查理思,吳克寧,莊大昌 ,姜 鈺
河南仰韶村遺址不同功能區(qū)土壤特征研究*
查理思1,吳克寧2?,莊大昌1,姜 鈺3
(1. 廣東財經(jīng)大學公共管理學院,廣州 510320;2. 中國地質大學(北京)土地科學技術學院,北京 100083;3. 青島市國土資源和房屋管理局嶗山國土資源分局,山東青島 266000)
為全面了解仰韶文化時期古人類不同活動內(nèi)容和程度,在仰韶村遺址內(nèi)分別采集古人類遺址不同功能區(qū)(地基、飲食、甕棺、陶窯)和未受到古人類活動干擾的土壤剖面(簡稱自然剖面)土樣,進行色度、磁化率、顆粒組成、游離鐵、礦質全量、土壤微形態(tài)分析,通過與自然剖面數(shù)據(jù)比較,獲知古人類不同活動對土壤的影響程度。結果顯示,在地基區(qū),黏粒含量最高,CaO含量較高,P含量最高,土壤微形態(tài)顯示了古人類在石灰面中加入多種不同的集料。在飲食區(qū),土壤微形態(tài)顯示炭屑含量豐富,且排列呈現(xiàn)一定方向。在甕棺區(qū),χfd為最大值,游離鐵和游離度均為最大值。在陶窯區(qū),χlf為最大值,P含量較高,土壤微形態(tài)顯示經(jīng)過高溫煅燒。結論表明,古人類選擇黏土和石灰混合鋪設地面,長期居住產(chǎn)生大量含磷物質;古人類長期在飲食區(qū)烹煮食物,并對灰燼進行清理;甕棺中的尸體在腐爛過程中,由于土壤動物和微生物的參與,不僅增加土壤細顆粒,還促進了土壤發(fā)育;古人類燒制陶器時,可能將生活垃圾進行燃燒,因此P富集。
土壤特征;古人類活動;仰韶文化
土壤理化分析能有效地還原古人類活動類型及強度,無論是在單個遺址還是區(qū)域考古研究中均能提供許多信息,因為土壤是人類活動的舞臺,不僅記錄了人造景觀信息,也保留了社會文化信息。因此土壤理化分析在考古研究中由來已久,20世紀60年代起,在食物殘渣、遺物遺跡研究中經(jīng)常被運用[1]。80年代以來,遺址土壤數(shù)據(jù)能有效幫助考古學家了解遺物遺跡的年代[2]。進入2000年后,隨著土壤理化分析技術的進步,土壤學與考古學的融合得到進一步發(fā)展,越來越多的學者開始系統(tǒng)研究土壤理化分析在考古研究中的規(guī)范和價值,特別是運用在古人類遺址不同功能區(qū)的甄別中[3-5]。
目前,主要研究方法主要為土壤化學性質分析,其中磷、氮、碳使用頻率最多,該方法能有效區(qū)分出古人類農(nóng)業(yè)區(qū)和居住區(qū)[6-16]。其他金屬元素以及微量元素的運用日漸頻繁,特別是微量元素,能更為細致地區(qū)分不同古人類活動遺跡以及活動,如制陶、冶煉等[17-23]。磁化率可有效檢測出古人類用火跡象[24-25]。此外,土壤微形態(tài)在解讀古人類具體活動內(nèi)容,如建筑材料和食物等[26-30]。仰韶村遺址是仰韶文化命名地,是重要的新石器時期遺址,目前已通過多次考古挖掘,確認了地基、飲食、甕棺、陶窯不同功能區(qū)。因此,本研究在該遺址內(nèi)分別采集不同功能區(qū)和未受到古人類活動干擾的土壤剖面(簡稱自然剖面)土樣,分析不同功能區(qū)土壤理化性質,并與自然剖面數(shù)據(jù)進行比較,獲知古人類不同活動對土壤的影響程度,并為探究新石器時期古人類活動內(nèi)容提供土壤學依據(jù)。
