• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fault diagnosis method of train control RBC system based on KPCA-SOM network

    2020-04-28 03:52:48LIYangqingLINHaixiang

    LI Yang-qing, LIN Hai-xiang

    (1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;2. Rail Transit Electrical Automation Engineering Laboratory of Gansu Province,Lanzhou Jiaotong University, Lanzhou 730070, China)

    Abstract: Radio block center (RBC) system is the core equipment of China train control system-3 (CTCS-3). Now, the fault analysis of RBC system mainly depends on manual work, and the diagnostic results are inaccurate and inefficient. Therefore, the intelligent fault diagnosis method of RBC system based on one-hot model, kernel principal component analysis (KPCA) and self-organizing map (SOM) network was proposed. Firstly, the fault document matrix based on one-hot model was constructed by the fault feature lexicon selected manually and fault tracking record table. Secondly, the KPCA method was used to reduce the dimension and noise of the fault document matrix to avoid information redundancy. Finally, the processed data were input into the SOM network to train the KPCA-SOM fault classification model. Compared with back propagation (BP) neural network algorithm and SOM network algorithm, common fault patterns of train control RBC system can be effectively distinguished by KPCA-SOM intelligent diagnosis model, and the accuracy and processing efficiency are further improved.

    Key words: radio block center (RBC) system; fault diagnosis; self-organizing map (SOM); kernel principal component (KPCA)

    0 Introduction

    Radio block center (RBC) is the ground core equipment of China train control system-3 (CTCS-3), and it is the important guarantee for fast and safe operation of high-speed railway. According to the statistics of the RBC fault tracking records of Guiyang Railway Station from January 2016 to December 2017, it is found that there are 8 RBC accidents per month, and the operation speed of the high-speed railway is greatly restricted. Therefore, the realization of intelligent fault diagnosis of train control RBC system is of great significance on promoting train safety research.

    Now, equipment fault diagnosis of RBC system mainly relies on manual experience and data monitoring system. As mentioned in Refs.[1-3], the fault scope and cause can be identified by analyzing RBC driving log manually, but maintenance personnel need to master the vehicle-ground information transmission process and message meaning, so the accuracy and efficiency of diagnosis are limited by the proficiency of individual professional skills. The realization of data monitoring system needs technicians to analyze a large number of monitoring data, which is difficult and inefficient[4]. Although control theory and artificial intelligence have achieved remarkable results in the field of railway system fault diagnosis, such as Bayesian[5-6], expert system[7]and neural network[8-9], there are few methods for intelligent fault diagnosis of train control RBC system. At present, only one intelligent fault diagnosis method of RBC based on case-based reasoning (CBR) has been proposed by Guo et al.[3]and Zhang[10], but it has not been widely used because of its huge knowledge base and slow case search speed[11].

    In view of the shortcomings of CBR, the self-organizing map (SOM) network for small sample training is proposed to construct a classifier in this paper[12]. As an unsupervised neural network, SOM can intuitively maintain the original topological structure of sample vectors without specifying the type of input vectors, which has good self-organization, self-adaptation and robustness[13]. Moreover, it is different from the traditional neural network. Better classification performance can be obtained by using small quantity of training samples to train the network[14-16]. The data source selected in this paper is fault tracking record table of the train control RBC system. Although the record is effective, it is limited by the field condition and the technical knowledge of personnel, and the integrity and comprehensiveness of the fault record can not be guaranteed. So it is difficult to obtain a large number of complete fault information. Therefore, the small sample characteristics of SOM network also conform to construct the fault diagnosis classifier based on train control RBC fault tracking record table. In order to improve its fault diagnosis efficiency, the kernel principal component analysis (KPCA)-SOM model is proposed for fault diagnosis of RBC system.

    1 Research object and relevant theories

    1.1 Research object

    RBC is the core equipment of high-speed railway train control system. According to the signal authorization received from the interlock system[12,17]and the location report sent by the train, the operation authorization for each train under its jurisdiction is generated by RBC system and sent to the train to realize the safe operation of the train. In order to facilitate the maintenance of RBC system, the RBC system is equipped with local terminal, maintenance terminal, judicial recorder and other equipments.The system structure is shown in Fig.1.

