• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      白藜蘆醇和鋅離子心肌保護(hù)作用的聯(lián)系與進(jìn)展(連載一)

      2020-04-20 11:15:41賀翼飛付宇趙楊
      現(xiàn)代養(yǎng)生·下半月 2020年2期
      關(guān)鍵詞:心肌損傷白藜蘆醇

      賀翼飛 付宇 趙楊

      【關(guān)鍵詞】心肌損傷;白藜蘆醇;鋅離子;心肌保護(hù)

      中圖分類號(hào)? R54? ? 文獻(xiàn)標(biāo)識(shí)碼? B? ? 文章編號(hào)? 1671-0223(2020)02-017-05

      白藜蘆醇(resveratrol)是生物性很強(qiáng)的多酚類物質(zhì),天然抗氧化物,在多種中藥材中存在[1]。它有很多藥理、生理性效用,比如,阻止血小板凝聚[2]、抗氧化[3, 4]、抗炎癥[3-5]、抗腫瘤[6]等,也對(duì)心臟疾病、癌癥等發(fā)揮了很好的效用[7-9]。鋅離子(Zn2+)屬于微量元素,能維持人體正常結(jié)構(gòu)與功能,參與體內(nèi)多種酶的代謝與激活,在細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)機(jī)制中起著非常重要的作用。白藜蘆醇和鋅離子均能夠減輕心肌損傷從而保護(hù)心肌[10, 11],但是對(duì)于心肌保護(hù)作用,白藜蘆醇與鋅離子兩者之間是否存在某種聯(lián)系以及它們的細(xì)胞信號(hào)機(jī)制是怎樣的,目前相關(guān)研究較少。本文就白藜蘆醇與鋅離子心肌保護(hù)作用之間的聯(lián)系與具體相關(guān)信號(hào)轉(zhuǎn)導(dǎo)機(jī)制進(jìn)展綜述如下。

      1 心肌損傷與保護(hù)

      中國最新統(tǒng)計(jì)數(shù)據(jù)指出,心血管疾病的發(fā)病率、致死率數(shù)值逐年提高,死亡率居首位,遠(yuǎn)遠(yuǎn)高于腫瘤及其他類型的疾病,40%以上的人類死于心血管病,尤其是農(nóng)村,死亡率一直比城市高[12]。中國心血管病一直以來都是公共衛(wèi)生中的重點(diǎn)問題,對(duì)它的防治刻不容緩。

      臨床上最常見的心肌損傷是急性心肌梗塞(acute myocardial infarction, AMI),其他還有冠心病 (Coronary heart disease, CHD)、心律失常(arrhythmia)、心力衰竭((heart failure, HF)等,對(duì)患者的生命都帶來極大的威脅。在科學(xué)研究方面,較常見的心肌損傷模型有心肌缺血損傷、缺血/再灌注(Ischemia/Reperfusion, I/R)[13]損傷、缺氧/復(fù)氧 ((hypoxia/reoxygenation, H/R)損傷、氧化應(yīng)激(oxidative Stress, OS)損傷[14, 15]、內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress, ERS)損傷[16-18]等。心肌損傷嚴(yán)重危及生命,因此亟需對(duì)其機(jī)制進(jìn)行研究,為臨床治療提供理論基礎(chǔ)[19]。

      對(duì)于心肌保護(hù)作用機(jī)制研究,最初辦法是缺血預(yù)處理(ischemic preconditioning, IPC)[20],就是在缺血發(fā)生之前,反復(fù)進(jìn)行短暫的缺血/再灌循環(huán)處理,為心肌在隨后的長時(shí)間缺血期提供預(yù)適應(yīng),降低心肌損傷。此后,又陸續(xù)出現(xiàn)藥物預(yù)處理、遠(yuǎn)端的缺血預(yù)處理等措施。后續(xù)又驗(yàn)證了缺血后處理(ischemic postconditioning, IPO)機(jī)制[21],即在心肌缺血之后再灌注之前的時(shí)間段,反復(fù)進(jìn)行短時(shí)間的缺血/再灌注,它同樣具有減輕心肌損傷的效果。通過更多的研究證明,藥物后處理、遠(yuǎn)距離缺血后處理、缺血預(yù)處理以及后處理同時(shí)使用等也都能夠減輕心肌損傷。因?yàn)榕R床上都是缺血或梗死后才送醫(yī)救治,對(duì)于后處理的研究具有更加突出的實(shí)際臨床意義。