遺址概況和自然剖面描述可詳見《古人類活動對土壤發(fā)育的影響——以河南仰韶村文化遺址為例》一文[31],不同功能區(qū)地基、飲食、甕棺、陶窯如圖1所示。自然剖面在觀察深度 4 m 范圍內(nèi),間隔10 cm 從下至上連續(xù)采集土樣10 g,不同功能區(qū)則在明顯特征區(qū)位采集土樣10 g和土壤微形態(tài)樣品。色度參數(shù)紅度(a*)、黃度(b*)、亮度(L*)分析采用日本柯尼卡美能達公司CM-700d 分光測色儀測定,磁化率分析采用英國 BartingtonMS-2 型雙頻磁化率儀測定,顆粒組成采用英國 Mastersizer2000型激光粒度儀測定,游離鐵采用CBD法提取測定,礦質全量分析采用碳酸鋰-硼酸熔融,X射線熒光光譜分析法測定。土壤微形態(tài)樣品用不飽和聚酯樹脂——丙酮溶液浸漬,再進行切片、磨片,使用 Nikon 偏光顯微鏡進行土壤微形態(tài)觀察。自然剖面各理化性質的400個數(shù)據(jù)進行平均計算,獲得自然背景值[32],以便與不同功能區(qū)土壤數(shù)據(jù)進行對比研究。
色度結果如表1所示,古人類遺址不同功能區(qū)a*范圍為1.95~4.76,平均值為3.08;b*范圍為4.14~11.84,平均值為8.35;L*范圍為14.64~34.94,平均值為25.91。自然剖面a*平均值為5.39,b*平均值為12.59,L*平均值為26.69。
磁化率結果如表2所示,古人類不同功能區(qū)低頻磁化率(χlf)范圍為124. 6~712. 7×10–8m3·kg–1,平均值為326.0×10–8m3·kg–1;頻率磁化率(χfd)范圍為4.64%~11.37%,平均值為7.96%。自然剖面χlf平均值為132.1×10–8m3·kg–1,χfd平均值為10.36%。
圖1 古人類遺址不同功能區(qū)(1. 地基,2. 飲食,3. 甕棺,4. 陶窯)
表1 土樣色度值
表2 土樣磁化率值
① Low frequency magnetic susceptibility,② Frequency dependent magnetic susceptibility
顆粒組成結果如表3所示,古人類遺址不同功能區(qū)黏粒含量范圍為41.5~127.0 g· kg–1,平均含量為89.4 g· kg–1;細粉砂含量范圍為255.5~506.0 g· kg–1,平均含量為390.6 g· kg–1;粗粉砂含量范圍為284.0~461.0 g· kg–1,平均含量為354.5 g· kg–1;砂粒含量范圍為38.0~316.0 g· kg–1,平均含量為170.0 g· kg–1。自然剖面黏粒平均含量為119.7 g· kg–1,細粉砂平均含量為440.9 g·kg–1,粗粉砂平均含量為357.9 g· kg–1,砂粒平均含量為81.5 g· kg–1。
游離鐵和游離度結果如表4所示,古人類遺址不同功能區(qū)游離鐵范圍為2.13~18.84 g·kg–1,平均值為8.97 g·kg–1;游離度范圍為8.37%~29.73%,平均值為16.65%。自然剖面游離鐵平均值為12.71 g·kg–1,游離度平均值為25.54%。
礦質全量結果如表5所示,古人類遺址不同功能區(qū)SiO2含量范圍為656.10~672.80 g·kg–1,平均含量為660.00 g·kg–1;Al2O3含量范圍為110.70~157.70 g·kg–1,平均含量為132.7 g·kg–1;Fe2O3含量范圍為41.40~60.60 g·kg–1,平均含量為50.30 g·kg–1;CaO含量范圍為6.10~24.80 g·kg–1,平均含量為15.50 g·kg–1;P含量范圍為5.48~9.98 g·kg–1,平均含量為8.42 g·kg–1。自然剖面SiO2平均含量為670.08 g·kg–1,Al2O3平均含量為143.91 g·kg–1,F(xiàn)e2O3平均含量為54.04 g·kg–1,CaO平均含量為8.94 g·kg–1,P平均含量為0.67 g·kg–1。
