal-to-interference-plus-noiseratio(OSINR)oftheproposedCRDLbeamformerisexaminedcomparedwiththeexistingCOMDIALbeamformer[16],robustCaponbeamformer(RCB)[3],generalizedlinearcombination(GLC)beamformer[7],midway(MW)beamformer[8],andalsothemaximallyattainableOSINR:

    (17)

    whereRi+nis the interference plus noise covariance matrix defined as

    Ri+n=E{[i(t)+n(t)][i(t)+n(t)]H}

    (18)

    Example 1: The curves of the beamformers’ OSINR versus the input signal-to-noise ratio (ISNR), snapshot number and look direction error.

    The results shown in Fig.1 and Fig.2 are the OSINR curves of beamformers against ISNR, where the look direction errors are 1° and 3°, respectively. The signal-to-noise ratio (SNR) is varied from 0dB to 20dB. In all the simulations, the ideal user parameter for RCB is chosen to ensure its best performance. The OSINR curves shown in Fig.3 and Fig.4 are for the same simulation conditions except that the snapshot number is 300. It can be seen from Fig.1 and Fig.2 that CRDL outperforms other beamformers in the presence of short data samples, especially when the ISNR is equal to 20dB. Nearly 3dB is gained in OSINR of CRDL than COMDIAL. From Fig.3 and Fig.4, it is that CRDL has a superior OSINR over the other beamformers regardless of the ISNR values.

    Fig.1 OSINR versus ISNR: the snapshot number is 50, look direction error is 1°

    Fig.2 OSINR versus ISNR: the snapshot number is 50, look direction error is 3°

    Fig.3 OSINR versus ISNR: the snapshot number is 300, look direction error is 1°

    Fig.4 OSINR versus ISNR: the snapshot number is 300, look direction error is 3°

    In addition, fixing SNR as 15dB, it is considered further the effect of the number of snapshot and the look direction error on the beamformers’ OSINR. The results shown in Fig.5 and Fig.6 are the beamformers’ OSINR versus the snapshot number, where the look direction errors are 1° and 3°, respectively. The results shown in Fig.7 are the OSINR curves against look direction errors, where the snapshot number is 50.

    It is observed that CRDL has a better performance than the other tested beamformers. From Fig.5 and Fig.6, it is seen that CRDL’s OSINR is 5dB higher than other beamformers when the snapshot number is beyond 70. Fig.7 shows that CRDL still outperformers other beamformers. As the look direction error becomes larger, all beamformers’ performances degrade.

    Also, by using the temporal smoothing technique, CRDL outperforms COMDIAL especially for the case of large look direction error. In the presence of short data samples, CRDL still outperforms COMDIAL.

    Fig.5 OSINR versus snapshot number: the ISNR is 15dB, look direction error is 1°

    Fig.6 OSINR versus snapshot number: the ISNR is 15dB, look direction error is 3°

    Fig.7 OSINR versus look direction error: the ISNR is 15dB, snapshot number is 50

    Example 2: The curves of the beamformers’ single experimental running time (SRT) versus the snapshot numberKand the sensor numberN.

    Under the condition of the same hardware and software (Intel i3 dual-core processor, 3.30GHz of faster, 4GB of memory; the Matlab simulation software), the result shown in Fig.8 is the beamformers’ SRT against the sensor number, where the snapshot number is 100, the look direction error is 3° and the ISNR is 20dB. Fig.9 shows the beamformers’ SRT against the snapshot number, where the sensor number is 8 and the other simulation conditions are the same as above. The CRDL beamformer, COMDIAL beamformer and the MW beamformer are compared because all of the three beamformers need iterative computations for the determination of a regularization parameter.

    Fig.8 SRT versus sensor number: the ISNR is 20dB, snapshot number is 50, look direction error is 3°

    Fig.9 SRT versus snapshot number: the ISNR is 20dB, sensor number is 8, look direction error is 3°

    It can be seen from Fig.8 and Fig.9 that the SRTs of all the tested beamformers become longer as the sensor numbers or snapshot numbers increase. Fig.8 also shows that CRDL takes about 0.08s to run a single experiment while MW takes about 0.05s to run. The SRT of COMDIAL is slightly higher than CRDL. From Fig.9, an average single running time of CRDL is about 0.09s while the SRT of COMDIAL is about 0.11s, and MW’ SRT is almost not changed as the snapshot number increases.