    Notes: ISDN: integrated service data network; CTC: decentralized autonomous dispatching centralized system; CSM: centralized monitoring system; GSM-R: network-railway integrated digital mobile communication system; JRU: judicial record unitFig.1 Schematic diagram of train control RBC system

    1.2 KPCA

    The main idea of KPCA is to transform the samples nonlinearly. It realizes the non-linear principal component analysis in the original space by analyzing the samples in the low-dimensional space, so as to represent the original data set information with the least number of features, thus realizing the purpose of data dimension reduction. The input data matrixXn×mis mapped to the high-dimensional feature spaceH={G(X)} by means of the non-linear kernel functionG, wherextis thet-th sample of the input data matrix. The covariance matrix of high-dimensional feature space is

    (1)

    The key of KPCA is to find the mapping direction which can represent the characteristic variance features of the original data matrix to the greatest extent. The formula is expressed as

    ζR=UR,

    (2)

    whereζis the characteristic value,Ris the mapping direction which can represent the characteristic variance of the original data matrix to the greatest extent.

    Thus, the mapping formula of the data in the original data sample (x1,x2,…,xn) is

    (3)

    1.3 SOM network

    SOM network is a competitive neural network composed of fully connected neurons with the characteristics of unsupervised and self-learning. Its two layers are input layer and competition layer (i.e. output layer). The number of input layer neurons of classical SOM network isn, and the number of competition layer neurons iss×d, which can be expressed as a two-dimensional planar array. The network structure of the classical SOM network is shown in Fig.2.

    The learning process of SOM network is as follows:

    1) The input vectorsX(i.e. input datx1,x2,…,xn)in the input layer and the corresponding weight vectorsWiof individual neurons in the competition layer are normalized so that the modulus ofXandWiis 1.

    Fig.2 SOM network structure

    2) The weight vectors corresponding to all neurons in the competition layer are compared with the input vectors obtained by the network. The neurons corresponding to the weight vectors with the highest similarity are the winning neurons. The similarity depends on the Euclidean distance between the input vector and the neuron. The smaller the Euclidean distance, the higher the similarity. The Euclidean distancedijbetween thei-th input vector of the mapping layer and thej-th neuron is calculated by

    (4)

    wherexiis thei-th input vector;wijis the weights of thei-th input vector and thej-th neuron.

    3) Adjust the connection weights between the winning neurons and the adjacent neurons. The adjustment formula is

    Δwij=?Dkj(xi-wij),

    (5)

    whereDkjis the domain function andkis the competitive winning neuron of the current input vectorxi.

    The expression of the domain function is

    (6)

    wherehkis the position of the winning neuron;hjis the position of thej-th neuron;δ2is the variance that decreases gradually with the progress of learning.

    4) Judge whether the learning is terminated or not. For all the input vectors in the training process, if the corresponding winning neurons do not change, that is to say, the network converges, then the learning is terminated. Otherwise return to step 2) to continue learning.

    The learning process of SOM network shows that the weights and thresholds of the winning neurons and other neurons in their neighborhoods are adjusted, which makes the SOM network have good learning and generalization ability.

    2 Fault diagnosis model of RBC based on KPCA-SOM network

    In this paper, fault information is mined by manually selecting fault feature lexicon combined with fault tracking record table of train control RBC system. Firstly, the fault document matrix taken as initial data sample is established by using one-hot model. Then, based on KPCA, dimension reduction and noise reduction of data samples are carried out to avoid redundancy of fault attributes. Finally, the data sets are randomly divided into training data and testing data, which are input into SOM network successively, and the fault diagnosis model of train control RBC system based on KPCA-SOM network is established. The model building block diagram is shown in Fig.3.

    Fig.3 Fault diagnosis model of train control RBC system based on KPCA-SOM network

    2.1 Fault pattern table

    The fault tracking record table of train control RBC system is recorded in the form of natural language. Table 1 is the partial example of the fault tracking table, which is intercepted from the RBC fault tracking record table of Guiyang Railway Station from January 2016 to December 2017. Because only the fault phenomena and the corresponding fault patterns of the record table are paid attention in this paper, Table 1 deletes the irrelevant items in the original fault tracking record table.

    Table 1 Fault tracking record table of train control RBC

    By analyzing the fault tracking record table of RBC of Guiyang Railway Station, the common fault patterns are summarized as Table 2.

    Table 2 Common fault patterns table for RBC system

    2.2 Fault feature lexicon

    When using one-hot model to represent fault tracking records of RBC, it is necessary to establish a standard RBC fault feature lexicon. Because fault feature words of RBC are not universal in Chinese document lexicon, expert knowledge is needed to build the lexicon. In theory, every term in the fault record can be used to represent the fault information, but the information such as train number, time and location has no practical significance on the determination of the fault pattern. Therefore, these terms are deleted when the feature lexicon is established. Finally, a total of 86 feature terms were selected, as {local terminal, unlimited timeout, mobile authorization, JRU, level conversion, downgrade, CTCS-2, front car, rear car, ..., emergency brake}.

