• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on main circuit parameter coupling relationship of single-phase shunt active power filter

    2020-04-28 09:23:06ZHANGZiqiTIANMingxingSUNLijunGAOYunbo

    ZHANG Zi-qi, TIAN Ming-xing, SUN Li-jun, GAO Yun-bo

    (1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;2. Rail Transit Electrical Automation Engineering Laboratory of Gansu Province,Lanzhou Jiaotong University, Lanzhou 730070, China)

    Abstract: There is a certain coupling relationship among the main circuit parameters of a single-phase shunt active power filter (SAPF), which has a great influence on the reasonable selection of various parameter values. By analyzing the calculation methods of the inductance of alternating current (AC) side and the voltage and capacitance values of direct current (DC) side in the existing single/three-phase SAPF main circuit, a specific single-phase SAPF circuit parameter analytical expression was obtained. Aiming at the coupling relationship among the variables in the resulting expression, the model was optimized and analyzed in MATLAB, and a complete set of parameters design scheme was obtained, which ensure the comprehensive optimization target of the post-harmonic content below 2% is compensated under a specific load. The simulation and experimental procedures verify the correctness of the selected parameters.

    Key words: shut active power filter (SAPF); coupling relationship; parameter design scheme

    0 Introduction

    In recent years, single-phase nonlinear power electronic equipment has been widely used in large industrial power stations such as electrified railways and electric arc furnaces, and the pollution of power grid has become more and more serious. Single-phase shut active power filter (SAPF) can effectively suppress the harmonics of the power grid and compensate for reactive power. Therefore, it is widely concerned.

    At present, the research on SAPF is mainly focused on the topological structure, detection methods and control strategies of three-phase SAPF devices. A new structure of SAPF compensation circuit, new ideas different from other detection algorithms and various optimized control strategies have been proposed[1-4]. However, the reasonable selection of the key parameters of the SAPF main circuit is also an indispensable part in the entire compensation system. Proper parameter selection helps to achieve a more ideal compensation effect.

    With respect to the problem of SAPF main circuit parameter selection, relevant scholars have done a lot of research, but mainly focus on the theoretical analysis of the selection of a specific parameter and the analytical formula for its convenient calculation. Peng et al. qualitatively analyzed the single or three-phase SAPF main circuit parameters, and the calculation method of relevant parameters was analyzed from the working principle of SAPF circuit[5-8], but the specific parameter calculation formula was not accurately given.

    Aiming at the harmonic characteristics of the load current in the three-phase SAPF circuit, Tian et al. studied the selection of alternating current (AC) side inductance when the trigger angle of the full-controlled rectifier bridge was changed, and gave the analytical formula for calculating the inductance rating[9], but it lacked a detailed derivation of the inductance value of the single-phase circuit. For the capacitance and voltage fluctuation relationship of single-phase SAPF direct current (DC) side, Zhang et al. gave the calculation formula of capacitance value under certain compensation capacity and capacitor voltage fluctuation amplitude[10]. However, the influence of other parameters of the main circuit on the selection of the capacitance value was not considered.

    For the unified calculation of the main circuit parameters and the coupling relationship problem, although some scholars have carried out related research, the current results are not perfect, and there is no systematic parameter selection method and design scheme of single-phase SAPF main circuit. Quan et al. comprehensively analyzed the selection principle of each parameter of the main circuit and quantitatively research the mutual influence between the capacitor and inductor. The obtained result has certain reference value[11-14], but the parameters applicable to the single-phase SAPF circuit, optimization scheme, parameter selection method that satisfies different load characteristics are still not given. For the coupling relationship between the AC side inductance and the DC side voltage parameters, Shen et al. have made detailed arguments and have certain practical significance[15]. However, the change of the load trigger angle was not considered, and the coupling problem between the DC side capacitor and other parameters was not analyzed.

    In response to the deficiencies in the above literatures, this paper starts from the coupling relationship among the main circuit parameters and analyzes the existing calculation methods. Based on the harmonic characteristics of the specific load, the analytical expressions of the AC side inductance, DC side capacitance and voltage value of the single-phase SAPF circuit are obtained. Besides, the coupling relationship between variables is analyzed in detail, and a method for comprehensive optimization of multiple parameters is obtained. Finally, the correctness and practicality of the method are verified by simulation and experiments.

    1 Analytical expression of single-phase SAPF main circuit parameters

    Fig.1 shows the circuit structure of a single-phase SAPF compensation system, whereusis the supply voltage,isis the supply current,ipis the compensation current,iLis the load current,udcis the instantaneous value of the DC-side capacitor voltage of SAPF,udis the instantaneous value of the DC side capacitor voltage of the load rectifier bridge.