      2 白藜蘆醇與心肌保護(hù)

      白藜蘆醇屬于多酚類物質(zhì),化學(xué)名為3,4',5- 三羥基- 二苯乙烯(3,4',5-trihydroxystlbene),相對(duì)分子量是228。它在有機(jī)溶劑(乙醇、丙酮等)中很快溶解,在水中很難溶解。廣泛存在于多種植物中,如虎杖、花生和藜蘆等。隨著深入探究,發(fā)現(xiàn)它有多種作用,如抗癌癥[8, 9]、抗炎癥[3-5] 、抗氧化[3, 4]等[22]。

      大量文獻(xiàn)證明,白藜蘆醇能夠減輕心肌損傷。它可以通過藥物預(yù)處理下調(diào)VDAC1[10],、調(diào)節(jié)NALP3炎性體[23]來減輕心肌缺血/再灌注損傷,能夠保護(hù)缺氧/復(fù)氧心肌[24, 25];另外,它還能通過預(yù)處理機(jī)制來減輕其他方式導(dǎo)致的心肌損傷,如氧化應(yīng)激[26]、凋亡和自噬[27]、內(nèi)質(zhì)網(wǎng)應(yīng)激[28]等。白藜蘆醇后處理也能減輕心肌損傷。白藜蘆醇后處理能上調(diào)PI3K/Akt/Nfr 2活性,進(jìn)而增加HO-1蛋白的活性和表達(dá),從而發(fā)揮HO-1抗氧化作用,保護(hù)再灌注損傷的心肌 [29]。磷脂酰肌醇3激酶(phosphatidylinositol 3 Kinase, PI3K)、一氧化氮(NO)、腺苷受體(adenosine receptor)等信號(hào)轉(zhuǎn)導(dǎo)通路均參與它的保護(hù)過程[10, 30-32]。課題組前期研究顯示,白藜蘆醇可以降低磷酸二酯酶的活性,通過環(huán)鳥苷單磷酸(cGMP)/蛋白激酶G(PKG)途徑,使糖原合成酶激酶-3β (glycogen synthase kinase-3β, GSK-3β)發(fā)生磷酸化、從細(xì)胞質(zhì)轉(zhuǎn)移到線粒體,與親環(huán)蛋白D共同調(diào)節(jié)線粒體通透性轉(zhuǎn)換孔(mitochondrial permeability transition pore, mPTP),保護(hù)缺血/再灌注心臟[33];此外,它能夠減輕氧化應(yīng)激導(dǎo)致的內(nèi)質(zhì)網(wǎng)應(yīng)激 [34],還可以抑制缺氧引起的ERS [35]。以上研究顯示,白藜蘆醇擁有強(qiáng)大的作用,但其機(jī)制有待于進(jìn)一步探討。

      3 鋅離子與心肌保護(hù)

      鋅是人體必需微量元素,維持人體細(xì)胞結(jié)構(gòu)與功能以及神經(jīng)、組織等的生理信號(hào)轉(zhuǎn)導(dǎo),參與體內(nèi)多種酶的代謝與活化。在細(xì)胞水平上,鋅離子被認(rèn)定為眾多酶和轉(zhuǎn)錄因子的輔助因子,并在其中充當(dāng)結(jié)構(gòu)或催化離子;在分子水平上,鋅離子結(jié)合蛋白在細(xì)胞內(nèi)提供了一個(gè)穩(wěn)定的離子庫,但信號(hào)可能是由諸如金屬硫蛋白(metallothionein, MT)等松散結(jié)合的蛋白釋放的鋅離子觸發(fā)[36-38]。此外,鋅離子轉(zhuǎn)運(yùn)蛋白介導(dǎo)鋅離子跨膜運(yùn)動(dòng),這些囊泡的釋放或轉(zhuǎn)運(yùn)蛋白活性的上調(diào)可以誘導(dǎo)細(xì)胞質(zhì)或細(xì)胞外鋅離子的瞬時(shí)變化,進(jìn)而觸發(fā)細(xì)胞信號(hào)傳導(dǎo)[37, 38]。