    2.3 Fault document matrix and construction of fault data sample base

    After selecting the fault feature lexicon, the one-hot model is used to represent the fault record. When one-hot model is used for text representation, firstly, it extracts non-repetitive feature words from the original text dataset to form a vocabulary containingVfeature words. Then a fault record is represented by a vector withVdimension. When the the value ofm-th dimension (m=1,2,…,V) is 1, it indicates that them-th feature word in the vocabulary appears in the fault record of this item; when the value is 0, it means that it does not appear. The premise of using the one-hot model is to assume that the feature words in the fault record table are independent of each other, that is, the exchanging order of feature words in the fault record does not affect the fault diagnosis. The fault document matrix can be obtained as shown in Table 3, wherenis the fault record number andwis the fault feature word.

    Table 3 Fault document matrix

    Because the feature words of the selected feature lexicon may contain redundant information, these redundant feature attributes will increase the network complexity and slow down the training speed. Therefore, in order to construct the standard fault data sample library, it is necessary to reduce the fault document matrix by using the KPCA method.

    The KPCA realizes the nonlinear projection from the input space to the high-dimensional feature space by the inner product operation of the kernel functions. The commonly used kernel functions are sigmoid kernel function and Gaussian kernel function. Because the radial basis function (RBF) kernel function has the characteristics of simple process and good classification performance, the RBF kernel function is selected and its expression is

    (7)

    whereσis the width parameter of the function, and its value has a great influence on the performance of KPCA. Therefore, when KPCA is used to reduce feature dimension, it is necessary to optimize the selection of kernel width parameter to improve the separability of feature data. The optimization process ofσis as follows:

    2) The intra-class and inter-class distances ofk-class kernel principal components are respectively defined as

    (8)

    (9)

    3) The smaller the intra-class distance and the larger the inter-class distance of the feature data in different classes, the better the separability of the feature data. The optimization function ofσis

    (10)

    When max(H) is obtained, its value is the optimal parameter ofσ.

    Compared with the fault document matrix, the feature terms deleted from the fault data sample library after dimensionality reduction isD={front car, rear car, demarcation point, initialization, on-line, redundancy, safety data network, cabinet, system, train control center, log file, indicator light, logic, on-board equipment, communication, switching unit and on-board vehicle, software, brake}. In the end, there are 65 feature terms in the sample database of fault data, while there are 86 feature terms in the fault document matrix.

    3 Simulation experiment and result analysis

    3.1 Network structure design and simulation experiment

    The SOM network is constructed according to the sample database of fault data. The reduced 65 feature attributes are used as input vectors of the network. The competition layer is set to 5×5=25 neurons, and the training step is set tot=[10,50,100,150,200,300,500].

    A set of data is selected from each fault pattern in the sample database to form a standard fault sample matrix ofA11×65(i.e. 11 kinds of standard fault samples), which is used to train SOM network. Whenttakes different values, the classification results of SOM networks are shown in Table 4. The different numbers in Table 4 represent the serial numbers of different neurons. And C1, C2,…,C11 are codes for different fault patterns as shown in Table 2.

    Table 4 Classification effect of different training steps t

    By analyzing Table 4, whent=10, fault pattern C5, C6 and C9 are classified into one class, C7 and C8 are classified into one class, C10 and C11 are classified into one class. At this time, the SOM network has a preliminary classification effect on standard fault samples. Whent=50, the network can further distinguish C10 and C11. Whent=100, C7 and C8 are also divided into different categories. Whent=150, the network can completely distinguish 11 fault patterns. It can be seen that the accuracy of network fault classification is improved with the step-by-step increase of training steps. When the training steps of the network continue to increase (e.g. 200, 300 and 500, respectively), the standard fault samples are also classified into different classes, but compared witht=150, the increase oft-value will sacrifice the training efficiency of the network, so the optimal value oftis 150.

    It can be seen from Table 4 that when the training step is 150, the serial number of the winning neurons of the fault patterns C1 to C11 areV={2, 5, 15, 11, 8, 9, 17, 19, 10, 21, 23}. In Fig.4, there are 25 hexagons and each hexagon represents a neuron. The numbers of neurons is numbered from bottom to top and left to right, respectively, from 1 to 25. For example, the position of neurons corresponding to category C1 is 2, that corresponding to category C2 is 5, and that corresponding to category C5 is 8, and so on. It can be seen that the network distinguishes the fault patterns corresponding to 11 kinds of standard fault samples.

    Fig.4 Competitive winning neurons when t=150

    3.2 Comparison and analysis of simulation results

    In this paper, convergence steps, absolute error and accuracy are selected to evaluate the classification performance of the network comprehensively. In order to demonstrate KPCA-SOM network has better classification performance in the case of small samples, it is compared with back propagation (BP) neural network[9]and ordinary SOM network. Through many experiments, the comparison results shown in Table 5 are obtained.

