• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on underwater acoustic channel estimation and temperature factors based on FBMC

    2020-04-28 03:53:06GUOYinjingLIUZhenYANGWenjianNIUChenxiLIUHui

    GUO Yin-jing, LIU Zhen, YANG Wen-jian, NIU Chen-xi, LIU Hui

    (1. College of Electronic Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China;2. Qingdao Zhihai Muyang Technology Co., Ltd., Qingdao 266590, China)

    Abstract: The complexity of underwater environment poses a challenge to underwater acoustic communication. In marine environment, different temperatures, depths and salinities would affect the performance of acoustic communication. The analysis of the underwater acoustic channel under the influence of temperature factors provides a reference for further study of the underwater acoustic channel estimation problem based on filter bank multi-carrier(FBMC). The FBMC based offset quadrature amplitude modulation(OQAM) technology(FBMC/OQAM) was introduced into the underwater acoustic communication. Based on FBMC, the underwater acoustic channel estimation technology was studied. By changing the pilot structure to adapt to the complex and variable underwater acoustic channel, the iterative method was used to obtain the channel information with higher accuracy and further improve the performance of channel estimation. Theoretical analysis and simulation results show that iterative channel estimation algorithm based on the new interference approximation method (IAM) pilot proposed in this paper has better performance in underwater acoustic channel.

    Key words: filter bank multi-carrier (FBMC); underwater acoustic channel estimation; temperature; pilot; interference approximation method (IAM)

    0 Introduction

    Ocean area accounts for 71% of the Earth’s total area, and marine resources are of great significance to human development. At present, because orthogonal frequency division multiplexing(OFDM) based on cyclic prefix (CP-OFDM) has features such as robustness to multipath effects and high spectral efficiency, it is adopted in underwater acoustic communication. Inter-symbol interference (ISI) and inter-carrier interference (ICI) caused by cyclic prefix in OFDM will affect the communication system. The fifth generation cellular radio (5G) proposes to apply filter bank multi-carrier (FBMC) technology to wireless communication system[1-2]. The prototype filters of the FBMC/offset quadrature amplitude modulation (OQAM) system include a raised cosine filter, a PHYDYAS filter[3], an isotropic orthogonal transform algorithm (IOTA) filter[4]and so on. Because such prototype filters could reduce side lobes, FBMC/OQAM can alleviate ISI and ICI issues to provide higher transmission rates without guard intervals or cyclic prefixes unlike OFDM. Studies have shown that the application of FBMC/OQAM modulation scheme can outperform CP-OFDM in terms of bit error rate (BER) and spectral efficiency[5]. The influence of underwater acoustic communication technology on underwater positioning and navigation is also irreplaceable. It is a hot research topic to optimize the channel estimation technology to achieve high speed and reliability of underwater communication.

    Like other communication systems, channel estimation is critical for the FBMC/OQAM system to recover transmitted data at the receiver. Since the FBMC system only satisfies the real number field orthogonality, many channel estimation methods available for OFDM systems cannot be directly applied to the FBMC/OQAM system. This means that in FBMC/OQAM transmission, real-valued data will be subject to inherent interference from imaginary-valued data[6]. Aiming at the interference of imaginary part, researches have proposed some channel estimation methods based on FBMC system. According to different interference mechanisms, these pilot-assisted channel estimation methods can be divided into three categories: the first method is based on interference cancellation. The pilot structure is designed at the transmitter, so that the inherent interference does not affect the pilot position, and the conventional channel estimation method can be directly used at the receiver, such as auxiliary pilot (AP)[7], code auxiliary pilot method (CAP)[8]and discrete fourier transformation (DFT)-based FBMC system channel estimation method[9]. The interference cancellation method achieves better channel tracking performance while reducing spectral efficiency or increasing computational complexity[6]. The second method is based on the interference approximation method (IAM), for example, IAM-real (IAM-R)[10]whose pilot value is a real value of ±1, so that the interference of the pilot symbols from the first-order neighbors contributes to channel estimation. IAM-imaginary (IAM-I) is similar to IAM-R, with an intermediate pilot element of ±j. IAM-complex (IAM-C) is an improved method of IAM-R with an intermediate pilot element of ±1 or ±j[11]. To further improve performance, an extended version of IAM-C (called as EIAM-C) is proposed, with two pilot values around the pilot sequence being ±1 or ±j[12]. The IAM can maximize the effect of intrinsic interference on the channel and realize channel estimation of the FBMC/OQAM system. The third method is the channel estimation method based on interference avoidance. The channel frequency domain response is derived mainly by computational techniques or filtering, such as paired pilot method (POP). The advantage is that the whole system is not inherently designed. The interference calculation cancels out the inherent interference of the system in terms of operation. The disadvantage is that the POP scheme needs to be determined by the inverse equalizer, which leads to further errors, such as noise enhancement[13].