表3 土樣顆粒組成
表4 土樣游離鐵和游離度
表5 土樣礦質全量
土壤微形態(tài)照片均為100倍單偏光下拍攝,地基處土壤微形態(tài)中發(fā)現(xiàn)貝殼、植物殘體,如圖2和圖3所示。飲食處土壤微形態(tài)照片顯示炭屑含量十分豐富,混在土壤顆粒中,呈一定方向排列或海綿狀分布,如圖4和圖5所示。陶窯處土壤微形態(tài)顯示部分黏土因高溫燒制變紅,形成氧化鐵等贅生物,如圖6所示。部分石英和黏土礦物玻璃化,經(jīng)煅燒的細小陶器碎片壘結具有較高的雙折射率,如圖7所示。
色度方面,古人類不同功能區(qū)與自然剖面的a*、b*平均值比值均小于1,L*除地基區(qū)和甕棺區(qū)大于1外,其余均小于1??梢钥闯?,古人類活動明顯減小了色度數(shù)值,以地基、飲食表現(xiàn)明顯,但不同活動對土壤顏色改變差異明顯,其中地基L*增加,表明增加了碳酸鈣類物質。
磁化率方面,除地基區(qū)外,飲食區(qū)、甕棺區(qū)和陶窯區(qū)與自然剖面的χlf的平均值比值均大于1,除甕棺區(qū)外,地基區(qū)、飲食區(qū)和陶窯區(qū)與自然剖面的χfd的平均值比值均小于1??梢钥闯?,古人類活動總體提高了土壤的χlf,以古人類用火形成的飲食、陶窯遺跡表現(xiàn)明顯,降低了土壤的χfd,阻礙了土壤發(fā)育,甕棺區(qū)除外。
圖2 貝殼
圖3 植物殘體
圖4 定向分布碳屑
圖5 海綿狀分布碳屑
圖6 氧化鐵
圖7 陶片
顆粒組成方面,地基區(qū)與自然剖面的黏粒、細粉砂、砂粒平均含量比值大于1,飲食區(qū)與自然剖面的粗粉砂、砂粒平均含量比值大于1,甕棺區(qū)與自然剖面的細粉砂平均含量比值大于1,陶窯區(qū)與自然剖面的砂粒平均含量比值大于3。可以看出,古人類活動增加了粗砂含量,但不同活動差異明顯,地基區(qū)細粉砂相對增加較多,飲食區(qū)粗粉砂、砂粒增加明顯,陶窯區(qū)砂粒含量增加明顯,甕棺區(qū)細粉砂有所增加。
游離鐵方面,除甕棺區(qū)外,地基區(qū)、飲食區(qū)和陶窯區(qū)與自然剖面的游離鐵和游離度平均值比值均小于1??梢钥闯?,古人類活動減少了游離鐵和游離度,阻礙了土壤發(fā)育,其中地基區(qū)表現(xiàn)明顯,甕棺區(qū)游離鐵和游離度增加,促進土壤發(fā)育。
礦質全量方面,古人類不同功能區(qū)與自然剖面的各氧化物和元素平均含量比值中,P大于12,CaO、MnO、Ni、Cu、Zn、Ba大于1,其余均略小于1??梢钥闯?,地基區(qū)和飲食區(qū)P和CaO含量明顯增加,甕棺區(qū)P含量明顯增加,Al2O3、Fe2O3含量相對增加,陶窯區(qū)P含量也增加。