    By analyzing Table 5, it can be seen that:

    1) Compared with BP neural network model, the absolute error of ordinary SOM network model is reduced by 3.18% and the accuracy is increased by 2.59%. That is to say, the absolute error of SOM network model is reduced and the accuracy is improved.

    Table 5 Comparison of simulation results

    2) When the competition layer neurons adopt the structure of 5×5, the convergence step of KPCA-SOM network is reduced, the average absolute error is reduced by 2.78%, the training time is reduced by 3.87 s, and the accuracy is improved by 4.65%, compared with the ordinary SOM network. It shows that dimensionality reduction of fault documents by KPCA is helpful to improve the training efficiency and diagnostic accuracy of SOM network.

    3) Using KPCA-SOM model, the absolute error and accuracy of the model are similar when the structure of competition layer neurons are 4×4 and 5×5, respectively. But when using 5×5 structure, the network can converge faster, the training time is reduced by 1.3 s and the training efficiency is higher. It indicates that increasing the number of neurons properly can improve the training efficiency of the network.

    4 Conclusions

    1) Due to the information redundancy problem in manually selected fault feature words inventory, the main features of each fault pattern can be extracted by using KPCA, so as to improve the training efficiency and diagnostic accuracy of the network.

    2) The KPCA-SOM network model algorithm is realized through the simulation experiment of actual fault data. The experimental results show that the fault diagnosis method has a good ability of automatic fault identification in train control RBC fault diagnosis, which shows that the method can be realized in engineering and has certain engineering application value.

    3) By comparing KPCA-SOM model with ordinary SOM model and BP model, it can be seen that KPCA-SOM model has better classification performance than BP neural network and ordinary SOM model when the data samples are small.

    4) Based on the fault tracking record table of train control RBC system, an intelligent fault diagnosis method based on one-hot model, dimensionality reduction by KPCA and self-organizing mapping (SOM) network is proposed. Taking the fault records of Guiyang Railway Station from January 2016 to December 2017 as data samples, the feasibility and validity of the KPCA-SOM fault diagnosis model proposed in this paper are verified, which provides ideas for further research on the optimization of intelligent fault diagnosis methods for train control RBC system.