    In a complex marine environment, the speed of sound in water depends on the depth, temperature and salinity of the seawater[14]. Based on the FBMC/OQAM system, this paper conducts a comprehensive study on underwater temperature factors and underwater acoustic channel estimation techniques. On the basis of IAM, the IAM pilot is improved. The channel estimation accuracy is improved by multiple iterations, and its performance is verified by simulation.

    1 FBMC system model

    1.1 Bastic theory of FBMC/OQAM system

    The modulation and demodulation block diagram of the FBMC/OQAM system is shown in Fig.1, whereMindicates the number of subcarriers,am,nrepresents then-th OQAM symbol of them-th carrier, andm∈{1,2,…,M-1}. The steps of obtaining OQAM data are as follows: firstly, the transmission bit stream pass through the quadrature amplitude modulation (QAM) to obtain a complex symbol; secondly, the real number symbols are obtained by the real part and the imaginary part of the complex symbol; lastly, these data are transmitted by the virtual real part misalignment half symbol period.g(k) is a real symmetric prototype filter with length ofL. The data symbolam,nis firstly multiplied the phase factor ejπ(m+n)/2to keep the real field orthogonal between the subcarrier and the FBMC symbol. Then, all data is modulated by inverse fast fourier transform (IFFT) onto the subcarriers, and added together after passing the prototype filter outputs. Lastly, transmit over the channel. Similarly, in order to recover the transmitted data, the received data is demodulated by a filter combined Fourier transform, and the signal on the subcarrier is converted into a complex signal by OQAM post processing.

    Fig.1 FBMC/OQAM system block diagram

    According to the system model, the baseband transmission signals(k) of the FBMC/OQAM system can be expressed as

    (1)

    where the position ofam,nis represented by a time frequency point (TFP) (m,n);gm,n(k) repressents the subcarrier basis function at (m,n), and the expression is

    (2)

    (3)

    According to the definition of the ambiguity function, the orthogonality condition of the FBMC/OQAM system can be expressed as

    (4)

    (5)

    It can be seen from Eq.(5) that if you want to recover the original signal, you need to perform the real part operation to eliminate the imaginary part interference.

    1.2 Temperature and underwater acoustic communication

    Changes in the marine environment will affect the performance of underwater acoustic communications. This section examines the impact of changes in water temperature on communications. The transmission of sound in the ocean will be affected by the physical and chemical properties of seawater and the sound will travel the sea through many paths. The specific path of propagation depends on the sound velocity structure in the water and the location of the transmitter and receiver[14]. Sound speedcis a function of temperatureT, depthz(or pressure) and seawater salinityS[16]. The speed of sound (units of m/s) in a shallow water channel can be expressed as

    c=1 412+3.21T+1.19S+0.016 7z.

    (6)

    Transmission loss (Ltr) is defined as the cumulative decrease in sound intensity when sound waves propagate outward from the source. The acoustic signal in shallow water propagates within a cylinder bounded by a surface of water and seabed, forming a cylindrical diffusion. The transmission loss caused by cylindrical diffusion and absorption can be expressed as

    Ltr=10logr+αr×10-3,

    (7)

    whereαis the absorption coefficient (dB/km) andris transmission distance (m). Due to the presence of trace amounts of boric acid (B/(OH)3) and magnesium sulfate (MgSO4) in the ocean, the transmission of sound waves in the ocean is mainly attenuated by viscous absorption (viscosity can be considered as the flow resistance of the fluid) and ion relaxation effects[17]. The expression of the absorption coefficientαis[1,18-19]

    (8)

    wheref1represents the relaxation frequency of B/(OH)3, kHz, and the expression is

    (9)

    whereSis salinity, 1/1 000;Tis temperature, ℃;f2represents the relaxation frequency of MgSO4, kHz, and the expression is

    (10)

    A1represents the B/(OH)3component in seawater and it can be expressed as

    (11)

    wherePHrepresents the PH of water andcis the speed of sound;P1represents the depth pressure to which the B/(OH)3component in seawater is subjected, and it can be expressed as

    P1=1;

    (12)

    A2represents the MgSO4component in seawater and it can be expressed as

    (13)

    P2represents the depth pressure of MgSO4component in seawater and it can be expressed as

    P2=1-1.37×10-4z+6.2×10-9z2;

    (14)

    A3represents the pure water (viscosity) component in seawater, and its expression is

    (15)

    andP3indicates the pressure to which the pure water (viscosity) component is subjected,

    P3=1-3.83×10-5z+4.9×10-10z2.

    (16)

    The traditional absorption coefficient model is only a function of frequency, such as the Thorp model. The absorption coefficient model used in this paper includes environmental factors such as temperature, salinity, pH value and water depth. Due to this paper studies the relationship between temperature factor and underwater acoustic communication, other underwater environmental factors are limited: salinity is set to the global observation average of 35 ppt, depth is 20 m,PH=8, and the absorption coefficient can be expressed asα(T,f). Then the transmission loss in the shallow water area is expressed as

    Ltr(r,T,f)=10logr+α(T,f)r×10-3.