    4 Conclusion

    This paper has proposed a diagonally loaded robust beamformer (CRDL) based on constant modulus restoral to extract a constant modulus SOI. By using the constant modulus feature of SOI, the proposed method could determine an appropriate diagonal loading level without any user-parameter and training procedure. Under the tested scenarios, CRDL has been observed to outperform the existing COMDIAL, RCB, MW and GLC against the look direction error. Moreover, by using the temporal smoothing technique, CRDL also has a higher OSINR than other beamformers under scenarios of short data samples. The OSINR of CRDL is about 5dB higher than the others in the case of large look direction error and small snapshot number.

    [ 1] Vorobyov S A. Principles of minimum variance robust adaptive beamforming design.SignalProcessing, 2013, 93(12): 3264-3277

    [ 2] Vorobyov S A, Gershman A B, Luo Z Q. Robust adaptive beamforming using worst-case performance optimization: A solution to the signal mismatch problem.IEEETransactionsonSignalProcessing, 2003, 51(2): 313-324

    [ 3] Li J, Stoica P, Wang Z S. On robust Capon beamforming and diagonal loading.IEEETransactionsonSignalProcessing, 2003, 51(7): 1702-1715

    [ 4] Lorenz R G, Boyd S P. Robust minimum variance beamforming.IEEETransactionsonSignalProcessing, 2005, 53(5): 1684-1696

    [ 5] Rubsamen M, Gershman A B. Robust adaptive beamforming using multidimensional covariance fitting.IEEETransactionsonSignalProcessing, 2012, 60(2): 740-753

    [ 6] Selen Y, Abrahamsson R, Stoica P. Automatic robust adaptive beamforming via ridge regression.SignalProcessing, 2008, 88(1): 33-49

    [ 7] Du L, Li J, Stoica P. Fully automatic computation of diagonal loading levels for robust adaptive beamforming.IEEETransactionsonAerospaceandElectronicSystems, 2010, 46(1): 449-458

    [ 8] Stoica P, Li J, Tan X. On spatial power spectrum and signal estimation using the Pisarenko framework.IEEETransactionsonSignalProcessing, 2008, 56(10): 5109-5119

    [ 9] Arash K, Vorobyov S A, Hassanien A. Robust adaptive beamforming based on steering vector estimation with as little as possible prior information.IEEETransactionsonSignalProcessing, 2012, 60(6): 2974-2987

    [10] Gu Y J, Leshem A. Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation.IEEETransactionsonSignalProcessing, 2012, 60(7): 3881-3885

    [11] Li J, Stoica P. Robust Adaptive Beamforming. New York: John Wiley & Sons, Inc., Publication, Wiley, 2005

    [12] Carlson B D. Covariance matrix estimation errors and diagonal loading in adaptive arrays.IEEETransactionsonAerospaceandElectronicSystems, 1988, 24(4): 397-401

    [13] Xu Y G, Ma J Y, Liu Z W, et al. A class of diagonally loaded robust capon beamformers for noncircular signals of interest.SignalProcessing, 2014, 94: 670-680

    [14] Ma J Y, Xu Y G, Liu Z W, et al. Derivative constrained noncircularity-rate maximization robust beamforming. In: Proceedings of IEEE International Conference of IEEE Region 10, Xi’an, China, 2013. 1-4

    [15] Liu W L, Ding S X. An efficient method to determine the diagonal loading factor using the constant modulus feature.IEEETransactionsonSignalProcessing, 2008, 56(12): 6102-6106

    [16] Gou X M, Liu Z W, Xu Y G. Fully automatic robust adaptive beamforming using the constant modulus feature.IETSignalProcessing, 2014, 24(8): 823-830

    10.3772/j.issn.1006-6748.2017.02.002

    ①Supported by the National Natural Science Foundation of China (No. 61490691, 61331019).

    ②To whom correspondence should be addressed. E-mail: yougenxu@bit.edu.cn

    on Apr. 15, 2016

    , born in 1975. He received the M.S. and Ph.D. degrees from Beijing Institute of Technology (BIT), China, in 2001 and 2004, respectively, all in electronic engineering. Since August 2004, he has been with the Department of Electronic Engineering, BIT, where he is currently the professor. His research focuses on the area of vector array signal processing, wireless sensor network, regularization methods and applications in sensor array processing, biomedical digital signal processing and space-time adaptive processing.