      鋅離子穩(wěn)態(tài)對(duì)于細(xì)胞功能和存活十分重要。一旦鋅離子失去穩(wěn)定狀態(tài)會(huì)引發(fā)很多疾病[39],如肝性腦病、腎功能衰竭、尿毒癥、鐮狀細(xì)胞病等[40]。金屬硫蛋白在維持鋅穩(wěn)態(tài)中扮演關(guān)鍵角色,金屬反應(yīng)元件(MRE)1-結(jié)合轉(zhuǎn)錄因子1(MTF-1)是必不可少的金屬調(diào)控轉(zhuǎn)錄因子,可協(xié)調(diào)參與鋅離子體內(nèi)穩(wěn)態(tài)基因的表達(dá)并防止金屬毒性和氧化應(yīng)激。這些包括但不限于金屬硫蛋白、鋅轉(zhuǎn)運(yùn)蛋白1和γ-谷氨酰半胱氨酸合成酶重鏈基因[41]。

      大量研究表明,鋅離子具有心肌保護(hù)功能。鋅離子通過減少氧超載及激活PKC通路而保護(hù)離體大鼠缺血/再灌注心臟[11, 42]。Jang等的研究證實(shí),鋅離子可以減輕心肌細(xì)胞線粒體氧化損傷[43]。外源性ZnCl2通過抑制caspase-3以劑量依賴的方式減少急性心臟異體移植排斥反應(yīng)中發(fā)生的凋亡[44]。廣泛的心臟保護(hù)信號(hào)通路的激活是與線粒體信號(hào)傳導(dǎo)相關(guān)的GSK-3β磷酸化或抑制有關(guān)。因此,GSK-3β已經(jīng)成為許多途徑的整合點(diǎn),在傳遞保護(hù)信號(hào)到下游或mPTP附近的靶點(diǎn)中起著關(guān)鍵作用[45, 46]。課題組前期研究顯示,嗎啡以及腺苷A2受體通過鋅離子激活cGMP/PKG阻止mPTP開放保護(hù)心肌[47, 48];鋅通過失活GSK-3β阻止氧化劑誘導(dǎo)的mPTP開放,從而防止再灌注損傷,PI3K/蛋白激酶B(Akt)、細(xì)胞外信號(hào)調(diào)節(jié)激酶(ERK)信號(hào)通路參與其中[49, 50];NO能夠抑制復(fù)合物I調(diào)控再灌注引起的線粒體氧化應(yīng)激,從而保護(hù)心臟,其機(jī)制可能是通過鋅調(diào)控線粒體Src酪氨酸激酶[46, 51];鋅離子能夠抑制內(nèi)質(zhì)網(wǎng)應(yīng)激保護(hù)離體大鼠再灌注心臟[52]。鋅離子在保護(hù)心肌方面扮演了關(guān)鍵角色,對(duì)其深入研究將為心肌保護(hù)機(jī)制提供重要的論證。

      參考文獻(xiàn)

      [1] 趙建萍, 陳倩, 曹俊東, 等. 柘木多酚和氧化白藜蘆醇的制備與其抗氧化活性研究[J]. 中國現(xiàn)代中藥, 2018, 20(10): 1288-1291.

      [2] C Bonechi, S Lamponi, A Donati, et al. Effect of resveratrol on platelet aggregation by fibrinogen protection[J]. Biophys Chem, 2017, 222: 41-48.

      [3] B Wang, J Sun, X Li, et al. Resveratrol prevents suppression of regulatory T-cell production, oxidative stress, and inflammation of mice prone or resistant to high-fat diet-induced obesity[J]. Nutr Res, 2013, 33(11): 971-981.

      [4] BA Rocha, CS Teixeira, JC Silva-Filho, et al. Structural basis of ConM binding with resveratrol, an anti-inflammatory and antioxidant polyphenol[J]. Int J Biol Macromol, 2015, 72: 1136-1142.

      [5] CW Kimbrough, J Lakshmanan, PJ Matheson, et al. Resveratrol decreases nitric oxide production by hepatocytes during inflammation[J]. Surgery, 2015, 158(4): 1095-1101.

      [6] W Zhou, S Wang, Y Ying, et al. miR-196b/miR-1290 participate in the antitumor effect of resveratrol via regulation of IGFBP3 expression in acute lymphoblastic leukemia[J]. Oncol Rep, 2017, 37(2): 1075-1083.

      [7] BN Zordoky, IM Robertson and JR Dyck. Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases[J]. Biochim Biophys Acta, 2015, 1852(6): 1155-1177.