    av国产精品久久久久影院| 色网站视频免费| 新久久久久国产一级毛片| 天堂俺去俺来也www色官网| 又黄又粗又硬又大视频| 七月丁香在线播放| 中文欧美无线码| 国产免费现黄频在线看| 免费黄网站久久成人精品| 又黄又粗又硬又大视频| 国精品久久久久久国模美| 免费av中文字幕在线| 老司机影院毛片| 在线精品无人区一区二区三| 欧美精品高潮呻吟av久久| 国产在视频线精品| 黑人欧美特级aaaaaa片| 国产成人91sexporn| 黄片无遮挡物在线观看| 国产成人一区二区在线| 国产一区有黄有色的免费视频| 青春草国产在线视频| 中文乱码字字幕精品一区二区三区| 97在线视频观看| 人人妻人人澡人人看| 国产极品天堂在线| 久久精品人人爽人人爽视色| 久久久久久人妻| 女性被躁到高潮视频| 黑人猛操日本美女一级片| 亚洲一级一片aⅴ在线观看| 黄片无遮挡物在线观看| 久久99一区二区三区| 国产在线视频一区二区| 精品人妻一区二区三区麻豆| 国产成人aa在线观看| 成年人午夜在线观看视频| 久久久久精品久久久久真实原创| 国产精品 国内视频| 亚洲一区二区三区欧美精品| 国产高清不卡午夜福利| 久久久久久久久久久免费av| h视频一区二区三区| 久久久久精品性色| av卡一久久| 制服人妻中文乱码| 国产麻豆69| 91aial.com中文字幕在线观看| 欧美成人精品欧美一级黄| 久久午夜综合久久蜜桃| 女性生殖器流出的白浆| 欧美精品亚洲一区二区| 我的女老师完整版在线观看| 国产国语露脸激情在线看| 国产精品国产三级专区第一集| 五月开心婷婷网| 岛国毛片在线播放| 日韩电影二区| 成年动漫av网址| 国产成人午夜福利电影在线观看| 熟女av电影| 五月开心婷婷网| 免费av不卡在线播放| 成人亚洲精品一区在线观看| 国产男女超爽视频在线观看| 欧美最新免费一区二区三区| 久久国产精品大桥未久av| 精品国产露脸久久av麻豆| 成人毛片a级毛片在线播放| 午夜福利在线观看免费完整高清在| 伊人亚洲综合成人网| 蜜臀久久99精品久久宅男| 午夜av观看不卡| 中文欧美无线码| 日日撸夜夜添| 国产一区亚洲一区在线观看| 精品午夜福利在线看| 国产激情久久老熟女| 大片电影免费在线观看免费| 一边亲一边摸免费视频| 日本猛色少妇xxxxx猛交久久| 国产免费视频播放在线视频| 免费不卡的大黄色大毛片视频在线观看| 人人妻人人澡人人看| xxx大片免费视频| 欧美日本中文国产一区发布| 韩国精品一区二区三区 | 国语对白做爰xxxⅹ性视频网站| 91在线精品国自产拍蜜月| 一本色道久久久久久精品综合| av在线观看视频网站免费| 亚洲精品aⅴ在线观看| 亚洲,欧美精品.| h视频一区二区三区| 成人午夜精彩视频在线观看| 丝袜喷水一区| 天天躁夜夜躁狠狠躁躁| 日韩一区二区三区影片| av国产久精品久网站免费入址| 嫩草影院入口| 国产成人av激情在线播放| 成人18禁高潮啪啪吃奶动态图| 久久久国产一区二区| 国产一区二区在线观看日韩| 久久99一区二区三区| 色网站视频免费| 热99久久久久精品小说推荐| 日韩视频在线欧美| 欧美精品高潮呻吟av久久| 欧美日韩亚洲高清精品| 日韩一区二区三区影片| 亚洲av免费高清在线观看| 黄色毛片三级朝国网站| 久久青草综合色| 国产亚洲午夜精品一区二区久久| 亚洲欧美成人综合另类久久久| 一区二区三区精品91| 精品人妻偷拍中文字幕| 久久久久国产网址| 国产日韩欧美亚洲二区| 99久久综合免费| 精品一区在线观看国产| 亚洲av男天堂| 日本vs欧美在线观看视频| 如日韩欧美国产精品一区二区三区| 亚洲国产精品一区二区三区在线| 精品熟女少妇av免费看| 人体艺术视频欧美日本| 国产一区有黄有色的免费视频| 乱人伦中国视频| 18禁在线无遮挡免费观看视频| 亚洲一级一片aⅴ在线观看| 寂寞人妻少妇视频99o| 午夜福利在线观看免费完整高清在| 大香蕉久久网| 久久精品人人爽人人爽视色| 久久久久久久久久久免费av| 99re6热这里在线精品视频| 18禁观看日本| 成人二区视频| 亚洲精品456在线播放app| 亚洲av免费高清在线观看| 一本久久精品| 美女福利国产在线| 国产成人a∨麻豆精品| 卡戴珊不雅视频在线播放| 午夜福利视频精品| 在线观看免费高清a一片| 日日爽夜夜爽网站| 观看美女的网站| 男女国产视频网站| 男女国产视频网站| 两个人看的免费小视频| 各种免费的搞黄视频| 99香蕉大伊视频| 午夜av观看不卡| av福利片在线| 午夜av观看不卡| 只有这里有精品99| 久久久久久久久久久久大奶| 超色免费av| 在线观看免费日韩欧美大片| 免费观看a级毛片全部| 又大又黄又爽视频免费| av.