    The analysis shows that under the condition of neglecting the influence of line impedance, the voltage constraint equation that matches the real-time tracking ability of single-phase SAPF is

    (1)

    Fig.1 Circuit structure diagram of single phase SAPF compensation system

    It can be seen that there is a certain coupling relationship between the inductanceLand the DC-side voltageudc. In order to facilitate the study of the coupling relationship, unnecessary calculation steps are omitted, and the derivation result in Ref.[9] is directly quoted here

    (2)

    whereUsis the power supply voltage, andIpmΣis the sum of the amplitudes of each harmonic of the compensation current. For a single-phase fully-controlled bridge with resistive and inductive load circuits, ignoring its commutation process and current ripple, Fourier decomposition of the load current can be obtained as

    (3)

    whereαis the trigger angle and its phase-shift range is 0°-90°. Assume that the highest number of harmonics that SAPF can compensate isN=2N′-1, whereN′=1,2,3,…. The inductanceLhas a smooth effect on the load current. If the value ofLis large, the load currentidis continuous and the waveform is approximately a straight line. The value ofidis equal to the average valueIdof the DC output to the load[6].

    Let SAPF compensate the harmonics and reactive power of the load at the same time, then the compensated supply current is the fundamental active component of the load current. Therefore, the expressions of the compensated supply current and the actual compensation current can be obtained as

    (4)

    (5)

    Continue to deriveIpmΣexpressions with the method in Ref.[9] and it can be obtained as

    (6)

    WhenN′ is large, the effect of sinαon the entire result can be ignored. The approximate expression of Eq.(6) can be obtained by

    (7)

    Substituting Eq.(7) into Eq.(2), the AC side inductance of the single-phase SAPF can be obtained as

    (8)

    (9)

    (10)

    (11)

    (12)

    (13)

    according to the result obtained by Eq.(13) and the basic formula for calculating capacitance energy, the energy expression of the capacitor charging or discharging process in one fluctuation cycle is obtained by

    (14)

    Therefore, the capacitance expression that matches the minimum capacity design requirement is

    (15)

    By analyzing the above formula, it is known that the selection of the capacitanceCshould consider the change of three parameters at the same time, namely the voltageUdcof DC side, voltage fluctuation rateδand load characteristicRd. Among them, the parameters determined by the load characteristics may change under the actual operating conditions, and the rated value is generally taken as the design standard in the design process. Therefore, the selection of DC side capacitanceCis mainly affected byUdcandδ.

    Fig.2 Curve diagram of trigger angle α and

    In summary, the analytical expressions for the inductance and capacitance parameters of the single-phase SAPF main circuit are summarized as

    (16)

    2 Coupling relationship analysis of main circuit parameters

    There is a certain coupling relationship among the AC-side inductance, DC-side voltage and capacitance of the single-phase SAPF main circuit. The determination of any one of these parameters has a direct impact on other parameters. This paper starts with the DC side voltageUdcand the voltage fluctuation rateδ, analyzes the selection of the specific circuit parameters based on the actual change of the trigger angleαof the load side rectifier bridge.

    First, according to the analysis of Eq.(16), the selection ofLandCare all related toUdc. Therefore, in the actual calculation, it is necessary to preliminarily determineUdcvalue. The minimum value ofUdcshould be greater than the peak value of the phase voltage of the AC power supply. Otherwise it may happen that the compensation current does not change as required. On the basis of it, the larger the value ofUdc, the faster the tracking speed, but the too high voltage will lead to higher voltage withstand requirements for the switching device. Therefore, combined with practical engineering experience, the margin of 1.2~1.5 is taken on the basis of the phase voltage peak[18]. Finally, based on the pulse-width modulation (PWM) voltage modulation ratioM≤0.75, a reasonable DC side voltage is obtained by

    (17)

    In order to verify the rationality of this formula, this paper selects the minimum value within its value range, that is, the voltage approximate valueUdc=500 V under 1.2 times of margin as the preliminary determination of the DC side reference voltage.

    Because SAPF needs to be compensated in real time according to the changes in load, the design of parameters should take into account the compensation requirements under all operating conditions for a particular load type. In this paper, the application of a fully-controlled bridge with resistive and inductive load circuits is taken as an example to analyze the compensation effect when the trigger angleαchanges in the 0°-90° range and theαvalue is disturbed. At the same time, the voltage fluctuation rateδas an important factor affecting the DC-side voltage and capacitance also needs to be considered.

    Substituting Eq.(3) into Eq.(8), the calculating formula of inductanceLcan be derived as

    (18)

    As shown in Fig.3, withαandδas independent variables, a three-dimensional parameter model ofLandCis established in MATLAB according to Eq.(18).

    Fig.3 Three-dimensional parameter model of changes in L, C

    The basic parameters of the simulation are as follows: the rated phase voltage of the power supplyUs=220 V, the DC side voltage of SAPFUdc=500 V, resistanceRd=4 Ω, switching frequencyfsmax=6 000 Hz, current ripplehmax=7 A, maximum number of harmonics compensatedN=49 times, and inductance capacitance value expanded is 10 times.