    (17)

    The sound velocity curve and absorption coefficient will be affected by temperature changes, which will actually change transmission loss and BER. In the research of underwater acoustic channel estimation technology, the emphasis is on reducing the BER and improving the performance of underwater acoustic communication.

    2 Pilot-based underwater acoustic channel estimation technique for FBMC/OQAM systems

    2.1 Traditional interference approximate channel estimation algorithm

    Suppose the channel of each subcarrier is a flat channel,η(k) is an additive white Gaussian noise with a mean of zero, so the received signal can be expressed as

    (18)

    ηm0,n0, (m=m0+p,n=n0+q).

    (19)

    (20)

    (21)

    wherecm0,n0is the equivalent pilot data transmitted at the time-frequency grid point (m0,n0). When the transmitted pilot symbolam0,n0and the neighbor rangeΩm0,n0are known, the channel frequency domain response is estimated at (m0,n0),

    (22)

    It can be seen from Eq.(22) that if the accuracy of the channel estimation value is improved, the second term of the interference term on the right side of Eq.(22) is operated to minimize the interference of the channel estimation.

    2.2 Improved IAM pilot channel estimation

    From the above analysis, the interference term is the product of the symbols around the pilot and the internal product of the subcarrier basis function corresponding to the TFP. And the inner product of the prototype filter function called as the time-frequency offset is the interference coefficient[13]. The interference weight coefficient matrix is generally expressed as

    (23)

    The expression of interference weight coefficient is shown in Eq.(24). This paper takesβ=0.323 9,γ=0.566 4,δ=0.205 8.

    (24)

    The transmission lossLtrin underwater acoustic communication has been obtained in the previous section. When the distance and frequency of the receiving end are fixed, the power of the received signalPris

    (25)

    wherePtrepresents the power of the transmitted signal.The core principle of IAM channel estimation is to increase the equivalent pilot power and reduce the impact of noise on channel estimation. Guided by the idea of maximizing the equivalent pilot power, leta1be the amplitude of the pilot in an ideal environment, then the amplitude of the pilot in underwater acoustic communication can be expressed as

    (26)

    Assuming that the transmission signal power is constant, the smaller the transmission loss caused by temperature, the better the effect of IAM channel estimation. Therefore, this paper proposes a new pilot structure to improve the impact of transmission loss on channel estimation.

    2.2.1 New IAM pilot structure design

    In the past channel estimation studies based on the FBMC system, the channels used were all maritime wireless channels. In this paper, the FBMC/OQAM channel estimation method with different pilot structure is simulated in the underwater acoustic channel. It is found that the channel estimation performance by introducing complex structure pilot sequences is better than the traditional IAM-C and EIAM-C schemes. The pilot structure is designed according to Eqs.(23)-(24).

    In the pilot structure shown in Fig.2, when the subcarrierm≤3, the pilot data is 0. When the subcarrierm∈{4,5,…,M-1} is in the middle position, take the pilot sequence [1-j j -1+j -j] as a cyclic sequence, and according to the value of the intermediate pilot sequence, discuss the power of the equivalent pilot data in the structure. When the intermediate pilot data is ±1?j, the number of subcarriers is odd, and the pilot sequence values on both sides are 0. At this time, the pilots of the left and right columns have an equivalent pilot power, that isP1=a2|-1+j+2β|2=3.186 3a2. It is worth noting that atm=5, the equivalent pilot power is 3.088 3a2, which is approximately equal toP1. When the subcarrier is in the even position, the intermediate pilot sequence is ±j, the pilot sequences on both sides are placed at ?j, the equivalent pilot power isP2=a2|1+2β-2jβ|2=2.415 3a2. Different from the EIAM-C pilot structure, the proposed pilot data of the left and right sides of the new IAM pilot structure are the same, so the interference weight coefficientγdoes not contribute to the equivalent pilot power. The new IAM pilot structure has an equivalent pilot power ofP=(P1+P2)/2=2.800 7a2. By comparison analysis, the equivalent pilot power fluctuates between IAM-C and EIAM-C.

    Fig.2 New IAM pilot structure

    2.2.2 Iterative based IAM pilot channel estimation

    In order to further improve the estimation accuracy, the IAM pilot structure proposed in this paper is iteratively operated, and the estimation error is reduced by reconstructing the equivalent pilot. The steps are as follows:

    Step 1:Demodulate the pilot symbols received at the receiver to obtain an equivalent pilot;

    Step 5: Set the number of iterations in advance and repeat Step 3 and Step 4 to get a more accurate channel estimate.

    3 Simulation experiment

    This section selects the underwater acoustic channel environment and verifies the performance of the algorithm through Matlab simulation. The parameter settings are shown in Table 1. The characteristics of underwater acoustic channel include bandwidth limitation, multipath effect, Doppler effect, ocean environment noise and time variation of channel. Fig.3 is the shallow seawater acoustic channel impulse response diagram selected in this paper.