在线天堂| 免费观看av网站的网址| 插逼视频在线观看| 久久久久国产网址| 成人免费观看视频高清| 99国产综合亚洲精品| 国产福利在线免费观看视频| 精品国产一区二区三区久久久樱花| 国产免费福利视频在线观看| 天天躁夜夜躁狠狠躁躁| 91成人精品电影| 男人添女人高潮全过程视频| 在线观看免费视频网站a站| 国产高清三级在线| 日日啪夜夜爽| 丁香六月天网| 午夜福利乱码中文字幕| 欧美成人午夜免费资源| 日韩制服丝袜自拍偷拍| 国产 精品1| 国产精品熟女久久久久浪| 免费日韩欧美在线观看| 99久国产av精品国产电影| 天美传媒精品一区二区| xxxhd国产人妻xxx| 日韩av免费高清视频| 夫妻午夜视频| www.熟女人妻精品国产 | 日韩一区二区三区影片| 蜜桃国产av成人99| 韩国精品一区二区三区 | 亚洲av中文av极速乱| 日本黄大片高清| 国产高清不卡午夜福利| 欧美精品人与动牲交sv欧美| 高清黄色对白视频在线免费看| 国产成人精品在线电影| 国产一区二区激情短视频 | 国产精品久久久久久久久免| 三上悠亚av全集在线观看| 日本91视频免费播放| 国产精品久久久av美女十八| 国产精品国产三级国产专区5o| 欧美 日韩 精品 国产| 蜜桃国产av成人99| 亚洲av在线观看美女高潮| 又黄又爽又刺激的免费视频.| 又黄又爽又刺激的免费视频.| 久久久欧美国产精品| av有码第一页| 久久久a久久爽久久v久久| 夜夜爽夜夜爽视频| 国产精品人妻久久久久久| 免费看光身美女| 免费看光身美女| 大陆偷拍与自拍| a级毛片在线看网站| 人成视频在线观看免费观看| 午夜福利,免费看| 97在线人人人人妻| 国产淫语在线视频| 999精品在线视频| 18禁动态无遮挡网站| 日韩欧美精品免费久久| a级毛片黄视频| 国产亚洲一区二区精品| 下体分泌物呈黄色| 黄色 视频免费看| av在线老鸭窝| 另类亚洲欧美激情| 国产一区二区三区综合在线观看 | 1024视频免费在线观看| 男女免费视频国产| 1024视频免费在线观看| 国产一区二区三区av在线| 中文字幕人妻熟女乱码| www.色视频.com| 精品久久国产蜜桃| 一本—道久久a久久精品蜜桃钙片| 国产国拍精品亚洲av在线观看| 亚洲精品国产色婷婷电影| 国产av国产精品国产| 国产老妇伦熟女老妇高清| 欧美丝袜亚洲另类| 亚洲伊人色综图| 午夜福利乱码中文字幕| 在线天堂中文资源库| 插逼视频在线观看| 一级片免费观看大全| 国产精品一国产av| 少妇的逼好多水| 色视频在线一区二区三区| 国产免费一区二区三区四区乱码| 老司机影院成人| 国产黄色视频一区二区在线观看| 三上悠亚av全集在线观看| 91成人精品电影| 亚洲在久久综合| 插逼视频在线观看| 成人毛片60女人毛片免费| 在线天堂最新版资源| 午夜日本视频在线| 成人黄色视频免费在线看| 我的女老师完整版在线观看| 97在线视频观看| 亚洲内射少妇av| 天天影视国产精品| 一级爰片在线观看| 两个人免费观看高清视频| 97超碰精品成人国产| 国产高清不卡午夜福利| 国产极品天堂在线| 波多野结衣一区麻豆| xxx大片免费视频| 久久99热这里只频精品6学生| 女性被躁到高潮视频| 超碰97精品在线观看| 亚洲国产毛片av蜜桃av| 免费人成在线观看视频色| 国产成人精品福利久久| 亚洲av国产av综合av卡| 99热国产这里只有精品6| 日韩av免费高清视频| 热re99久久国产66热| 大香蕉97超碰在线| 黄色 视频免费看| 亚洲少妇的诱惑av| av在线老鸭窝| 亚洲精华国产精华液的使用体验| 人人妻人人澡人人爽人人夜夜| 亚洲精品自拍成人| 亚洲国产精品专区欧美| 成人18禁高潮啪啪吃奶动态图| 一区二区三区乱码不卡18| 免费看av在线观看网站| 国产精品麻豆人妻色哟哟久久| 精品人妻熟女毛片av久久网站| 制服丝袜香蕉在线| 日韩不卡一区二区三区视频在线| 国产男女内射视频| 高清av免费在线| 在线观看免费高清a一片| 五月天丁香电影| 中文字幕免费在线视频6| 97超碰精品成人国产| 美女脱内裤让男人舔精品视频| 波多野结衣一区麻豆| 久久久精品94久久精品| 国产免费一区二区三区四区乱码| 国产一级毛片在线| 少妇的逼水好多| 永久免费av网站大全| 一本色道久久久久久精品综合| 欧美精品av麻豆av| 国产精品久久久久久av不卡| 国产无遮挡羞羞视频在线观看| 国产又色又爽无遮挡免| 国产精品.