    99热这里只有是精品50| 色老头精品视频在线观看| 国产精品久久久久久久电影 | 国产一区二区在线av高清观看| 一个人免费在线观看电影 | 人人妻人人澡欧美一区二区| 国产蜜桃级精品一区二区三区| 国产一区二区在线观看日韩 | 天堂影院成人在线观看| 日本三级黄在线观看| 特大巨黑吊av在线直播| 国产真实乱freesex| 熟女人妻精品中文字幕| 最近在线观看免费完整版| 一级作爱视频免费观看| 99久久国产精品久久久| 18禁黄网站禁片午夜丰满| 欧美另类亚洲清纯唯美| 99久久综合精品五月天人人| 成年女人毛片免费观看观看9| 成人鲁丝片一二三区免费| 精品无人区乱码1区二区| 精品久久蜜臀av无| 久久人妻av系列| 午夜福利成人在线免费观看| 男女那种视频在线观看| 99热精品在线国产| 国产欧美日韩精品一区二区| 99精品在免费线老司机午夜| 亚洲在线自拍视频| 成人精品一区二区免费| 国产午夜精品论理片| 国产精品98久久久久久宅男小说| 亚洲专区字幕在线| 国产精品亚洲美女久久久| 日韩精品中文字幕看吧| 激情在线观看视频在线高清| 成人国产综合亚洲| 国产精品野战在线观看| 色综合婷婷激情| 欧美日韩国产亚洲二区| 国产亚洲精品久久久久久毛片| 欧美一区二区精品小视频在线| 国产一区在线观看成人免费| 欧美黄色片欧美黄色片| 精品国产美女av久久久久小说| 美女大奶头视频| 国产乱人视频| 中文字幕av在线有码专区| 91老司机精品| 久久精品国产综合久久久| 老司机深夜福利视频在线观看| 黑人操中国人逼视频| 国产激情欧美一区二区| 亚洲中文日韩欧美视频| 老司机深夜福利视频在线观看| 国产视频一区二区在线看| 久久久久久人人人人人| 日韩成人在线观看一区二区三区| 国产一区二区在线观看日韩 | 一二三四在线观看免费中文在| 亚洲成人久久性| 亚洲乱码一区二区免费版| 国产一区二区在线观看日韩 | 亚洲成人精品中文字幕电影| 99久久精品热视频| 在线观看午夜福利视频| 国产探花在线观看一区二区| av中文乱码字幕在线| 国产一区二区三区在线臀色熟女| 两性夫妻黄色片| 中出人妻视频一区二区| 欧美国产日韩亚洲一区| 亚洲欧洲精品一区二区精品久久久| 午夜免费成人在线视频| 久久人人精品亚洲av| 变态另类丝袜制服| 亚洲国产精品成人综合色| 日本黄色片子视频| 久久热在线av| 国产激情欧美一区二区| 亚洲欧美精品综合一区二区三区| 日本五十路高清| 久久久成人免费电影| 亚洲精品色激情综合| 国产成人精品无人区| 久99久视频精品免费| 熟女少妇亚洲综合色aaa.| 高潮久久久久久久久久久不卡| 在线十欧美十亚洲十日本专区| 国产三级中文精品| 国产高清激情床上av| 欧美性猛交黑人性爽| 这个男人来自地球电影免费观看| 99久国产av精品| 波多野结衣巨乳人妻| av在线蜜桃| 久久中文看片网| 久久香蕉国产精品| 18禁裸乳无遮挡免费网站照片| 欧美成人免费av一区二区三区| 欧美极品一区二区三区四区| 真人做人爱边吃奶动态| 99视频精品全部免费 在线 | 嫁个100分男人电影在线观看| 三级毛片av免费| 人妻久久中文字幕网| 欧美另类亚洲清纯唯美| 制服人妻中文乱码| 欧美最黄视频在线播放免费| 欧美精品啪啪一区二区三区| 老汉色∧v一级毛片| 国产男靠女视频免费网站| 久久精品国产清高在天天线| 国产一区二区三区在线臀色熟女| 又大又爽又粗| 欧美丝袜亚洲另类 | 特级一级黄色大片| 人人妻人人澡欧美一区二区| 久久久水蜜桃国产精品网| 久久精品91无色码中文字幕| 高潮久久久久久久久久久不卡| 