    It can be seen from Fig.3 that eachαandδcorresponds to an uniqueLandC. The simulation of the above 4 parameters in the specific circuit shows that the corresponding compensation effect under this parameter is the best. Ref.[9,16] used the ratings ofLandCto match the compensation range as the final selection result, it can match the load range and reduce the size and cost of the device to a certain extent. However, with the increase of the load trigger angle, the harmonic characteristics of nonlinear power electronic devices become more and more obvious. At this time, the compensation device can easily inject a large number of high-frequency harmonics into the entire system. Simulation results show that its total harmonic distortion (THD) cannot match the requirements. So, it is necessary to re-select the parameters in combination with the actual characteristics of the load to ensure that the compensated harmonic content is less than 2% of the comprehensive optimization target.

    In fact, after the DC side voltageUdcis determined, it can be seen from the analysis result of the capacitance value calculation expression of Eq.(16) that the voltage fluctuation rateδdetermines the final value of the capacitanceC. Because the capacitance value of SAPF is limited by its voltage peak, the range ofδvalue is stable within 0%-5%. Theoretically, the larger the capacitance is, the more stable the DC side voltage will be. However, actual application should also consider the cost of the device itself, whether it is easy to install and other issues. At the same time, if the value ofδis too large, it will increase the voltage fluctuation of DC side, which will cause some damage to the capacitor itself and reduce its service life. So we need to take a compromise on the parameters. In this paper, the voltage fluctuation rateδ=0.025 is selected as the final value based on the final compensation effect and the current tracking speed.

    The second step is the determination of inductance parameters. This paper starts from the load characteristics of the compensation circuit, and based on the idea of the top-k query algorithm, performs statistical analysis on the data of Fig.3, eliminates some bad points, filters the data that matches the requirements. Finally, theLvalue of inductance parameters with the highest frequency on the AC side when the trigger angle changes is obtained asL=0.625 2 mH. Substituting it into Eq.(18),

    (19)

    The trigger angleα=25.84° is obtained. In order to fully verify the reasonability of the selection of the above-mentioned inductanceLvalue, Fig.3 is adjusted to obtain the correspondence between the trigger angle and theLvalue, as shown in Fig.4. The inductance value at the registration point matches the change range of the trigger angle, and it is the highest point drop and the lowestLvalue in the entire range.

    Fig.4 Determination of L value

    Table 1 Comparison of parameters before and after coupling

    Combining the parameters before and after the coupling in Table 1 to verify the compensation results. For the case that the change of the trigger angle results in the increase of the harmonic distortion after compensation, this paper analyzes the compensation of two sets of parameters when the triggering angle is disturbed, and gives the THD atα=60°, as shown in Fig.5.

    Fig.5 shows that considering the characteristics of load harmonics, the coupling processing of the main circuit parameters can be better applied to the circuit where the trigger angle changes. The tracking response speed of the compensation current and the harmonic distortion rate after compensation are all obviously improved, which illustrates the rationality of the method used in this paper.

    Fig.5 Supply current waveform and THD before and after coupling

    3 Examples and results

    3.1 Materials

    In order to verify the correctness of the above analysis method, parameters in Ref.[10] are cited: the rated phase voltage of the power supplyUs=220 V, the DC side voltage of SAPFUdc=510 V, the resistanceRd=4 Ω, the maximum value of the SAPF compensation currentIp=50 A, the trigger angle of the thyristorα=0°. The highest harmonicN=49 is to be filtered out. The value ofLandCcan be calculated from Eq.(15) as

    (20)

    The parameters calculated in Ref.[10] are:L=0.6 mH,C=4 839 μF. Using the above two sets of parameters for simulation analysis, the compensated power supply current waveform is shown in Fig.6.

    Fig.6 Power supply current waveforms under two sets of parameters

    From the Fig.6, it can be seen that after inputing compensation device at 0.12 s, the current tracking effect under the selected parameters of this paper is better, while the transient current transition process under the parameters of Ref.[10] is longer and the amplitude changes greatly. This is because that the response speed of active power filter (APF) can be better controlled and adjusted in time by choosing reasonableLandCparameters under the condition of consistent transient control methods, thus effectively reducing the transition time.

    Fig.7 shows the steady-state current change ofis, in which the trigger angle changes from 30° to 60° at 0.2 s. It can be seen that the current tracking is timely and the transition process is small, which achieves the intended purpose. The specific compensation effect (α=30°) is shown in Figs.8 and 9.

    Fig.7 Load current, compensation current and compensated supply current waveforms

    Fig.8 Supply current THD before and after compensation

    Fig.9 DC side voltage Udc waveform

    It can be seen that the current THD in the power grid before compensation is 34.74%, and it drops to 1.23% after inputing compensation. It shows that the parameters selected in this paper match the requirements, which has a good harmonic compensation effect and achieves a comprehensive optimization target with less than 2% harmonic content after compensation. At the same time, after inputing compensation at 0.06 s, the DC side voltage can be well controlled in the vicinity of the preset value, and the voltage fluctuation rate is controlled within the range ofδ=0.025. Based on this, the rationality verification of the primary DC side voltage valueUdcis performed. Derivation of the range ofUdcvalues according to Eq.(9) can be expressed as

    Udc≤LK2hmaxfsmax.