    Table 1 Simulation parameters

    Fig.3 Shallow seawater acoustic channel impulse response diagrame

    The iterative channel estimation method(It-IAM) based on the new pilot structure proposed in this paper and the channel estimation method based on the traditional IAM-C and EIAM-C pilot structure are simulated. Fig.4 is a comparison diagram of BER of different pilot channel estimation methods in the above-described underwater acoustic channel environment. In Fig.4, the channel estimation of It-IAM with the iteration of 0, 1 time and 2 times are compared. It can be seen that the performance of estimation is average when there is no iteration, the performance is significantly improved after 1 time iteration, and when the iteration is 2 times, the performance is not significantly improved compared to the 1 time iteration. Since the equivalent pilot power of the It-IAM pilot structure fluctuates between the equivalent pilot power values of IAM-C and EIAM-C, when the It-IAM channel estimation is iterated 0 time, the BER curve is also located in the middle. It can be seen from Fig.4 that the channel estimation after 1-2 iterations has an improvement of about 3-4 dB over EIAM-C at a BER of 10-2.

    Fig.4 Performance comparison of algorithms in underwater acoustic channel (1)

    In order to verify the effect of the algorithm proposed in this paper on underwater acoustic communication channels, there is a comparison and verification of pilot channel estimation methods based on IAM. Fig.5 shows the simulation of IAM-R, IAM-I, IAM-C, EIAM-C and It-IAM with iterating 1 time. From this similation, it can be seen that in the same underwater environment, It-IAM algorithm proposed in this paper has the best performance.

    In the second section, the influence of temperature on the underwater acoustic communication process is analyzed. According to Eqs.(8)-(16), the relationship between seawater absorption coefficient and underwater temperature can be obtained, as shown in Fig.6. From Eq.(7), it can be found that the transmission loss is positively correlated, so the relationship between transmission loss and temperature in the underwater acoustic communication process can also be represented by the curve shown in Fig.6. The It-IAM channel estimation performance introduced in this paper gradually increases with temperature increase when it is lower than 8 ℃, and the performance is negatively correlated when the underwater temperature exceeds 8 ℃.

    Fig.5 Performance comparison of algorithms in underwater acoustic channel (2)

    4 Conclusion

    The paper applied the FBMC/OQAM system to the underwater, the influence relationship between temperature factors and underwater acoustic communication was analyzed comprehensively. By studying the FBMC/OQAM channel estimation technique, an iterative channel estimation method for new pilot structure was proposed. It-IAM increased the equivalent pilot power by introducing complex numbers in the pilot structure design, and also reduced the interference of noise on channel estimation, and inserted zero value at the front end of the pilot structure in response to the frequency shift and delay characteristics of the underwater acoustic channel. The algorithm performance is verified by simulation experiments, and the influence of underwater acoustic channel with different temperature on channel estimation performance is summarized. In the future, the underwater acoustic channel estimation technology will be studied in combination with the underwater salinity and depth factors to improve the underwater performance of the FBMC/OQAM communication system.