      [8] M Jang and JM Pezzuto. Effects of resveratrol on 12-O-tetradecanoylphorbol-13-acetate-induced oxidative events and gene expression in mouse skin[J]. Cancer Lett, 1998, 134(1): 81-89.

      [9] L Tan, W Wang, G He, et al. Resveratrol inhibits ovarian tumor growth in an in vivo mouse model[J]. Cancer, 2016, 122(5): 722-729.

      [10] Z Liao, D Liu, L Tang, et al. Long-term oral resveratrol intake provides nutritional preconditioning against myocardial ischemia/reperfusion injury: involvement of VDAC1 downregulation[J]. Mol Nutr Food Res, 2015, 59(3): 454-464.

      [11] Z Xu and J Zhou. Zinc and myocardial ischemia/reperfusion injury[J]. Biometals, 2013, 26(6): 863-878.

      [12]胡盛壽, 高潤霖, 劉力生, 等 《中國心血管病報(bào)告2018》概要[J]. 中國循環(huán)雜志, 2019, 34(03): 209-220.

      [13] S Hashmi and S Al-Salam. Acute myocardial infarction and myocardial ischemia-reperfusion injury: a comparison[J]. Int J Clin Exp Pathol, 2015, 8(8): 8786-8796.

      [14] L Li, Y Zhou, Y Li, et al. Aqueous extract of Cortex Dictamni protects H9c2 cardiomyocytes from hypoxia/reoxygenation-induced oxidative stress and apoptosis by PI3K/Akt signaling pathway[J]. Biomed Pharmacother, 2017, 89: 233-244.

      [15] H Chen, RS Huang, XX Yu, et al. Emodin protects against oxidative stress and apoptosis in HK-2 renal tubular epithelial cells after hypoxia/reoxygenation[J]. Exp Ther Med, 2017, 14(1): 447-452.

      [16]郭云輝, 李志平, 南姝利. 內(nèi)質(zhì)網(wǎng)應(yīng)激與心肌缺血再灌注損傷的關(guān)系[J]. 黑龍江醫(yī)藥科學(xué), 2014, 37(04): 104.

      [17] JG Xia, FF Xu, Y Qu, et al. Atorvastatin post-conditioning attenuates myocardial ischemia reperfusion injury via inhibiting endoplasmic reticulum stress-related apoptosis[J]. Shock, 2014, 42(4): 365-371.

      [18] X Wang, D Jia, J Zhang, et al. Grape seed proanthocyanidins protect cardiomyocytes against hypoxia/reoxygenation injury by attenuating endoplasmic reticulum stress through PERK/eIF2alpha pathway[J]. Mol Med Rep, 2017, 16(6): 9189-9196.

      [19] G Heusch. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning[J]. Circ Res, 2015, 116(4): 674-699.

      [20] CE Murry, RB Jennings and KA Reimer. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium[J]. Circulation, 1986, 74(5): 1124-1136.

      [21] ZQ Zhao, JS Corvera, ME Halkos, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning[J]. Am J Physiol Heart Circ Physiol, 2003, 285(2): H579- H588.

      [22] JM Wu and TC Hsieh. Resveratrol: a cardioprotective substance[J]. Ann N Y Acad Sci, 2011, 1215: 16-21.

      [23] W Dong, R Yang, J Yang, et al. Resveratrol pretreatment protects rat hearts from ischemia/reperfusion injury partly via a NALP3 inflammasome pathway[J]. Int J Clin Exp Pathol, 2015, 8(8): 8731-8741.

      [24] SH Jeong, TM Hanh, HK Kim, et al. HS-1793, a recently developed resveratrol analogue protects rat heart against hypoxia/reoxygenation injury via attenuating mitochondrial damage[J]. Bioorg Med Chem Lett, 2013, 23(14): 4225-4229.

      [25]左惠榮, 廖東初, 林龍, 等. 白藜蘆醇通過PI3K/Akt/SVV信號(hào)通路改善大鼠心肌微血管內(nèi)皮細(xì)胞缺血再灌注損傷[J]. 中華心血管病雜志, 2014, 42(8): 670-674.

      [26] E Akbel, D Arslan-Acaroz, HH Demirel, et al. The subchronic exposure to malathion, an organophosphate pesticide, causes lipid peroxidation, oxidative stress, and tissue damage in rats: the protective role of resveratrol[J]. Toxicol Res (Camb), 2018, 7(3): 503-512.