    (21)

    Substituting the specific data into the DC side voltage, it can obtain thatUdc≤518.32 V. Therefore, the initial value of this paperUdc=500 V matches this limit. It also shows that the above steps are reasonable.

    3.2 Methods

    The single-phase SAPF equivalent circuit model is used to derive the coupling formula, the simulation model is built by MATLAB software, and the relevant parameters are programmed and calculated.

    3.3 Experimental results

    In order to fully verify the validity and practicality of the derivation theory and simulation results, an actual circuit is built for verification. The experimental circuit is shown in Fig.10. The load parameter values used are the same as those in Ref.[10].

    This circuit control system used digital signal processor (DSP) chip TMS320F28335, and realized SAPF compensation by unipolar hysteresis control algorithm. The model of the insulated gate bipolar translator (IGBT) chip in the module is PS21865, the output rated current is 8 A, 150% overload capacity, and the power supply input AC voltage is 170-250 V, which was made by Shanghai Jiashang Company, and the switching frequency is set to 6 K in this system. The sensor TV19G/LV25-P made by LEM company have been used respectively for sensing the voltage and QBC10PS3.3 and LTS25-NP for sensing the currents.

    Fig.10 Experimental circuit structure

    Taking into account the limitations of the experimental environment, the compensation capacity is reduced by the step-down transformer to complete the verification of the entire circuit. Finally, use the FLUKE 345 power quality clamp meter to collect the compensated power supply current, and whenα=60°, the current waveforms before and after compensation and the screenshots of THD values are shown in Fig.11.

    Fig.12 is the experimental result of Ref.[10]. It can be seen that the compensated power supply current THD=2.89%. Comparing the experimental results of THD=1.9%, the main circuit parameters designed in this paper can match the harmonic compensation requirements of the single-phase SAPF compensation system, and the effect is better.

    Fig.11 Compensation effect screenshot

    Fig.12 Harmonic content and THD of grid current after compensation

    4 Conclusions

    1) Through the research on the calculation method of the existing main circuit parameters, the analytical expressions of all the necessary parameters of the single-phase SAPF circuit are deduced. The required formula not only matches the compensation requirements under all operating conditions for a specific load, but also has a simple form and a strong universality, which can be easily extended to multi-phase circuits.

    2) According to the coupling relationship between the main circuit parameters, this paper starts from the actual working conditions, through the three-dimensional modeling of MATLAB and data optimization, a clear method of parameter selection is obtained, the research shows that this method can better match the THD requirements, simulation and the experimental results verify the correctness and feasibility.

    3) This paper improves the deficiencies of existing theory for the single-phase SAPF circuit parameter calculation. The proposed parameter coupling scheme systematically realizes the parameter design requirements for the entire circuit and is convenient for industrial design. To some extent, it increases the practical price of single-phase SAPF.