綜上所述,在地基區(qū),古人類利用石灰面覆蓋地表,其a*、b*較小、L*較大,χlf和χfd均較小,游離鐵為最小值,游離度較小,黏粒含量最高,這可能是古人類利用黏土與石灰?guī)r制作石灰面[33]。CaO含量較高,P含量最高,土壤微形態(tài)顯示了古人類在石灰面中加入多種不同的集料,如蝸牛等,這也反映了該地區(qū)容易獲得的礦物[34]。在飲食區(qū),a*、b*、L*均為最小值,χlf較大,χfd為最小值,游離鐵和游離度均較小,粗粉砂含量最高。CaO含量最高,P含量較高,土壤微形態(tài)顯示炭屑含量豐富,表明古人類長期在此利用植物燃燒,烹煮食物,不僅產(chǎn)生了大量磁性物質,導致磁化率值異常高,也產(chǎn)生了大量粗顆粒物質,或是為了及時滅火,人為添加粗砂類物質。通過微形態(tài)觀察,該處碳屑部分呈現(xiàn)定向排列,表明經(jīng)過人為清理,古人類可能將過多的灰燼進行清掃。在甕棺區(qū),根據(jù)現(xiàn)場觀察,該處屬于“瓦片葬”類,即打碎一件或多件陶器平鋪或墊于人骨之上。其a*、b*、L*均為最大值,χlf較小,χfd為最大值,游離鐵和游離度均為最大值,細粉砂含量最高。Al2O3和Fe2O3含量達到最高,SiO2和CaO含量最小,P含量較高。表明該處土壤發(fā)育狀況良好,但L*值較高,說明碳酸鈣含量豐富,這與其他土壤指標所反映的發(fā)育良好相矛盾,推測古人類進行甕棺埋葬時,人為添加碳酸鈣類物質。在陶窯區(qū),a*、b*較大,L*較小,χlf最大,χfd最小,游離鐵較小,游離度最小,砂粒含量最高,P含量較高。仰韶時期陶窯的燒制溫度可達到950℃~1050℃[35],土壤微形態(tài)也顯示經(jīng)過高溫煅燒,高溫導致了土壤磁化率值出現(xiàn)最大值,并且仰韶時期陶器的燒制環(huán)境主要為氧化,土壤中的鐵質也大部分轉換成Fe3+,從而a*、b*較大。燃燒產(chǎn)物富含P,推測古人類將生活垃圾進行燃燒。
不同古人類活動對土壤理化性質產(chǎn)生不同的影響,反映了不同的活動內(nèi)容。地基區(qū)內(nèi),古人類有目的地選擇富含黏土和碳酸鈣的石灰面鋪設地表,并在石灰面中加入多種不同的集料,如蝸牛殼等,長期居住其上,富集大量含磷物質。飲食區(qū)內(nèi),古人類用火導致磁化率值升高,并產(chǎn)生或人為添加大量粗顆粒物質,土壤微形態(tài)表明古人類在此進行清理,以便長期使用。甕棺區(qū)內(nèi),翁棺尸體在腐爛過程中,由于土壤動物和微生物的參與,不僅增加土壤細顆粒,還促進了土壤發(fā)育,但碳酸鈣含量異常較高,推測人為添加。陶窯區(qū)內(nèi),古人類高強度用火,導致土壤磁化率值出現(xiàn)最大值,同時氧化燒制環(huán)境導致土壤中的鐵質物質大部分轉化成Fe3+。此外,推測古人類燒制陶器時將生活垃圾進行燃燒,因此P富集。
[1] Pollard A M,Batt C,Kravchenko Y S,et al. Analytical chemistry in archaeology. Cambridge:Cambridge University Press,2007.
[2] Pastor A,Gallello G,Cervera M L,et al. Mineral soil composition interfacing archaeology and chemistry. Trends in Analytical Chemistry,2016,78 (78):48—59.
[3] Haslam R,Tibbett M. Sampling and analyzing metals in soils for archaeological prospection:A critique. Geoarchaeology,2004,19(8):731—751.