国内少妇人妻偷人精品xxx网站 | 中文亚洲av片在线观看爽| 天堂动漫精品| 色视频www国产| 天天一区二区日本电影三级| 免费电影在线观看免费观看| 午夜激情欧美在线| 精品福利观看| 麻豆国产97在线/欧美| 三级毛片av免费| 搞女人的毛片| 国产成年人精品一区二区| 久99久视频精品免费| 在线观看舔阴道视频| 美女免费视频网站| 麻豆成人午夜福利视频| 日韩国内少妇激情av| 国产免费av片在线观看野外av| 香蕉国产在线看| 99久久精品一区二区三区| 国产三级在线视频| 一本久久中文字幕| 成人永久免费在线观看视频| 亚洲av免费在线观看| 国产美女午夜福利| 一个人看视频在线观看www免费 | 日本一二三区视频观看| 好看av亚洲va欧美ⅴa在| 国产一区二区在线观看日韩 | 女警被强在线播放| h日本视频在线播放| 亚洲国产欧洲综合997久久,| 亚洲欧美精品综合久久99| 小说图片视频综合网站| 天堂√8在线中文| 久久久久性生活片| 小说图片视频综合网站| 叶爱在线成人免费视频播放| 观看免费一级毛片| 午夜福利18| 久久亚洲真实| 亚洲av成人不卡在线观看播放网| av视频在线观看入口| 九色国产91popny在线| 久久久久久九九精品二区国产| 最近视频中文字幕2019在线8| 欧美另类亚洲清纯唯美| 身体一侧抽搐| 狠狠狠狠99中文字幕| 久久国产精品人妻蜜桃| 久久久国产欧美日韩av| 亚洲国产色片| 久久精品亚洲精品国产色婷小说| 1024香蕉在线观看| 国产97色在线日韩免费| 动漫黄色视频在线观看| 国产成人精品无人区| 久久久精品大字幕| 美女午夜性视频免费| 国产精华一区二区三区| 成人高潮视频无遮挡免费网站| 午夜免费观看网址| 亚洲一区高清亚洲精品| 日韩中文字幕欧美一区二区| 精品免费久久久久久久清纯| 日日夜夜操网爽| 丁香欧美五月| 亚洲成人久久爱视频| 日本熟妇午夜| 午夜福利免费观看在线| 最近最新中文字幕大全电影3| 神马国产精品三级电影在线观看| 午夜免费激情av| 9191精品国产免费久久| 18禁国产床啪视频网站| 久久久久国产一级毛片高清牌| 亚洲中文字幕日韩| 最近最新中文字幕大全免费视频| 亚洲中文日韩欧美视频| 国产精品久久久人人做人人爽| 麻豆成人午夜福利视频| 欧美日韩综合久久久久久 | 国产精品 欧美亚洲| 国内少妇人妻偷人精品xxx网站 | 男人舔女人的私密视频| 18禁美女被吸乳视频| 淫妇啪啪啪对白视频| 2021天堂中文幕一二区在线观| 中国美女看黄片| 国产亚洲精品综合一区在线观看| 日本精品一区二区三区蜜桃| 亚洲精品乱码久久久v下载方式 | 免费大片18禁| 看片在线看免费视频| www日本黄色视频网| 久9热在线精品视频| 国内精品一区二区在线观看| 一个人免费在线观看的高清视频| 国产精品 欧美亚洲| 伊人久久大香线蕉亚洲五| 91久久精品国产一区二区成人 | 韩国av一区二区三区四区| 精品国产美女av久久久久小说| 国产成人一区二区三区免费视频网站| 国产精品久久久久久久电影 | 欧美3d第一页| 日本免费一区二区三区高清不卡| 亚洲黑人精品在线| 又黄又粗又硬又大视频| 国产亚洲欧美在线一区二区| 国产激情久久老熟女| 成人国产一区最新在线观看| 后天国语完整版免费观看| 欧美绝顶高潮抽搐喷水| 久久久久久久午夜电影| 国产又黄又爽又无遮挡在线| 午夜a级毛片| 99久久国产精品久久久| 三级国产精品欧美在线观看 | 999久久久精品免费观看国产| 午夜亚洲福利在线播放| 久久午夜综合久久蜜桃| 一区福利在线观看| 国产单亲对白刺激| av中文乱码字幕在线| 