    欧美黄色片欧美黄色片| 男人和女人高潮做爰伦理| 亚洲乱码一区二区免费版| 亚洲真实伦在线观看| xxx96com| 国产精品电影一区二区三区| 欧美激情久久久久久爽电影| 9191精品国产免费久久| 少妇的逼水好多| 两个人看的免费小视频| 午夜成年电影在线免费观看| 一进一出抽搐动态| 欧美色欧美亚洲另类二区| 高清毛片免费观看视频网站| 性色avwww在线观看| 性色avwww在线观看| 亚洲九九香蕉| 国产一区二区激情短视频| 嫩草影院精品99| 精品久久久久久,| 国产精品亚洲一级av第二区| 欧美乱码精品一区二区三区| 一级毛片女人18水好多| 真实男女啪啪啪动态图| 97超视频在线观看视频| 熟女少妇亚洲综合色aaa.| 欧美在线一区亚洲| 午夜成年电影在线免费观看| 在线观看美女被高潮喷水网站 | 69av精品久久久久久| 亚洲国产欧美人成| 亚洲精品美女久久久久99蜜臀| 久久精品aⅴ一区二区三区四区| 在线观看一区二区三区| 国产私拍福利视频在线观看| 国产成人福利小说| 性色av乱码一区二区三区2| 男女之事视频高清在线观看| 亚洲黑人精品在线| 一个人观看的视频www高清免费观看 | 好男人电影高清在线观看| 精品人妻1区二区| 久久精品夜夜夜夜夜久久蜜豆| 岛国视频午夜一区免费看| 免费看美女性在线毛片视频| 在线观看美女被高潮喷水网站 | 国产一区二区在线av高清观看| 国产一区二区三区在线臀色熟女| 两人在一起打扑克的视频| 99国产精品99久久久久| 日本免费一区二区三区高清不卡| 久久久精品欧美日韩精品| 国产麻豆成人av免费视频| 国产伦精品一区二区三区四那| 午夜福利在线观看免费完整高清在 | 超碰成人久久| 美女午夜性视频免费| 性色av乱码一区二区三区2| 欧美丝袜亚洲另类 | 观看美女的网站| 免费在线观看亚洲国产| 日本熟妇午夜| 国产真人三级小视频在线观看| 91在线精品国自产拍蜜月 | 亚洲自偷自拍图片 自拍| 国产男靠女视频免费网站| 亚洲av电影在线进入| 无人区码免费观看不卡| 一本综合久久免费| 九九久久精品国产亚洲av麻豆 | 一区二区三区国产精品乱码| 日韩成人在线观看一区二区三区| 丰满人妻一区二区三区视频av | 国产av不卡久久| 宅男免费午夜| 久久欧美精品欧美久久欧美| 国产伦一二天堂av在线观看| 黄色视频,在线免费观看| 搡老熟女国产l中国老女人| xxx96com| 淫妇啪啪啪对白视频| 国产aⅴ精品一区二区三区波| 欧美丝袜亚洲另类 | 国产av麻豆久久久久久久| 色综合婷婷激情| 精品福利观看| 嫩草影视91久久| 日本 av在线| 久久久国产精品麻豆| 老鸭窝网址在线观看| 久久精品91无色码中文字幕| 美女cb高潮喷水在线观看 | 国产高潮美女av| 97超视频在线观看视频| 男人和女人高潮做爰伦理| 成人欧美大片| 成人三级黄色视频| a在线观看视频网站| 国产 一区 欧美 日韩| 九九在线视频观看精品| 午夜免费观看网址| 女警被强在线播放| 欧美精品啪啪一区二区三区| 免费电影在线观看免费观看| 国产麻豆成人av免费视频| 九色国产91popny在线| 免费在线观看影片大全网站| 国产精品av久久久久免费| 亚洲一区高清亚洲精品| av福利片在线观看| 床上黄色一级片| 狂野欧美白嫩少妇大欣赏| 亚洲国产欧美网| 男女午夜视频在线观看| 国产成人精品久久二区二区91| 一卡2卡三卡四卡精品乱码亚洲| 三级男女做爰猛烈吃奶摸视频| 久久久久久久久久黄片| 黄色片一级片一级黄色片| 一级毛片高清免费大全| 色噜噜av男人的天堂激情| 两个人视频免费观看高清| 99精品久久久久人妻精品| 噜噜噜噜噜久久久久久91| 午夜成年电影在线免费观看| 高清在线国产一区| 真人做人爱边吃奶动态| 亚洲精品一卡2卡三卡4卡5卡| 人妻久久中文字幕网| 亚洲狠狠婷婷综合久久图片| 久久精品影院6| 久久中文字幕一级| 亚洲自偷自拍图片 自拍| 欧美一区二区精品小视频在线| 伊人久久大香线蕉亚洲五| 国产私拍福利视频在线观看| 日韩高清综合在线| 美女扒开内裤让男人捅视频| www日本在线高清视频| 国产三级中文精品| 亚洲av美国av| 久久天躁狠狠躁夜夜2o2o| 熟女少妇亚洲综合色aaa.