[4] MacPhail R I. Soils and archaeology//Encyclopedia of Archaeology. NewYork:Academic Press,2008.
[5] Walkington H. Soil science applications in archaeological contexts:A review of key challenges. Earth-Science Reviews,2010,103(3/4):122—134.
[6] Dong G H,Xia Z K,Liu D C,et al. The impact of human activities on the chemical properties of paleosol in Mengjin,Henan Province during civilization. Journal of Lanzhou University(Natural Science),2007,43(1): 6—10. [董廣輝,夏正楷,劉德成,等. 文明起源時期河南孟津地區(qū)人類活動對土壤化學性質的影響. 蘭州大學學報(自然科學版),2007,43(1): 6—10.]
[7] Zha L S,Wu K N,Ju B,et al. Research on the chemical constituents’contents and changes of Paleosol in Erlitou Culture Sites. Chinese Journal of Soil Science,2013,44(6):1414—1417. [查理思,吳克寧,鞠兵,等. 二里頭文化遺址區(qū)土壤化學成分含量及變化研究,土壤通報,2013,44(6):1414—1417.]
[8] Salisbury R B. Interpolating geochemical patterning of activity zones at Late Neolithic and Early Copper Age settlements in eastern Hungary. Journal of Archaeological Science,2013,40(2):926—934.
[9] Nielsen N H,Kristiansen S M. Identifying ancient manuring:Traditional phosphatevs. multi-element analysis of archaeological soil. Journal of Archaeological Science,2014,42(1):390—398.
[10] Ferro-Vázquez C,Martínez-Cortizas A,Nóvoa-Mu?oz J C,et al. 1500 years of soil use reconstructed from the chemical properties of a terraced soil sequence. Quaternary International,2014,346(12):28—40.
[11] Homburg J A,Sandor J A. Anthropogenic effects on soil quality of ancient agricultural systems of the American Southwest. Catena,2011,85(2):144—154.
[12] Schlezinger D R,Howes B L. Organic phosphorus and elemental ratios as indicators of prehistoric human occupation. Journal of Archaeological Science,2000,27(6):479—492.
[13] Fernández F G,Terry R E,Inomata T,et al. An ethnoarchaeological study of chemical residues in the floors and soils of Q'eqchi' Maya houses at Las Pozas,Guatemala. Geoarchaeology,2002,17(6):487—519.
[14] Suleimanov R R,Obydennova G T. Soil-archaeological studies of the bronze-age settlement on the Urshak River floodplain,Bashkortostan. Eurasian Soil Science,2006,39(8):820—825.
[15] Wilson C A,Davidson D A,Cresser M S. Multi-element soil analysis: An assessment of its potential as an aid to archaeological interpretation. Journal of Archaeological Science,2008,35(2):412—424.
[16] Migliavacca M,Pizzeghello D,Ertani A,et al. Chemical analyses of archaeological sediments identified the ancient activity areas of an Iron age building at Rotzo (Vicenza,Italy). Quaternary International,2013,289:101—112.
[17] Li Z X,Zhu C,Wang R,et al. Multi-element records of the deposits for ancient human activities at the Liaowadian site in Hubei Province. Marine Geology & Quaternary Geology,2008,28(6):113—118. [李中軒,朱誠,王然,等. 湖北遼瓦店遺址地層中多元素指標對古人類活動的記錄. 海洋地質與第四紀地質,2008,28(6):113—118.]
[18] Dirix K,Muchez P,Degryse P,et al. Multi-element soil prospection aiding geophysical and archaeological survey on an archaeological site in suburban Sagalassos (SW-Turkey). Journal of Archaeological Science,2013,40(7):2961—2970.
[19] Cook S R,Clarke A S,F(xiàn)ulford M G,et al. Characterizing the use of urban space:A geochemical case study from Calleva Atrebatum (Silchester,Hampshire,UK) Insula IX during the late first/early second century AD. Journal of Archaeological Science,2014,50(1):108—116.