久久久| 国产极品天堂在线| 高清av免费在线| 亚洲,一卡二卡三卡| 国产乱来视频区| 国产xxxxx性猛交| 亚洲经典国产精华液单| 69精品国产乱码久久久| 黑人高潮一二区| 毛片一级片免费看久久久久| 久久精品久久久久久久性| 国产又爽黄色视频| 久久国产精品大桥未久av| 香蕉国产在线看| 久久午夜综合久久蜜桃| 少妇人妻精品综合一区二区| 丁香六月天网| 成人亚洲精品一区在线观看| 91aial.com中文字幕在线观看| 激情五月婷婷亚洲| 亚洲五月色婷婷综合| 精品一区二区三卡| 久久久久久久久久人人人人人人| 国产精品一国产av| 国产亚洲最大av| 免费日韩欧美在线观看| 免费少妇av软件| 国产在线免费精品| 亚洲第一区二区三区不卡| 精品国产一区二区久久| 久久热在线av| 亚洲色图综合在线观看| 午夜福利影视在线免费观看| 美女视频免费永久观看网站| 亚洲精华国产精华液的使用体验| 国产成人精品久久久久久| 国产精品国产三级专区第一集| 777米奇影视久久| 又黄又粗又硬又大视频| 乱码一卡2卡4卡精品| 国产在线免费精品| 免费观看a级毛片全部| 国产成人av激情在线播放| 亚洲五月色婷婷综合| 亚洲人成网站在线观看播放| 国产永久视频网站| 国产亚洲欧美精品永久| 高清欧美精品videossex| 内地一区二区视频在线| 久久鲁丝午夜福利片| 男女啪啪激烈高潮av片| 激情五月婷婷亚洲| 久久97久久精品| 人人澡人人妻人| av.在线天堂| 亚洲精品一区蜜桃| 在线观看国产h片| 亚洲av日韩在线播放| 高清黄色对白视频在线免费看| 午夜激情久久久久久久| 999精品在线视频| 天堂中文最新版在线下载| 黄片播放在线免费| 在线观看人妻少妇| 最新的欧美精品一区二区| 9191精品国产免费久久| 少妇的逼水好多| 国产成人91sexporn| 韩国高清视频一区二区三区| 亚洲国产精品999| 亚洲美女视频黄频| 亚洲欧美日韩另类电影网站| 亚洲人成77777在线视频| 亚洲av福利一区| 人妻系列 视频| 五月开心婷婷网| 一边亲一边摸免费视频| 内地一区二区视频在线| 视频在线观看一区二区三区| 最近中文字幕高清免费大全6| 精品一品国产午夜福利视频| 日本午夜av视频| 久久 成人 亚洲| 亚洲av在线观看美女高潮| 成人亚洲欧美一区二区av| 日韩中文字幕视频在线看片| 9热在线视频观看99| 性色av一级| 青春草视频在线免费观看| 男女啪啪激烈高潮av片| 欧美性感艳星| 18禁动态无遮挡网站| 99视频精品全部免费 在线| 国产欧美另类精品又又久久亚洲欧美| 一区二区三区乱码不卡18| 日本欧美视频一区| 国产女主播在线喷水免费视频网站| 男女边吃奶边做爰视频| 亚洲精品成人av观看孕妇| 国产探花极品一区二区| 成人黄色视频免费在线看| 国产成人免费无遮挡视频| 日韩制服丝袜自拍偷拍| 国产成人精品久久久久久| www.熟女人妻精品国产 | 精品视频人人做人人爽| 天堂中文最新版在线下载| 国产极品粉嫩免费观看在线| 啦啦啦中文免费视频观看日本| 亚洲国产成人一精品久久久| 欧美日韩综合久久久久久| 一级毛片 在线播放| 久久国内精品自在自线图片| av在线老鸭窝| 天堂中文最新版在线下载| 日韩av免费高清视频| 亚洲五月色婷婷综合| 人妻一区二区av| 亚洲色图 男人天堂 中文字幕 | 母亲3免费完整高清在线观看 | 一区二区av电影网| 最近手机中文字幕大全| 天天影视国产精品| 最近最新中文字幕大全免费视频 | 人妻人人澡人人爽人人| 一个人免费看片子| 成人毛片60女人毛片免费| 99热网站在线观看| 99久久精品国产国产毛片| 久久精品国产鲁丝片午夜精品| 久久av网站| 有码 亚洲区| 国语对白做爰xxxⅹ性视频网站| 亚洲图色成人| 色94色欧美一区二区| 我的女老师完整版在线观看| a 毛片基地| 亚洲久久久国产精品| 国产一区二区在线观看av| 欧美 亚洲 国产 日韩一| 妹子高潮喷水视频| 熟女电影av网| www.