| 免费无遮挡裸体视频| 国产成人系列免费观看| 国产精品爽爽va在线观看网站| tocl精华| 欧美中文日本在线观看视频| 日日摸夜夜添夜夜添小说| 小说图片视频综合网站| 亚洲精品在线观看二区| 免费高清视频大片| 91在线精品国自产拍蜜月 | 午夜福利免费观看在线| 免费看十八禁软件| 99久久综合精品五月天人人| 日本熟妇午夜| 国产成人系列免费观看| 成人午夜高清在线视频| 亚洲avbb在线观看| 欧美日韩瑟瑟在线播放| 日韩欧美精品v在线| 90打野战视频偷拍视频| 久久久久性生活片| 国产欧美日韩精品一区二区| 日本免费一区二区三区高清不卡| 欧美一区二区国产精品久久精品| 可以在线观看的亚洲视频| 日日夜夜操网爽| 国产一区二区三区视频了| 亚洲国产精品999在线| 嫩草影院精品99| 精品无人区乱码1区二区| 久久久精品大字幕| 欧美激情久久久久久爽电影| 啦啦啦免费观看视频1| 99精品欧美一区二区三区四区| 亚洲欧美日韩卡通动漫| 在线观看免费午夜福利视频| 两个人看的免费小视频| 亚洲专区国产一区二区| 97碰自拍视频| 国产高清视频在线观看网站| 狠狠狠狠99中文字幕| x7x7x7水蜜桃| 亚洲人成网站高清观看| av天堂中文字幕网| 国产精品久久久人人做人人爽| cao死你这个sao货| 婷婷丁香在线五月| 香蕉久久夜色| 91字幕亚洲| 亚洲激情在线av| 99国产精品一区二区蜜桃av| 性色avwww在线观看| 久久草成人影院| 黑人欧美特级aaaaaa片| 国产精品一区二区三区四区久久| 免费观看人在逋| 性色avwww在线观看| 精品日产1卡2卡| 久久国产精品人妻蜜桃| 又黄又爽又免费观看的视频| 老司机深夜福利视频在线观看| 色播亚洲综合网| 欧美色欧美亚洲另类二区| 国产熟女xx| 日韩成人在线观看一区二区三区| 亚洲av熟女| 99久久成人亚洲精品观看| 精品国产亚洲在线| 国产成+人综合+亚洲专区| 国产高清视频在线播放一区| 亚洲av免费在线观看| bbb黄色大片| 欧美高清成人免费视频www| 成人三级黄色视频| 啪啪无遮挡十八禁网站| 蜜桃久久精品国产亚洲av| 午夜两性在线视频| 亚洲18禁久久av| www.www免费av| 高清在线国产一区| 亚洲av片天天在线观看| 波多野结衣巨乳人妻| 久99久视频精品免费| 久久久国产成人精品二区| 97超级碰碰碰精品色视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 看免费av毛片| 又紧又爽又黄一区二区| 在线永久观看黄色视频| 母亲3免费完整高清在线观看| 美女扒开内裤让男人捅视频| 国产精品98久久久久久宅男小说| 欧美黄色片欧美黄色片| 别揉我奶头~嗯~啊~动态视频| 啦啦啦观看免费观看视频高清| 亚洲成人久久性| 日韩欧美三级三区| 午夜精品久久久久久毛片777| 亚洲欧洲精品一区二区精品久久久| 一个人看视频在线观看www免费 | 久久久久久久久中文| 12—13女人毛片做爰片一| 国产成年人精品一区二区| 观看美女的网站| 午夜福利在线在线| 亚洲国产欧洲综合997久久,| 日韩有码中文字幕| 可以在线观看毛片的网站| 老熟妇仑乱视频hdxx| 国产蜜桃级精品一区二区三区| 天天添夜夜摸| 麻豆国产av国片精品| 人妻丰满熟妇av一区二区三区| 12—13女人毛片做爰片一| 久久久久久久午夜电影| 国产日本99.免费观看| 免费在线观看视频国产中文字幕亚洲| 免费看a级黄色片| 久久香蕉国产精品| 美女被艹到高潮喷水动态| 天天躁狠狠躁夜夜躁狠狠躁| 免费看十八禁软件| 可以在线观看毛片的网站| 国产一区二区三区视频了| 天天添夜夜摸| 国产精品久久电影中文字幕| 老汉色∧v一级毛片| 天堂动漫精品| 国产69精品久久久久777片 | 美女午夜性视频免费| 一个人免费在线观看电影 | 国产精品香港三级国产av潘金莲| 久久亚洲真实| 日本三级黄在线观看| 国内精品美女久久久久久| 露出奶头的视频| 久久久久国产一级毛片高清牌| 国产精品98久久久久久宅男小说| 99热只有精品国产| 国产成人aa在线观看| 成人av在线播放网站| 精品免费久久久久久久清纯| 三级毛片av免费| 中文字幕高清在线视频| 亚洲精品乱码久久久v下载方式 | 免费人成视频x8x8入口观看| 真实男女啪啪啪动态图| 亚洲欧美日韩无卡精品| 高清毛片免费观看视频网站| 小蜜桃在线观看免费完整版高清| 欧美+亚洲+日韩+国产| 亚洲狠狠婷婷综合久久图片| 99热这里只有精品一区 | 国内毛片毛片毛片毛片毛片| www.