香蕉国产在线看| 欧美激情久久久久久爽电影| 听说在线观看完整版免费高清| 真实男女啪啪啪动态图| 热99在线观看视频| 99久国产av精品| 国内少妇人妻偷人精品xxx网站 | 久久人人精品亚洲av| 午夜精品在线福利| 午夜两性在线视频| 国产成人精品无人区| 色综合婷婷激情| 久久久久久久久久黄片| 国产人伦9x9x在线观看| 久久精品夜夜夜夜夜久久蜜豆| 无人区码免费观看不卡| 成年女人看的毛片在线观看| 久久久国产精品麻豆| 这个男人来自地球电影免费观看| 久久久水蜜桃国产精品网| 免费搜索国产男女视频| 久久久国产成人精品二区| 成人永久免费在线观看视频| 欧美在线黄色| 亚洲精品久久国产高清桃花| 啦啦啦观看免费观看视频高清| 国产爱豆传媒在线观看| 国产精品av久久久久免费| 亚洲一区高清亚洲精品| 欧美日韩精品网址| 美女黄网站色视频| 女警被强在线播放| 国产精品乱码一区二三区的特点| 最新中文字幕久久久久 | 成年免费大片在线观看| 欧美精品啪啪一区二区三区| 国产精品久久久人人做人人爽| 美女cb高潮喷水在线观看 | 国产亚洲欧美在线一区二区| 成年免费大片在线观看| 老司机在亚洲福利影院| 长腿黑丝高跟| 中出人妻视频一区二区| 午夜视频精品福利| 91久久精品国产一区二区成人 | 亚洲avbb在线观看| 国产三级中文精品| 成人av在线播放网站| 国产亚洲精品久久久久久毛片| 成人午夜高清在线视频| 99国产精品一区二区三区| 综合色av麻豆| 亚洲一区高清亚洲精品| 又粗又爽又猛毛片免费看| 香蕉国产在线看| 亚洲精品一卡2卡三卡4卡5卡| 午夜亚洲福利在线播放| 特级一级黄色大片| 观看美女的网站| 天堂av国产一区二区熟女人妻| 美女高潮喷水抽搐中文字幕| 国产精品一区二区免费欧美| 亚洲av美国av| 国产精品永久免费网站| 国产精品香港三级国产av潘金莲| 精品午夜福利视频在线观看一区| 无遮挡黄片免费观看| 18禁黄网站禁片午夜丰满| 色哟哟哟哟哟哟| a在线观看视频网站| 老熟妇乱子伦视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩国产亚洲二区| 香蕉丝袜av| 国产成人精品久久二区二区免费| 欧美一区二区国产精品久久精品| 天堂av国产一区二区熟女人妻| 亚洲国产欧洲综合997久久,| 夜夜躁狠狠躁天天躁| 国产精品久久久人人做人人爽| 欧美极品一区二区三区四区| av欧美777| 99久久综合精品五月天人人| 午夜福利欧美成人| 欧美极品一区二区三区四区| av欧美777| 欧美成人免费av一区二区三区| 午夜福利18| 老司机午夜十八禁免费视频| 久久欧美精品欧美久久欧美| 99久久精品国产亚洲精品| 男人舔女人的私密视频| 热99re8久久精品国产| 日韩欧美 国产精品| 男人和女人高潮做爰伦理| 又紧又爽又黄一区二区| 麻豆av在线久日| 国产精品一区二区精品视频观看| a级毛片在线看网站| 手机成人av网站| 搡老妇女老女人老熟妇| 亚洲欧美日韩东京热| 少妇裸体淫交视频免费看高清| 国产成人精品久久二区二区免费| 黄色视频,在线免费观看| 少妇的逼水好多| 哪里可以看免费的av片| 天堂网av新在线| 99精品欧美一区二区三区四区| 中文在线观看免费www的网站| 在线永久观看黄色视频| 久久国产精品人妻蜜桃| 十八禁网站免费在线| 最近最新中文字幕大全电影3| 一a级毛片在线观看| www国产在线视频色| 日本五十路高清| aaaaa片日本免费| 99国产极品粉嫩在线观看| 精品无人区乱码1区二区| 嫩草影视91久久| 