    他把我摸到了高潮在线观看| 97人妻天天添夜夜摸| 两性夫妻黄色片| 欧美午夜高清在线| 在线观看66精品国产| 窝窝影院91人妻| 1024视频免费在线观看| 国产精品久久久av美女十八| 国产精品国产高清国产av| 亚洲人成电影免费在线| 啦啦啦 在线观看视频| 亚洲欧美激情在线| 校园春色视频在线观看| 亚洲国产精品一区二区三区在线| 黑人巨大精品欧美一区二区蜜桃| 色播在线永久视频| 久久草成人影院| 欧美日韩乱码在线| 老司机午夜十八禁免费视频| 欧美日韩乱码在线| 黄色视频不卡| 亚洲 国产 在线| 老司机亚洲免费影院| svipshipincom国产片| 亚洲性夜色夜夜综合| 在线观看免费视频网站a站| 日韩欧美国产一区二区入口| 日韩免费高清中文字幕av| 久久精品国产亚洲av高清一级| 波多野结衣av一区二区av| xxxhd国产人妻xxx| 亚洲五月婷婷丁香| 在线免费观看的www视频| 水蜜桃什么品种好| 高清在线国产一区| 性色av乱码一区二区三区2| 国产男靠女视频免费网站| 亚洲一区二区三区不卡视频| x7x7x7水蜜桃| 亚洲成av片中文字幕在线观看| 亚洲成人久久性| 色播在线永久视频| 日韩高清综合在线| 国产欧美日韩精品亚洲av| 亚洲专区中文字幕在线| 国产片内射在线| 丝袜人妻中文字幕| 日韩欧美三级三区| 涩涩av久久男人的天堂| 在线十欧美十亚洲十日本专区| 丰满人妻熟妇乱又伦精品不卡| 日日干狠狠操夜夜爽| 91麻豆精品激情在线观看国产 | 精品久久久久久久毛片微露脸| 久久久久久人人人人人| 精品高清国产在线一区| 97超级碰碰碰精品色视频在线观看| 午夜福利免费观看在线| 在线永久观看黄色视频| 操美女的视频在线观看| 涩涩av久久男人的天堂| 咕卡用的链子| 亚洲av第一区精品v没综合| 精品久久久久久,| 成人影院久久| 18禁国产床啪视频网站| 亚洲av五月六月丁香网| 日韩欧美在线二视频| 中国美女看黄片| 国产精品二区激情视频| 亚洲国产毛片av蜜桃av| 老熟妇乱子伦视频在线观看| 亚洲精品国产色婷婷电影| 麻豆国产av国片精品| 中文字幕人妻丝袜制服| 99国产精品免费福利视频| 91字幕亚洲| 变态另类成人亚洲欧美熟女 | 美女 人体艺术 gogo| 亚洲av电影在线进入| 男人舔女人下体高潮全视频| 欧美乱码精品一区二区三区| 午夜久久久在线观看| 国产精品久久久久久人妻精品电影| 成人特级黄色片久久久久久久| 国产亚洲欧美精品永久| 99香蕉大伊视频| 国产精品日韩av在线免费观看 | 国产黄色免费在线视频| videosex国产| 亚洲伊人色综图| 亚洲专区国产一区二区| 韩国av一区二区三区四区| 可以免费在线观看a视频的电影网站| 99riav亚洲国产免费| 一个人免费在线观看的高清视频| 久久精品aⅴ一区二区三区四区| 日本免费一区二区三区高清不卡 | 色哟哟哟哟哟哟| 91精品国产国语对白视频| 夫妻午夜视频| 最近最新免费中文字幕在线| 日韩欧美三级三区| avwww免费| 好男人电影高清在线观看| 亚洲 欧美 日韩 在线 免费| 国产亚洲精品综合一区在线观看 | 日韩一卡2卡3卡4卡2021年| 1024视频免费在线观看| 露出奶头的视频| 国产av一区二区精品久久| 精品电影一区二区在线| 一级a爱视频在线免费观看| 免费在线观看日本一区| 老司机午夜福利在线观看视频| 啦啦啦免费观看视频1| 中文亚洲av片在线观看爽| 两个人看的免费小视频| 99riav亚洲国产免费| 夜夜看夜夜爽夜夜摸 | 免费在线观看完整版高清| 午夜视频精品福利| 免费观看精品视频网站| 十分钟在线观看高清视频www| 国产一区二区激情短视频| 久久精品aⅴ一区二区三区四区| 国产三级在线视频| 亚洲一区中文字幕在线| 亚洲精品久久午夜乱码| 99久久综合精品五月天人人| 国产高清国产精品国产三级| 满18在线观看网站| 18禁国产床啪视频网站| 午夜影院日韩av| 看免费av毛片| 久久伊人香网站| 日本wwww免费看| 亚洲人成电影观看| 久久人妻福利社区极品人妻图片| www.999成人在线观看| 亚洲自拍偷在线| 国产精品99久久99久久久不卡| 精品久久久久久成人av| 真人一进一出gif抽搐免费| 叶爱在线成人免费视频播放| 国产主播在线观看一区二区| 涩涩av久久男人的天堂| 亚洲精品成人av观看孕妇| 亚洲一区二区三区不卡视频| 免费在线观看亚洲国产| 中国美女看黄片| 99国产精品免费福利视频| 久久亚洲精品不卡| 亚洲伊人色综图| 精品一区二区三区视频在线观看免费 | 夜夜爽天天搞| 男女之事视频高清在线观看| 日本黄色日本黄色录像| 亚洲 国产 在线| 一级毛片精品| 久久九九热精品免费| 国内毛片毛片毛片毛片毛片| 在线免费观看的www视频| 亚洲中文日韩欧美视频| 国产精品永久免费网站| 波多野结衣一区麻豆| 国产免费现黄频在线看| 丝袜在线中文字幕| 成人精品一区二区免费| 亚洲第一欧美日韩一区二区三区| 1024视频免费在线观看| videosex国产| 国产亚洲精品第一综合不卡| 精品国产国语对白av| 亚洲成a人片在线一区二区| 美女福利国产在线| 免费在线观看影片大全网站| 日本黄色日本黄色录像| 91av网站免费观看| 国产精品成人在线| 国产成人啪精品午夜网站| 国产精品99久久99久久久不卡| 80岁老熟妇乱子伦牲交| 十八禁人妻一区二区| 久久人人爽av亚洲精品天堂| 少妇 在线观看| 免费在线观看完整版高清| 大型av网站在线播放| 亚洲欧美精品综合久久99| 色老头精品视频在线观看| 在线视频色国产色| 欧美日韩中文字幕国产精品一区二区三区 | 午夜成年电影在线免费观看| 一区二区三区国产精品乱码| 亚洲欧美精品综合一区二区三区| 免费日韩欧美在线观看| 精品卡一卡二卡四卡免费| 亚洲av成人一区二区三| 欧美中文综合在线视频| 精品久久久久久成人av| 高清av免费在线| 国产区一区二久久| 婷婷丁香在线五月| 精品久久久久久成人av| www.熟女人妻精品国产| 9色porny在线观看| 国产成人av激情在线播放| 黑人欧美特级aaaaaa片| 午夜久久久在线观看| 日本欧美视频一区| 亚洲精品一区av在线观看| 身体一侧抽搐| 高清欧美精品videossex| 国产精品秋霞免费鲁丝片| 精品无人区乱码1区二区| 母亲3免费完整高清在线观看| 一边摸一边抽搐一进一小说| 午夜精品在线福利| 女警被强在线播放| av网站在线播放免费| 成年人黄色毛片网站| 后天国语完整版免费观看| 亚洲熟女毛片儿| 国产精品久久久久久人妻精品电影| 在线天堂中文资源库| 久久精品aⅴ一区二区三区四区| 亚洲中文日韩欧美视频| 日本vs欧美在线观看视频| 欧美日韩一级在线毛片| 久久久久久久久久久久大奶| 欧美老熟妇乱子伦牲交| 每晚都被弄得嗷嗷叫到高潮| 自线自在国产av| 亚洲精品中文字幕在线视频| 国产一区二区三区视频了| 亚洲五月色婷婷综合| av免费在线观看网站| 亚洲欧美一区二区三区久久| 亚洲熟女毛片儿| 三上悠亚av全集在线观看| 国产男靠女视频免费网站| 婷婷六月久久综合丁香| 亚洲av美国av| 国产av精品麻豆| 国产xxxxx性猛交| av视频免费观看在线观看| 亚洲成人国产一区在线观看| 国产91精品成人一区二区三区| 在线观看www视频免费| av天堂久久9| xxxhd国产人妻xxx| 免费一级毛片在线播放高清视频 | 老司机福利观看| 久久精品国产99精品国产亚洲性色 | 亚洲欧美日韩另类电影网站| 亚洲va日本ⅴa欧美va伊人久久| 激情视频va一区二区三区| 亚洲一区二区三区色噜噜 | 91成年电影在线观看| 日本a在线网址| 极品人妻少妇av视频| 精品久久久久久久久久免费视频 | 亚洲男人的天堂狠狠| 色婷婷久久久亚洲欧美| 99热国产这里只有精品6| 老司机午夜十八禁免费视频| 狂野欧美激情性xxxx| 少妇粗大呻吟视频| 国产色视频综合| a在线观看视频网站| 久久精品亚洲av国产电影网| 国产精品 国内视频| 日韩大码丰满熟妇| 久久亚洲真实| 18禁美女被吸乳视频| 亚洲欧美一区二区三区黑人| 中亚洲国语对白在线视频| 在线观看一区二区三区激情| 亚洲国产毛片av蜜桃av| 午夜老司机福利片| 男女高潮啪啪啪动态图| 亚洲欧美精品综合一区二区三区| 久久精品aⅴ一区二区三区四区| 一级,二级,三级黄色视频| 男女高潮啪啪啪动态图| 欧美日韩黄片免| 国产一卡二卡三卡精品| 黄频高清免费视频| 亚洲成a人片在线一区二区| 人妻丰满熟妇av一区二区三区| 日韩中文字幕欧美一区二区| 黄片小视频在线播放| 午夜福利在线观看吧| 在线av久久热| 中文字幕av电影在线播放| 亚洲精品中文字幕在线视频| 岛国视频午夜一区免费看| 一区在线观看完整版| 久久久久久久久免费视频了| 在线观看www视频免费| 老汉色av国产亚洲站长工具| 69精品国产乱码久久久| 啦啦啦在线免费观看视频4| 久久婷婷成人综合色麻豆| 99精品欧美一区二区三区四区| netflix在线观看网站| 侵犯人妻中文字幕一二三四区| 中文字幕人妻丝袜一区二区| 