精华液| 1000部很黄的大片| 淫秽高清视频在线观看| 蜜桃久久精品国产亚洲av| 亚洲av成人不卡在线观看播放网| 日韩欧美免费精品| 亚洲人与动物交配视频| 国产av麻豆久久久久久久| 一区二区三区高清视频在线| 香蕉av资源在线| 丝袜人妻中文字幕| 天堂影院成人在线观看| 757午夜福利合集在线观看| 午夜免费成人在线视频| 十八禁网站免费在线| 这个男人来自地球电影免费观看| 一卡2卡三卡四卡精品乱码亚洲| 欧美乱色亚洲激情| 国产爱豆传媒在线观看| 国产成年人精品一区二区| 亚洲av熟女| 成人无遮挡网站| 成人鲁丝片一二三区免费| 国产激情偷乱视频一区二区| 午夜精品一区二区三区免费看| 香蕉国产在线看| netflix在线观看网站| 在线视频色国产色| 国模一区二区三区四区视频 | av天堂中文字幕网| 国产一区二区在线av高清观看| 国产精华一区二区三区| 国产精品av视频在线免费观看| 久久中文字幕人妻熟女| 亚洲欧美精品综合久久99| 午夜免费成人在线视频| 亚洲九九香蕉| 午夜精品久久久久久毛片777| 无限看片的www在线观看| 九九久久精品国产亚洲av麻豆 | 中出人妻视频一区二区| 亚洲欧美精品综合一区二区三区| 色哟哟哟哟哟哟| 亚洲国产高清在线一区二区三| 午夜a级毛片| 麻豆成人午夜福利视频| 又紧又爽又黄一区二区| 亚洲狠狠婷婷综合久久图片| 亚洲国产中文字幕在线视频| 成人特级黄色片久久久久久久| 女生性感内裤真人,穿戴方法视频| 两人在一起打扑克的视频| 无限看片的www在线观看| 国内揄拍国产精品人妻在线| 99在线视频只有这里精品首页| 不卡av一区二区三区| 97超视频在线观看视频| 国内精品久久久久久久电影| 美女高潮的动态| 国产淫片久久久久久久久 | 精品国内亚洲2022精品成人| 久久欧美精品欧美久久欧美| 亚洲五月天丁香| 午夜日韩欧美国产| 精品国产美女av久久久久小说| 国产成人av教育| 国产视频一区二区在线看| 一进一出好大好爽视频| 高清毛片免费观看视频网站| 久久精品国产综合久久久| 国产免费av片在线观看野外av| 精品一区二区三区四区五区乱码| 看片在线看免费视频| 又粗又爽又猛毛片免费看| 精品免费久久久久久久清纯| 欧美黄色淫秽网站| 日本成人三级电影网站| 琪琪午夜伦伦电影理论片6080| 欧美中文综合在线视频| 午夜福利高清视频| 国产精品 国内视频| 欧美乱码精品一区二区三区| 美女高潮喷水抽搐中文字幕| 成人鲁丝片一二三区免费| 国产高清视频在线播放一区| bbb黄色大片| 国产精品久久久久久亚洲av鲁大| 美女高潮的动态| 天天躁狠狠躁夜夜躁狠狠躁| 欧美另类亚洲清纯唯美| 久久精品国产亚洲av香蕉五月| 丰满人妻熟妇乱又伦精品不卡| 欧美午夜高清在线| 99热这里只有是精品50| 亚洲18禁久久av| 99热精品在线国产| 嫩草影院精品99| 国产成+人综合+亚洲专区| 18禁美女被吸乳视频| 亚洲国产精品合色在线| 欧美性猛交╳xxx乱大交人| 亚洲av成人精品一区久久| 欧美日本视频| 国产精品一区二区精品视频观看| 天堂√8在线中文| 99久国产av精品| 免费观看精品视频网站| av天堂在线播放| 一本久久中文字幕| 国产伦一二天堂av在线观看| 国产成年人精品一区二区| or卡值多少钱| 欧美乱妇无乱码| 日本成人三级电影网站| 国产成人精品久久二区二区91| 国产 一区 欧美 日韩| 国产99白浆流出| 国产精品av久久久久免费| 国产又黄又爽又无遮挡在线| 亚洲自拍偷在线| 日本一二三区视频观看| 老司机深夜福利视频在线观看| 国产精品九九99| 真实男女啪啪啪动态图| 日韩免费av在线播放| 99久久无色码亚洲精品果冻| 国产1区2区3区精品| 久久精品夜夜夜夜夜久久蜜豆| 国产日本99.免费观看| 日韩欧美 国产精品| 午夜福利在线观看吧| www日本在线高清视频| 亚洲狠狠婷婷综合久久图片| 怎么达到女性高潮| 日韩欧美一区二区三区在线观看| 成人鲁丝片一二三区免费| 亚洲专区中文字幕在线| 免费在线观看亚洲国产| av国产免费在线观看| 成人18禁在线播放| 哪里可以看免费的av片| 国产午夜精品论理片| 69av精品久久久久久| 九九在线视频观看精品| 国产真实乱freesex| 精品人妻1区二区| 亚洲精品456在线播放app | 久久久久性生活片| 国产真人三级小视频在线观看| 国内久久婷婷六月综合欲色啪| 精品乱码久久久久久99久播| 偷拍熟女少妇极品色| 亚洲国产高清在线一区二区三| 精品免费久久久久久久清纯| 99国产精品99久久久久| 黄色视频,在线免费观看| 国产又黄又爽又无遮挡在线| 美女黄网站色视频| 成人精品一区二区免费| 亚洲av熟女| 亚洲成人免费电影在线观看| 国产成人av教育| 搡老岳熟女国产| 久久久久精品国产欧美久久久| 