一级作爱视频免费观看| 18禁观看日本| 97超级碰碰碰精品色视频在线观看| 亚洲av成人不卡在线观看播放网| 国产97色在线日韩免费| 巨乳人妻的诱惑在线观看| 欧美一级毛片孕妇| 三级国产精品欧美在线观看 | 亚洲av片天天在线观看| 99国产精品99久久久久| 丁香欧美五月| 在线看三级毛片| 国产午夜精品论理片| 国产免费av片在线观看野外av| e午夜精品久久久久久久| 白带黄色成豆腐渣| 露出奶头的视频| 一级毛片女人18水好多| 国产精品香港三级国产av潘金莲| 男插女下体视频免费在线播放| 天堂影院成人在线观看| 久久久久久人人人人人| 俄罗斯特黄特色一大片| 国产成人av激情在线播放| 午夜视频精品福利| 欧美激情在线99| 久久热在线av| 两个人的视频大全免费| 日韩高清综合在线| 免费在线观看日本一区| 国产精品综合久久久久久久免费| 舔av片在线| 亚洲av电影不卡..在线观看| 熟女电影av网| 免费人成视频x8x8入口观看| 国产精品野战在线观看| 国产精品av视频在线免费观看| 男插女下体视频免费在线播放| 免费一级毛片在线播放高清视频| 婷婷六月久久综合丁香| 国产日本99.免费观看| 久久香蕉精品热| 久久中文字幕人妻熟女| 夜夜躁狠狠躁天天躁| 最新中文字幕久久久久 | 性欧美人与动物交配| 人妻夜夜爽99麻豆av| 99久久无色码亚洲精品果冻| 久久久久久久久中文| 久久这里只有精品中国| 日韩有码中文字幕| 女同久久另类99精品国产91| 精品免费久久久久久久清纯| 国产伦精品一区二区三区四那| 精品国产美女av久久久久小说| www国产在线视频色| 97碰自拍视频| 性色avwww在线观看| 一个人看的www免费观看视频| 免费观看人在逋| svipshipincom国产片| 亚洲avbb在线观看| 国产极品精品免费视频能看的| 色av中文字幕| 99热6这里只有精品| 国产精品亚洲一级av第二区| 欧美激情在线99| 99热精品在线国产| 99热只有精品国产| 一本久久中文字幕| 亚洲色图av天堂| 搡老妇女老女人老熟妇| 好看av亚洲va欧美ⅴa在| 欧美一区二区国产精品久久精品| 天堂网av新在线| 一区福利在线观看| 中文字幕精品亚洲无线码一区| 三级国产精品欧美在线观看 | www国产在线视频色| 国产午夜福利久久久久久| 免费搜索国产男女视频| 搡老熟女国产l中国老女人| 午夜亚洲福利在线播放| 日本成人三级电影网站| 精品欧美国产一区二区三| www.自偷自拍.com| 成年女人毛片免费观看观看9| 国产精品影院久久| 欧美另类亚洲清纯唯美| 88av欧美| 搡老熟女国产l中国老女人| 久久久久久久精品吃奶| 国产极品精品免费视频能看的| 黄色片一级片一级黄色片| 天天躁狠狠躁夜夜躁狠狠躁| 在线播放国产精品三级| 国产av不卡久久| 国产熟女xx| 亚洲国产精品成人综合色| 精品国产亚洲在线| aaaaa片日本免费| 一a级毛片在线观看| 久久热在线av| 最近视频中文字幕2019在线8| 色老头精品视频在线观看| 午夜免费激情av| 91字幕亚洲| 中出人妻视频一区二区| 欧美黄色片欧美黄色片| 欧美高清成人免费视频www| 国产伦人伦偷精品视频| 麻豆成人av在线观看| 欧美日韩一级在线毛片| 18禁黄网站禁片免费观看直播| 国产精品永久免费网站| 亚洲国产欧美人成| 亚洲国产精品合色在线| 国产亚洲精品久久久com| 国产精品久久久久久亚洲av鲁大| 亚洲男人的天堂狠狠| 99精品欧美一区二区三区四区| 亚洲成av人片在线播放无| 亚洲黑人精品在线| 日韩欧美 国产精品| 