[20] Fleisher J,Sulas F. Deciphering public spaces in urban contexts:Geophysical survey,multi-element soil analysis,and artifact distributions at the 15th-16th- century AD Swahili settlement of Songo Mnara,. Journal of Archaeological Science,2015,55:55—70.
[21] Kamenov G D,Brenner M,Tucker J L. Anthropogenic versus natural control on trace element and Sr-Nd-Pb isotope stratigraphy in peat sediments of southeast Florida (USA) 1500 AD to present. Geochimicaet Cosmochimica Acta,2009,73(12):3549—3567.
[22] Zg?obicki W. Impact of microtopography on the geochemistry of soils within archaeological sites in SE Poland. Environmental Earth Sciences,2013,70(7): 3085—3092.
[23] Gallello G,Pastor A,Diez A,et al. Anthropogenic units fingerprinted by REE in archaeological stratigraphy: Mas d'Is (Spain) case. Journal of Archaeological Science,2013,40(2):799—809.
[24] Zhang Y,Guo Z T,Deng C L,et al. The use of fire at Zhoukoudian: Evidence from magnetic susceptibility and color measurements. Chinese Science Bulletin,2014,59(8):679—686. [張巖,郭正堂,鄧成龍,等. 周口店第1地點用火的磁化率和色度證據(jù).科學通報,2014,59(8):679—686.]
[25] Shi W,Zhu C,Xu W F,et al. Relationship between abnormal phenomena of magnetic susceptibility curves of profiles and human activities at Zhongba site in Chongqing. Acta Geographica Sinica,2007,62(3):257—267. [史威,朱誠,徐偉峰,等.重慶中壩遺址剖面磁化率異常與人類活動的關系.地理學報,2007,62 (3):257—267.]
[26] Suarez Villagran X ,Gianotti C. Earthen mound formation in the Uruguayan lowlands (South America): Micromorphological analyses of the Pago Lindo archaeological complex. Journal of Archaeological Science,2013,40(2):1093—1107.
[27] Mallol C,Mentzer S M. Contacts Under the Lens: Perspectives on the role of microstratigraphy in archaeological research. Archaeological & Anthropological Sciences,2017,9(8):1645—1669.
[28] Pang J L,Huang C C,Zha X C,et al. Comparison of micromorphological features of two agricultural cultivated soils in Guanzhong areas of Shaanxi Province. Scientia Agricultura Sinica,2007,40(11): 2518—2526. [龐獎勵,黃春長,查小春,等. 關中地區(qū)兩種不同農(nóng)業(yè)管理方式下土壤微形態(tài)特征. 中國農(nóng)業(yè)科學,2007,40(11):2518—2526.]
[29] Zhang Y Z,Huang C C,Pang J L,et al. Micromorphology of ancient plow layer of paleosol in the lajia ruins in the Guanting basin,Minhe County,Qinghai Province.Acta Pedologica Sinica,2015,52(5): 1002—1013. [張玉柱,黃春長,龐獎勵,等. 青海民和官亭盆地喇家遺址古耕作土壤層微形態(tài)研究. 土壤學報,2015,52(5): 1002—1013.]
[30] Shen Z R,Pang J L,Huang C C. Micromorphological features of palaeo cultivated soil in middle reaches of Jinghe River. Journal of Desert Research,2007,27(2):273—277. [申朝瑞,龐獎勵,黃春長. 涇河中游古耕作土壤的微形態(tài)特征研究. 中國沙漠,2007,27(2):273—277.]
[31] Zha L S,Wu K N,F(xiàn)eng L W,et al. Influence of ancient human activities on development of soil—A case study of Yangshao Village Cultural Relic Site,Henan Province. Acta Pedologica Sinica,2016,53(4):850—859. [查理思,吳克寧,馮力威,等. 古人類活動對土壤發(fā)育的影響——以河南仰韶村遺址為例.土壤學報,2016,53(4):850—859.]