      [27] K Xu, XF Liu, ZQ Ke, et al. Resveratrol Modulates Apoptosis and Autophagy Induced by High Glucose and Palmitate in Cardiac Cells[J]. Cell Physiol Biochem, 2018, 46(5): 2031-2040.

      [28] Y Lou, Z Wang, Y Xu, et al. Resveratrol prevents doxorubicin-induced cardiotoxicity in H9c2 cells through the inhibition of endoplasmic reticulum stress and the activation of the Sirt1 pathway[J]. Int J Mol Med, 2015, 36(3): 873-880.

      [29]鄧穎, 張雄, 胡紅. 白藜蘆醇后處理通過PI3K/Akt/Nfr2上調(diào)HO-1對(duì)大鼠心肌I/R的保護(hù)研究[J]. 重慶醫(yī)學(xué), 2018, 47(09): 1176-1178+1182.

      [30] S Das, GA Cordis, N Maulik, et al. Pharmacological preconditioning with resveratrol: role of CREB-dependent Bcl-2 signaling via adenosine A3 receptor activation[J]. Am J Physiol Heart Circ Physiol, 2005, 288(1): H328- H335.

      [31] LM Hung, MJ Su and JK Chen. Resveratrol protects myocardial ischemia-reperfusion injury through both NO-dependent and NO-independent mechanisms[J]. Free Radic Biol Med, 2004, 36(6): 774-781.

      [32] S Das, CG Fraga and DK Das. Cardioprotective effect of resveratrol via HO-1 expression involves p38 map kinase and PI-3-kinase signaling, but does not involve NFkappaB[J]. Free Radic Res, 2006, 40(10): 1066-1075.

      [33] J Xi, H Wang, RA Mueller, et al. Mechanism for resveratrol-induced cardioprotection against reperfusion injury involves glycogen synthase kinase 3beta and mitochondrial permeability transition pore[J]. Eur J Pharmacol, 2009, 604(1-3): 111-116.

      [34] 沈志嘉, 鄭桓, 費(fèi)碩, 等. 白藜蘆醇對(duì)H9c2心肌細(xì)胞抗氧化應(yīng)激損傷的內(nèi)質(zhì)網(wǎng)應(yīng)激機(jī)制研究[J]. 中國新藥雜志, 2015, 24(01): 74-78.

      [35] 賀翼飛, 李璐, 蔡志亮, 等. 白藜蘆醇對(duì)缺氧心肌細(xì)胞的保護(hù)作用及機(jī)制研究[J]. 中國新藥雜志, 2017, 26(10): 1163-1168.

      [36] A Kr??el, W Maret. The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism[J]. Int J Mol Sci, 2017, 18(6): E1237.

      [37] L Sirianant, J Ousingsawat, Y Tian, et al. TMC8 (EVER2) attenuates intracellular signaling by Zn2+ and Ca2+ and suppresses activation of Cl- currents[J]. Cell Signal, 2014, 26(12): 2826-2833.

      [38] N Levaot and M Hershfinkel. How cellular Zn(2+) signaling drives physiological functions[J]. Cell Calcium, 2018, 75: 53-63.

      [39] AS Prasad. Discovery of human zinc deficiency: its impact on human health and disease[J]. Adv Nutr, 2013, 4(2): 176-190.

      [40] PJ Little, R Bhattacharya, AE Moreyra, et al. Zinc and cardiovascular disease[J]. Nutrition, 2010, 26(11-12): 1050-1057.

      [41] H Jiang, PJ Daniels and GK Andrews. Putative zinc-sensing zinc fingers of metal-response element-binding transcription factor-1 stabilize a metal-dependent chromatin complex on the endogenous metallothionein-I promoter[J]. J Biol Chem, 2003, 278(32): 30394-30402.

      [42] G Karagulova, Y Yue, A Moreyra, et al. Protective role of intracellular zinc in myocardial ischemia/reperfusion is associated with preservation of protein kinase C isoforms[J]. J Pharmacol Exp Ther, 2007, 321(2): 517-525.

      [43] Y Jang, H Wang, J Xi, et al. NO mobilizes intracellular Zn2+ via cGMP/PKG signaling pathway and prevents mitochondrial oxidant damage in cardiomyocytes[J]. Cardiovasc Res, 2007, 75(2): 426-433

      [44] MH Kown, T Van der Steenhoven, FG Blankenberg, et al. Zinc-mediated reduction of apoptosis in cardiac allografts[J]. Circulation, 2000, 102(19 Suppl 3): Iii228- Iii232.