波多野结衣高清作品| 91在线观看av| 老鸭窝网址在线观看| 日本黄大片高清| 精品一区二区三区四区五区乱码| 午夜a级毛片| 久久久久久久久免费视频了| 精品久久久久久久毛片微露脸| 欧美绝顶高潮抽搐喷水| 欧美黑人巨大hd| 国内精品美女久久久久久| 99热6这里只有精品| 国产一区二区在线观看日韩 | 亚洲第一欧美日韩一区二区三区| 在线永久观看黄色视频| 真人做人爱边吃奶动态| 69av精品久久久久久| 国产午夜福利久久久久久| 午夜激情福利司机影院| 久久精品夜夜夜夜夜久久蜜豆| 精品久久久久久久久久免费视频| 99国产综合亚洲精品| 成年版毛片免费区| tocl精华| 97碰自拍视频| 国产精品 欧美亚洲| 99在线人妻在线中文字幕| 中文资源天堂在线| 欧美成人一区二区免费高清观看 | 国产亚洲欧美98| 99久久精品热视频| 精品久久久久久久人妻蜜臀av| 亚洲精品粉嫩美女一区| 成人精品一区二区免费| 亚洲性夜色夜夜综合| 免费av不卡在线播放| 日韩有码中文字幕| av欧美777| 欧美一级a爱片免费观看看| 噜噜噜噜噜久久久久久91| 网址你懂的国产日韩在线| 久久久国产成人免费| 美女大奶头视频| 国产 一区 欧美 日韩| 精品久久久久久久毛片微露脸| h日本视频在线播放| 别揉我奶头~嗯~啊~动态视频| 97人妻精品一区二区三区麻豆| 国产又黄又爽又无遮挡在线| 视频区欧美日本亚洲| 白带黄色成豆腐渣| 在线观看免费午夜福利视频| 最新中文字幕久久久久 | 91麻豆精品激情在线观看国产| 少妇的逼水好多| 国产精品 国内视频| 日韩人妻高清精品专区| 国产精品久久电影中文字幕| 亚洲精品国产精品久久久不卡| 国内精品一区二区在线观看| 国产欧美日韩一区二区精品| 中文字幕人成人乱码亚洲影| 脱女人内裤的视频| 亚洲欧美日韩卡通动漫| 国产精品综合久久久久久久免费| 熟女少妇亚洲综合色aaa.| 19禁男女啪啪无遮挡网站| 成人国产综合亚洲| 国产美女午夜福利| 九九久久精品国产亚洲av麻豆 | 亚洲18禁久久av| 一个人看视频在线观看www免费 | 日日夜夜操网爽| а√天堂www在线а√下载| 999久久久精品免费观看国产| 欧美中文日本在线观看视频| 天堂动漫精品| 久久久久国产精品人妻aⅴ院| 一级作爱视频免费观看| 亚洲片人在线观看| 午夜日韩欧美国产| 久久久久九九精品影院| 午夜影院日韩av| 最近最新中文字幕大全电影3| 久久久精品欧美日韩精品| 国产视频一区二区在线看| 夜夜夜夜夜久久久久| 久久久久久久久久黄片| 天天一区二区日本电影三级| 午夜精品久久久久久毛片777| 国产精品香港三级国产av潘金莲| 国产伦精品一区二区三区四那| 国产精品 国内视频| 欧美又色又爽又黄视频| 真实男女啪啪啪动态图| 51午夜福利影视在线观看| 亚洲成人久久性| 蜜桃久久精品国产亚洲av| 九九热线精品视视频播放| 变态另类成人亚洲欧美熟女| e午夜精品久久久久久久| 宅男免费午夜| 亚洲va日本ⅴa欧美va伊人久久| 久久久国产成人免费| 一区福利在线观看| 中文字幕高清在线视频| 俺也久久电影网| 久久久久亚洲av毛片大全| 最近最新中文字幕大全电影3| 一个人免费在线观看电影 | 99久久综合精品五月天人人| 国产三级黄色录像| 国产视频一区二区在线看| 国产成人欧美在线观看| 国产午夜精品久久久久久| 免费av不卡在线播放| 两人在一起打扑克的视频| 国产精品香港三级国产av潘金莲| 国产 一区 欧美 日韩| 亚洲国产欧美人成| 欧美日韩亚洲国产一区二区在线观看| 757午夜福利合集在线观看| 夜夜爽天天搞| 在线观看免费视频日本深夜| av女优亚洲男人天堂 | 这个男人来自地球电影免费观看| 999久久久精品免费观看国产| 99热6这里只有精品| 中文字幕人成人乱码亚洲影| 最近最新中文字幕大全电影3| 女生性感内裤真人,穿戴方法视频| 国产精品亚洲美女久久久| 国产精品久久久久久人妻精品电影| h日本视频在线播放| tocl精华| 久久久国产欧美日韩av| 高清在线国产一区| 国产成人福利小说| 特级一级黄色大片| 色精品久久人妻99蜜桃| 国产高清视频在线播放一区| 欧美3d第一页| 亚洲激情在线av| 99国产精品99久久久久| 亚洲欧美日韩卡通动漫| 亚洲 欧美 日韩 在线 免费| 午夜激情欧美在线| 国产又色又爽无遮挡免费看| 精品一区二区三区av网在线观看| 亚洲狠狠婷婷综合久久图片| 一个人看的www免费观看视频| tocl精华| 亚洲欧美日韩无卡精品| 中文字幕最新亚洲高清|