[32] Zha L S. Soil characteristics,function and paleoenvironment in Yangshao cultural relic site. Beijing:China University of Geosciences,2017. [查理思.仰韶村遺址土壤的特征和功能及古環(huán)境研究.北京:中國地質大學(北京),2017.]
[33] Branda F,Luciani G,Costantini A,et al. Interpretation of the thermogravimetric curves of ancient pozzolanic concretes. Archaeometry,2001,43(4):447—453.
[34] Casadio F,Chiari G,Simon S. Evaluation of binder/ aggregate ratios in archaeological lime mortars with carbonate aggregate: A comparative assessment of chemical,mechanical and microscopic approaches. Archaeometry,2005,47(4):671—689.
[35] Zhou R,Zhang F K,Zheng Y P. Studies on the technology of Neolithic and Yin and Chou pottery unearthed in the Yellow River valley. Acta Archaeologica Sinica,1964(1):1—27. [周仁,張??担嵱榔? 我國黃河流域新石器時代和殷周時代制陶工藝的科學總結.考古學報,1964(1):1—27.]
Soil Properties of the Yangshao Village Cultural Relic Site, Henan Province Relative to Function
ZHA Lisi1, WU Kening2?, ZHUANG Dachang1, JIANG Yu3
(1. School of Public Administration, Guangdong University of Finance and Economics, Guangzhou 510320, China;2. School of Land Science and Technology, China University of Geosciences, Beijing 100083, China;3. Laoshan Land Resources Sub-bureau, Qingdao Municipal Land Resources &Housing Administrative Bureau, Qingdao, Shandong 266000, China)
In order to fully understand contents and degrees of the various ancient human activities in the Yangshao culture period, soil samples were collected from different functional areas (housing foundation, living quarters, urn coffin, pottery kiln) and soil profile not disturbed by ancient human activities (natural profile in short) in the Yangshao Village site for analysis of chromaticity, magnetic susceptibility, particle size composition, free iron, total mineral content and soil micromorphology. By comparing the findings with the natural profile data, it was learnt how much ancient human activities affected the soil. Results show that among the four functional areas, the housing foundation area is the highest in clay content and P content and relatively higher in CaO content and had various ingredients added into the lime layer as the analysis of soil micromorphology indicates; the living quarters is the highest in content of carbon dust content, which exists along a certain direction; the urn-coffin area is the highest in χfd, and the highest in content of free iron and ionization degree of the iron; and the pottery kiln area is the highest in χlfrelatively higher in content of P and has soil that had been calcinated under high temperature ion as analysis of micromorphology indicates. The conclusion shows that, ancient people chose on purpose clay and calcium carbonate sand to pave the ground. Long term residence produced a large amount of phosphorus. Ancient people cooked food, producing a lot of carbon dust in the living area. After burial of the dead with urn, decaying of the corpses facilitated growth of animals and microorganisms, which in turn helped formation of soil fine particles and soil development. In calcinating pots, they might probably used domestic waste as fuel.
Soil characteristics; Ancient human activities; Yangshao culture
S159
A
10.11766/trxb201811290496
查理思,吳克寧,莊大昌,姜鈺. 河南仰韶村遺址不同功能區(qū)土壤特征研究[J]. 土壤學報,2020,57(2):500–507.
ZHA Lisi,WU Kening,ZHUANG Dachang,JIANG Yu. Soil Properties of The Yangshao Village Cultural Relic Site,Henan Province Relative to Function[J]. Acta Pedologica Sinica,2020,57(2):500–507.
* 國家自然科學基金項目(41371226)資助Supported by the National Natural Science Foundation of China(No.41371226)
,E-mail:wukening@cugb.edu.cn
查理思(1988—),男,江西廬山人,博士,講師,主要從事土壤考古研究。E-mail:511611249@qq.com
2018–11–29;
2019–01–20;
優(yōu)先數(shù)字出版日期(www.cnki.net):2019–02–25
(責任編輯:檀滿枝)