久久久国产成人精品二区| 国产精品久久久人人做人人爽| 成人欧美大片| 亚洲七黄色美女视频| 亚洲国产高清在线一区二区三| 桃红色精品国产亚洲av| 国产精品亚洲一级av第二区| 女生性感内裤真人,穿戴方法视频| 久久中文字幕一级| 男女床上黄色一级片免费看| 怎么达到女性高潮| 亚洲中文av在线| 精品国内亚洲2022精品成人| 网址你懂的国产日韩在线| 麻豆av在线久日| 夜夜看夜夜爽夜夜摸| 黄片大片在线免费观看| 久久精品91蜜桃| 最近最新免费中文字幕在线| 亚洲午夜精品一区,二区,三区| 亚洲国产精品成人综合色| 国产黄片美女视频| 最近最新免费中文字幕在线| 黄色成人免费大全| 18禁裸乳无遮挡免费网站照片| 国产极品精品免费视频能看的| 又大又爽又粗| 一区二区三区高清视频在线| 美女 人体艺术 gogo| 午夜影院日韩av| 中出人妻视频一区二区| 男人舔女人下体高潮全视频| 成人18禁在线播放| 久久久久久久久久黄片| 国产av麻豆久久久久久久| 国产精品自产拍在线观看55亚洲| 亚洲av成人一区二区三| 欧美日韩中文字幕国产精品一区二区三区| 小蜜桃在线观看免费完整版高清| 亚洲av电影在线进入| 熟妇人妻久久中文字幕3abv| 亚洲aⅴ乱码一区二区在线播放| av天堂中文字幕网| 禁无遮挡网站| 欧美一区二区精品小视频在线| 三级毛片av免费| 精品久久久久久,| 亚洲av电影不卡..在线观看| 国产精品久久久久久精品电影| 99热这里只有是精品50| 国产av不卡久久| 9191精品国产免费久久| 国产伦人伦偷精品视频| 老熟妇乱子伦视频在线观看| 制服丝袜大香蕉在线| 亚洲最大成人中文| 久久天躁狠狠躁夜夜2o2o| 精品国产超薄肉色丝袜足j| 欧美色视频一区免费| 日韩免费av在线播放| 欧美色欧美亚洲另类二区| 精品人妻1区二区| 国产69精品久久久久777片 | 99国产精品一区二区蜜桃av| 色老头精品视频在线观看| 亚洲aⅴ乱码一区二区在线播放| h日本视频在线播放| 中亚洲国语对白在线视频| 变态另类成人亚洲欧美熟女| 国产淫片久久久久久久久 | 嫁个100分男人电影在线观看| 国内精品美女久久久久久| 免费观看的影片在线观看| 欧美一区二区精品小视频在线| 欧美色视频一区免费| 婷婷精品国产亚洲av在线| 成人亚洲精品av一区二区| 欧美黄色片欧美黄色片| 麻豆一二三区av精品| 麻豆国产97在线/欧美| 黑人操中国人逼视频| 欧美zozozo另类| 久久国产精品影院| 久99久视频精品免费| 在线a可以看的网站| 欧美成人一区二区免费高清观看 | 高清毛片免费观看视频网站| 久久久久久人人人人人| 首页视频小说图片口味搜索| 国产精品久久久人人做人人爽| 熟女少妇亚洲综合色aaa.| 18禁国产床啪视频网站| 日韩大尺度精品在线看网址| 日韩三级视频一区二区三区| 亚洲国产日韩欧美精品在线观看 | av在线天堂中文字幕| 国产精品 欧美亚洲| 亚洲熟妇熟女久久| 成人一区二区视频在线观看| 中文字幕熟女人妻在线| 少妇熟女aⅴ在线视频| 中国美女看黄片| 老汉色∧v一级毛片| 在线看三级毛片| 黄色女人牲交| 成人欧美大片| 精品国产乱码久久久久久男人| 变态另类成人亚洲欧美熟女| 日韩有码中文字幕| 啦啦啦免费观看视频1| 欧美大码av| 美女黄网站色视频| 真人做人爱边吃奶动态| 精品国产乱码久久久久久男人| 免费av不卡在线播放| 操出白浆在线播放| 国产三级中文精品| 欧美另类亚洲清纯唯美| 久久婷婷人人爽人人干人人爱| 看免费av毛片| 欧美日韩乱码在线| 一级黄色大片毛片| 后天国语完整版免费观看|