1024视频免费在线观看| 成人18禁在线播放| 欧美 亚洲 国产 日韩一| 精品国产一区二区三区四区第35| 在线看a的网站| 可以免费在线观看a视频的电影网站| av免费在线观看网站| 国产不卡一卡二| 亚洲国产欧美一区二区综合| 一级片'在线观看视频| 国产视频一区二区在线看| 国产一区二区在线av高清观看| 午夜精品久久久久久毛片777| 成人精品一区二区免费| 天天躁狠狠躁夜夜躁狠狠躁| 午夜免费激情av| 两人在一起打扑克的视频| 水蜜桃什么品种好| 国产精品二区激情视频| bbb黄色大片| 亚洲一区中文字幕在线| av欧美777| 日韩欧美免费精品| svipshipincom国产片| 亚洲av五月六月丁香网| 亚洲av美国av| 精品无人区乱码1区二区| 岛国在线观看网站| 在线观看一区二区三区激情| 满18在线观看网站| 一级片'在线观看视频| 欧美激情久久久久久爽电影 | 久久人人爽av亚洲精品天堂| 欧美成人午夜精品| 亚洲激情在线av| 69精品国产乱码久久久| 久久久久久久久中文| 女人高潮潮喷娇喘18禁视频| 91av网站免费观看| 国产高清videossex| 亚洲 欧美 日韩 在线 免费| 成年人免费黄色播放视频| 性少妇av在线| 亚洲专区字幕在线| 国产真人三级小视频在线观看| 麻豆av在线久日| 少妇的丰满在线观看| 变态另类成人亚洲欧美熟女 | 精品乱码久久久久久99久播| 午夜精品在线福利| 日日夜夜操网爽| 久久久久亚洲av毛片大全| 久久精品影院6| 成年人黄色毛片网站| 99久久99久久久精品蜜桃| 村上凉子中文字幕在线| 久久久久久大精品| 欧美中文综合在线视频| 超碰97精品在线观看| 国产亚洲欧美在线一区二区| 午夜久久久在线观看| 国产一区二区三区视频了| av有码第一页| 操出白浆在线播放| 日日摸夜夜添夜夜添小说| 大型黄色视频在线免费观看| 免费女性裸体啪啪无遮挡网站| 国产高清国产精品国产三级| 身体一侧抽搐| 亚洲中文av在线| 性少妇av在线| 女生性感内裤真人,穿戴方法视频| 深夜精品福利| 欧美乱妇无乱码| 免费一级毛片在线播放高清视频 | 一二三四在线观看免费中文在| 国产91精品成人一区二区三区| 如日韩欧美国产精品一区二区三区| 高潮久久久久久久久久久不卡| 乱人伦中国视频| 久久久久久久久久久久大奶| 国产aⅴ精品一区二区三区波| 一二三四在线观看免费中文在| 亚洲av日韩精品久久久久久密| 婷婷丁香在线五月| 久久香蕉精品热| 露出奶头的视频| svipshipincom国产片| 亚洲人成网站在线播放欧美日韩| 19禁男女啪啪无遮挡网站| 久久久久久亚洲精品国产蜜桃av| 咕卡用的链子| 999精品在线视频| 久久久精品欧美日韩精品| 女警被强在线播放| 欧美人与性动交α欧美软件| 好男人电影高清在线观看| 99精品欧美一区二区三区四区| 无人区码免费观看不卡| 色尼玛亚洲综合影院| 欧美精品啪啪一区二区三区| 黄色女人牲交| bbb黄色大片| 国产精品1区2区在线观看.| 黄色视频不卡| 国产单亲对白刺激| 精品少妇一区二区三区视频日本电影| 一二三四社区在线视频社区8| 两人在一起打扑克的视频| 九色亚洲精品在线播放| 亚洲男人天堂网一区| 精品无人区乱码1区二区| a级毛片黄视频| 国产一区二区在线av高清观看| 成年女人毛片免费观看观看9| 亚洲精品在线美女| 日韩视频一区二区在线观看| e午夜精品久久久久久久| 一边摸一边抽搐一进一出视频| 午夜福利,免费看| 女人精品久久久久毛片| 夜夜看夜夜爽夜夜摸 | 1024视频免费在线观看| 热re99久久国产66热| av欧美777| 成年人黄色毛片网站| 精品国产国语对白av| 少妇被粗大的猛进出69影院| 国产欧美日韩综合在线一区二区| 曰老女人黄片| 亚洲视频免费观看视频| 两人在一起打扑克的视频| 动漫黄色视频在线观看| 欧美日韩乱码在线| 搡老乐熟女国产| 久久人人精品亚洲av| 日韩高清综合在线| 看片在线看免费视频| 国产不卡一卡二| 久久精品亚洲av国产电影网| 99久久精品国产亚洲精品| 欧美av亚洲av综合av国产av| 国产精品成人在线| 日日爽夜夜爽网站| 成人国产一区最新在线观看| 国产精品九九99| 桃色一区二区三区在线观看| 亚洲熟女毛片儿| 午夜福利免费观看在线| 法律面前人人平等表现在哪些方面| 好男人电影高清在线观看| 国产精品久久视频播放| 99国产精品99久久久久| 国产xxxxx性猛交| 在线观看免费午夜福利视频| av国产精品久久久久影院| 村上凉子中文字幕在线| 交换朋友夫妻互换小说| 91大片在线观看| 99久久人妻综合| 成人手机av| 9191精品国产免费久久| 男女做爰动态图高潮gif福利片 | 怎么达到女性高潮| 亚洲精品成人av观看孕妇| 99热只有精品国产| 如日韩欧美国产精品一区二区三区| 男男h啪啪无遮挡| 国产精品1区2区在线观看.