      [45] AP Halestrap, SJ Clarke and SA Javadov. Mitochondrial permeability transition pore opening during myocardial reperfusion--a target for cardioprotection[J]. Cardiovasc Res, 2004, 61(3): 372-385.

      [46] M Juhaszova, DB Zorov, Y Yaniv, et al. Role of glycogen synthase kinase-3beta in cardioprotection[J]. Circ Res, 2009, 104(11): 1240-1252.

      [47] J Xi, W Tian, L Zhang, et al. Morphine prevents the mitochondrial permeability transition pore opening through NO/cGMP/PKG/Zn2+/GSK-3beta signal pathway in cardiomyocytes[J]. Am J Physiol Heart Circ Physiol, 2010, 298(2): H601- H607.

      [48] R McIntosh, S Lee, AJ Ghio, et al. The critical role of intracellular zinc in adenosine A(2) receptor activation induced cardioprotection against reperfusion injury[J]. J Mol Cell Cardiol, 2010, 49(1): 41-47.

      [49] G Chanoit, S Lee, J Xi, et al. Exogenous zinc protects cardiac cells from reperfusion injury by targeting mitochondrial permeability transition pore through inactivation of glycogen synthase kinase-3beta[J]. Am J Physiol Heart Circ Physiol, 2008, 295(3): H1227-H1233.

      [50] Z Xu, S Kim and J Huh. Zinc plays a critical role in the cardioprotective effect of postconditioning by enhancing the activation of the RISK pathway in rat hearts[J]. J Mol Cell Cardiol, 2014, 66:12-17.

      [51] Y Zhang, F Xing, H Zheng, et al. Roles of mitochondrial Src tyrosine kinase and zinc in nitric oxide-induced cardioprotection against ischemia/reperfusion injury[J]. Free Radic Res, 2013, 47(6-7): 517-525.

      [52] G Wang, H Huang, H Zheng, et al. Zn(2+) and mPTP Mediate Endoplasmic Reticulum Stress Inhibition-Induced Cardioprotection Against Myocardial Ischemia/Reperfusion Injury[J]. Biol Trace Elem Res, 2016, 174(1): 189-197.

      [2020-01-02收稿]

      (未完待續(xù))

      猜你喜歡
      心肌損傷白藜蘆醇
      白藜蘆醇研究進(jìn)展
      云南化工(2021年11期)2022-01-12 06:06:12
      遠(yuǎn)端缺血預(yù)處理對(duì)血清miRNA表達(dá)水平的影響及對(duì)心肌保護(hù)作用的研究
      糖尿病心肌病患者血清差異表達(dá)microRNA及作用的研究
      阿托伐他汀對(duì)老年急性心肌梗死患者經(jīng)皮冠狀動(dòng)脈介入治療后心肌損傷的保護(hù)作用分析
      今日健康(2016年12期)2016-11-17 12:06:09
      病毒性肝炎合并心肌損傷的臨床研究
      不同類型心肌損傷生化標(biāo)志物的臨床對(duì)比分析
      加味銀杏飲聯(lián)合骨髓干細(xì)胞移植對(duì)大鼠心肌損傷的影響
      白藜蘆醇通過上調(diào)SIRT1抑制阿霉素誘導(dǎo)的H9c2細(xì)胞損傷
      白藜蘆醇調(diào)節(jié)STAT3與miR-21表達(dá)抗肝癌作用的初步研究
      白藜蘆醇抑菌作用及抑菌機(jī)制研究進(jìn)展
      台东市| 府谷县| 峨边| 邳州市| 如皋市| 凉城县| 革吉县| 柳林县| 太和县| 札达县| 韶关市| 罗江县| 楚雄市| 湟中县| 灵武市| 墨脱县| 鄄城县| 宜宾市| 揭西县| 漾濞| 靖江市| 崇信县| 邛崃市| 临桂县| 呈贡县| 鄂州市| 海原县| 乐至县| 永定县| 额尔古纳市| 昌黎县| 木兰县| 红河县| 芜湖县| 吴忠市| 汉沽区| 栾川县| 淳安县| 新民市| 阳谷县| 邯郸县|