熟女人妻精品国产 | 狂野欧美激情性bbbbbb| 国产精品不卡视频一区二区| 婷婷色综合大香蕉| 五月天丁香电影| 亚洲人成网站在线观看播放| 69精品国产乱码久久久| 精品一区在线观看国产| 日韩中文字幕视频在线看片| 黑人高潮一二区| 国产精品99久久99久久久不卡 | 99热6这里只有精品| 久久精品aⅴ一区二区三区四区 | 汤姆久久久久久久影院中文字幕| 一边亲一边摸免费视频| 建设人人有责人人尽责人人享有的| 精品一区二区三卡| 制服诱惑二区| 亚洲欧美清纯卡通| 国产乱人偷精品视频| 亚洲av日韩在线播放| 成人18禁高潮啪啪吃奶动态图| 九九爱精品视频在线观看| 91国产中文字幕| 熟女人妻精品中文字幕| 中文字幕人妻丝袜制服| 丝袜在线中文字幕| 久久精品aⅴ一区二区三区四区 | 黑丝袜美女国产一区| 国产成人免费无遮挡视频| 午夜免费男女啪啪视频观看| 午夜激情久久久久久久| 国产亚洲精品第一综合不卡 | 如何舔出高潮| 91国产中文字幕| 三级国产精品片| 亚洲av中文av极速乱| 亚洲国产色片| 午夜福利在线观看免费完整高清在| 99久久综合免费| 国产精品.久久久| 最近中文字幕高清免费大全6| 18禁国产床啪视频网站| 丰满乱子伦码专区| 成年动漫av网址| 七月丁香在线播放| 熟妇人妻不卡中文字幕| 一区在线观看完整版| 性色av一级| 制服诱惑二区| 婷婷色av中文字幕| 久久99精品国语久久久| 在线免费观看不下载黄p国产| 久久久久久久久久久久大奶| 国产 精品1| 国产永久视频网站| 亚洲国产精品成人久久小说| 日本-黄色视频高清免费观看| 久久精品国产综合久久久 | 综合色丁香网| 欧美+日韩+精品| 黑人欧美特级aaaaaa片| 午夜福利,免费看| 久久热在线av| 色5月婷婷丁香| 久久热在线av| 人人妻人人爽人人添夜夜欢视频| 黑人欧美特级aaaaaa片| 日韩在线高清观看一区二区三区| 黑人猛操日本美女一级片| 成人午夜精彩视频在线观看| 高清av免费在线| 日韩一区二区视频免费看| 国国产精品蜜臀av免费| 午夜福利乱码中文字幕| 久久久精品94久久精品| 国产午夜精品一二区理论片| 国产片内射在线| 国产精品国产av在线观看| 伦理电影免费视频| 国产又色又爽无遮挡免| 伦理电影免费视频| 国产又色又爽无遮挡免| 久久久久人妻精品一区果冻| 人妻一区二区av| 观看美女的网站| 国产在线视频一区二区| 久久精品久久精品一区二区三区| 五月开心婷婷网| 亚洲精品国产色婷婷电影| 久久av网站| 天美传媒精品一区二区| 黄色配什么色好看| 日日爽夜夜爽网站| 女性生殖器流出的白浆| 大片免费播放器 马上看| 国产男女超爽视频在线观看| av国产久精品久网站免费入址| 老司机影院毛片| 亚洲综合精品二区| 永久网站在线| 丝袜脚勾引网站| 亚洲一区二区三区欧美精品| 少妇熟女欧美另类| 欧美亚洲 丝袜 人妻 在线| 欧美亚洲日本最大视频资源| 午夜av观看不卡| 国产爽快片一区二区三区| 国产成人91sexporn| 亚洲国产毛片av蜜桃av| 少妇的丰满在线观看| 欧美精品高潮呻吟av久久| 久久人人爽人人爽人人片va| 午夜福利乱码中文字幕| 激情五月婷婷亚洲| 亚洲欧美成人精品一区二区| 中文字幕最新亚洲高清| 不卡视频在线观看欧美| 丝袜美足系列| 全区人妻精品视频| 男人爽女人下面视频在线观看| av网站免费在线观看视频| 侵犯人妻中文字幕一二三四区| 久久99蜜桃精品久久| 黄色 视频免费看| 亚洲av成人精品一二三区| 亚洲少妇的诱惑av| 精品久久蜜臀av无| 成年动漫av网址| 青春草亚洲视频在线观看| 国产成人一区二区在线| xxxhd国产人妻xxx| 女性生殖器流出的白浆| 国语对白做爰xxxⅹ性视频网站| 九九在线视频观看精品| 精品少妇久久久久久888优播| 亚洲美女搞黄在线观看| 99热网站在线观看| 亚洲第一av免费看| 亚洲av.av天堂| 亚洲美女搞黄在线观看| 女人精品久久久久毛片| 精品一品国产午夜福利视频| 制服人妻中文乱码| 免费看光身美女| 啦啦啦视频在线资源免费观看| 免费av不卡在线播放| 亚洲精品日本国产第一区| 亚洲精品视频女| 久久久久久久大尺度免费视频| 99热网站在线观看| 精品国产一区二区三区四区第35|