| 日韩成人在线观看一区二区三区| 午夜福利免费观看在线| aaaaa片日本免费| 不卡av一区二区三区| 久久精品aⅴ一区二区三区四区| 久久精品成人免费网站| 天堂影院成人在线观看| 一区二区三区激情视频| 成人免费观看视频高清| 欧美色视频一区免费| 成人18禁高潮啪啪吃奶动态图| 欧美不卡视频在线免费观看 | 女同久久另类99精品国产91| 女性生殖器流出的白浆| 国产精品 欧美亚洲| 日韩成人在线观看一区二区三区| 久久久精品国产亚洲av高清涩受| 每晚都被弄得嗷嗷叫到高潮| 桃红色精品国产亚洲av| 一边摸一边做爽爽视频免费| а√天堂www在线а√下载| 国产成人精品久久二区二区免费| 亚洲视频免费观看视频| 国产亚洲欧美精品永久| 91成人精品电影| 免费在线观看亚洲国产| 天堂俺去俺来也www色官网| av超薄肉色丝袜交足视频| 欧美不卡视频在线免费观看 | 电影成人av| 国产亚洲精品综合一区在线观看 | 日本精品一区二区三区蜜桃| 精品久久久久久成人av| 日韩欧美国产一区二区入口| 如日韩欧美国产精品一区二区三区| 变态另类成人亚洲欧美熟女 | а√天堂www在线а√下载| 亚洲国产欧美网| 女生性感内裤真人,穿戴方法视频| 淫妇啪啪啪对白视频| 男女下面进入的视频免费午夜 | 女人爽到高潮嗷嗷叫在线视频| 免费高清视频大片| 中文字幕最新亚洲高清| 丁香欧美五月| 18禁黄网站禁片午夜丰满| 不卡一级毛片| 母亲3免费完整高清在线观看| 9191精品国产免费久久| 老汉色av国产亚洲站长工具| 国产av一区在线观看免费| 国产真人三级小视频在线观看| 99久久精品国产亚洲精品| 日韩精品青青久久久久久| 久久天躁狠狠躁夜夜2o2o| www日本在线高清视频| 国产精品爽爽va在线观看网站 | 成人av一区二区三区在线看| 亚洲五月天丁香| 欧美乱色亚洲激情| 黄频高清免费视频| 99国产精品一区二区三区| 极品教师在线免费播放| 亚洲午夜理论影院| 国产一区二区三区在线臀色熟女 | 久久国产乱子伦精品免费另类| 波多野结衣一区麻豆| 999精品在线视频| 久久性视频一级片| 国产精品亚洲一级av第二区| 中国美女看黄片| 午夜两性在线视频| 青草久久国产| 丰满饥渴人妻一区二区三| 99在线视频只有这里精品首页| 精品国产超薄肉色丝袜足j| 在线观看免费日韩欧美大片| www日本在线高清视频| 久久久久久久精品吃奶| 一边摸一边抽搐一进一出视频| 亚洲欧美一区二区三区黑人| 老司机深夜福利视频在线观看| 欧美激情高清一区二区三区| 看黄色毛片网站| 啦啦啦 在线观看视频| 国产成人一区二区三区免费视频网站| 18禁观看日本| 国产av又大| 在线观看www视频免费| a在线观看视频网站| 侵犯人妻中文字幕一二三四区| 中文字幕人妻丝袜制服| 亚洲av成人一区二区三| 999久久久精品免费观看国产| 电影成人av| 激情在线观看视频在线高清| 国产精品久久久久久人妻精品电影| 91九色精品人成在线观看| 亚洲精品国产精品久久久不卡| 人人妻人人添人人爽欧美一区卜| 亚洲男人天堂网一区| 国产人伦9x9x在线观看| 国产欧美日韩一区二区三| 法律面前人人平等表现在哪些方面| 在线观看一区二区三区| 法律面前人人平等表现在哪些方面| 黄色女人牲交| 国产片内射在线| 亚洲激情在线av| 两个人看的免费小视频| 天堂√8在线中文| 日日爽夜夜爽网站| 90打野战视频偷拍视频| 看黄色毛片网站| 俄罗斯特黄特色一大片| 中文字幕精品免费在线观看视频| 亚洲精品中文字幕一二三四区| 国产精品乱码一区二三区的特点 | 午夜福利一区二区在线看| 多毛熟女@视频| 国产高清激情床上av| 久久午夜综合久久蜜桃| 在线永久观看黄色视频| 法律面前人人平等表现在哪些方面| 少妇被粗大的猛进出69影院| 精品第一国产精品| 一二三四社区在线视频社区8| 成人精品一区二区免费| av在线天堂中文字幕 | 久久人人97超碰香蕉20202| 极品人妻少妇av视频| 波多野结衣av一区二区av| 亚洲国产中文字幕在线视频| 国产精品久久久人人做人人爽| 久久久久精品国产欧美久久久| 欧美激情 高清一区二区三区| 人人澡人人妻人| 国产亚洲欧美在线一区二区|