• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on transient characteristics of cavitation phenomena in pilot stage of jet pipe servo-valve①

    2020-04-13 07:06:02WuLinChenKuishengZhanCongchang
    High Technology Letters 2020年1期

    Wu Lin(吳 凜),Chen Kuisheng,Zhan Congchang

    (School of Machinery and Automation,Wuhan University of Science and Technology,Wuhan 430081,P.R.China)(Engineering Research Center of Metallurgical Automation and Measurement Technology,Wuhan University of Science and Technology,Wuhan 430081,P.R.China)

    Abstract

    Key words:jet pipe servo-valve,cavitation,large-eddy simulation (LES),multiphase flow

    0 Introduction

    Jet pipe servo-valves act as hydraulic elements with high precision and strong antipollution ability and are widely used in the aerospace,industrial,and automotive fields.The present research into jet pipe servo-valves focuses on replacing the valve material,improving the processing technology,and testing the valves.However,no complete and accurate mathematical model of jet pipe servo-valves is yet available[1,2].

    Many studies looked into the internal flow field of the pilot stage of the jet pipe servo-valve[3-9].For example,Yang[3]usedk-εand Reynolds stress model (RSM) turbulence models to simulate the flow field in the pilot stage,and conduced visualization experiments with an enlarged model to observe cavitation.The mathematical models of recovery pressure and recovery flowrate of the pilot stage were obtained,and the influences of the structure size were analyzed by Ref.[4].Ref.[5] used a piezoelectric dynamic pressure transducer and a microphone to measure the self-excited high-frequency pressure oscillations and noise in a hydraulic jet pipe servo-valve.The results showed that high-frequency pressure oscillations are produced by shear-layer instability inside the flow field between the jet pipe and the 2 receiving ports[5].The influences of boundary conditions and structure parameters on the characteristics of the flow field in the pilot stage were studied by Pham et al.[6]and Hiremath[7].However,to date,the dynamic characteristics of the flow field in the pilot stage of the jet pipe servo-valve,especially transient cavitation,have yet to be analyzed.It is thus important to study the dynamic characteristics of the flow field in the pilot stage of a jet pipe servo-valve.

    In recent years,cavitation bubbles in the hydraulic elements have been widely studied because they constitute a common physical phenomenon that often occurs at the entrance of the hydraulic pump and hydraulic valve and in the internal flow field near the local low pressure caused by sharp edges[8-10].With the rapid development of computing power,highly efficient and precise numerical calculation methods can produce realistic simulations and have been widely used to study micro-flow fields[11].Large-eddy simulation (LES) has been developed for years and can capture transient-flow fields containing cavitation phenomena that are not captured by the Reynolds-averaged Navier-Stokes (RANS) approach[11].Ref.[12] concluded that LES method was more suitable for calculating complex flow fields as LES could better predict the details of the turbulent flow.

    In the present work,the LES method is utilized to simulate the transient flow field of the pilot stage of a jet pipe servo-valve.Cloud cavitation and vortex cavitation occur in the flow field.This work discusses how the inlet pressure and the wedge length affect cavitation and obtain main frequencies of cavitation-induced pressure oscillations by fast Fourier transform(FFT).Finally,this work proposes a method to improve the stability of the jet pipe servo-valve and determine the optimal length of the wedge.

    1 Working principle of jet pipe servo-valve

    Fig.1 shows a schematic diagram of a jet pipe servo-valve.With no control current,the jet pipe remains in the neutral position,and equal fluid flow passes through 2 receiver holes.When a control current is passed through the torque motor,the motor produces a torque that rotates the jet pipe.The displacement of the jet pipe then directs a focused jet more into one receiver hole than into the other,creating a pressure difference at the ends of the spool,which forces the spool to move.Because the jet pipe is connected to the spool by the feedback spring,the jet pipe returns to the null position until the spool is balanced.As a result,the spool opening is proportional to the control current.

    Fig.1 Schematic diagram of a jet pipe servo-valve

    When the high-speed fluid shoots into the receiver holes,the kinetic energy is then converted as pressure energy to move the spool.Meanwhile,the submerged jet,impinging jet,secondary reflux,and cavitation are produced when the jet impinges on the edges of the receiver holes.Cavitation is generated when the pressure is less than the saturated vapor pressure and it degrades the performance of the entire valve.Thus,it is essential to properly understand the dynamic characteristics of cavitation in the pilot stage of jet pipe servo-valve.

    2 Numerical method

    2.1 Details of geometry

    Fig.2(a) and Fig.2(b) show the detailed 3-dimensional geometry of the flow field in the pilot stage of a jet pipe servo-valve.The lengthband diameterd1 of the nozzle are 0.4 mm and 0.64 mm,respectively.The height of the jet pipe,diameterdof the receiver channel,diameterDand heighthof the in-between flow region are 17 mm,0.8 mm,6 mm,and 0.4 mm,respectively.The wedge lengthlat the receiver entrances is 0.03 mm.The nozzle in a jet pipe servo-valve is shown in Fig.2(c).The origin of coordinate system is at the middle of the 2 receiver entrances.In this work,the performance of the transient flow field when the jet pipe is in the neutral position is studied.To speed up the calculation,a quarter of the total mode is defined as the computational domain.

    (a) Detailed 3-dimensional geometry of flow field in pilot stage of jet pipe servo-valve

    (b) Enlarged view of dotted box in (a)

    (c) Photograph of nozzle in a jet pipe servo-valve Fig.2 Geometrical model of pilot stage

    2.2 Mesh division and boundary conditions

    The meshing module ICEM within ANSYS is used to divide an unstructured mesh,which is more suitable for simulating flow fields with complex shapes and allows more convenient control of mesh size and node density[13].Mesh refinement is applied to the meshes at the nozzle and wedge,as shown in Fig.3.During the simulation,the pressure at the inlet is set to 5 MPa,7 MPa,9 MPa,and 11 MPa,whereas the outlet pressure is set to 0.1 MPa.Symmetry boundaries are set on the symmetry planes of the model.Other planes are defined as non-slip walls.

    Fig.3 Detail of meshes

    2.3 Solution methods and convergence criteria

    To accelerate the simulation convergence,the single-phase flow field is obtained by the RNGk-εmodel and then is used as the initial condition for LES.The convergence criteria are set with residuals less than 10-5.The Simple scheme is used for pressure-velocity coupling.The first-order upwind for the volume fraction and the bounded central difference for momentum discretization are applied.PRESTO!is chosen as the pressure-discretization method because it is suitable for both tetrahedron and hexahedron grids.Based on Ref.[16],the time step is set to 1×10-5s.The density and viscosity of liquid phase are 850 kg/m3and 0.0391 kg/(m·s),density and viscosity of the vapor phase are 0.0025 kg/m3and 1×10-5kg/(m·s).The saturated vapor pressure is 3 000 Pa.

    2.4 Mesh independence

    To better capture the dynamic characteristics of cavitation,the mesh independence should be verified.Table 1 shows the results of the mass flow rateQand vapor volume fractionVin the central plane (Z=0) of computational domain with 3 types of mesh.All the results are the mean value of 2 000 time steps with an inlet pressure of 7 MPa.The quantitiesQandVboth increase with the number of elements.However,the difference between meshes 2 and 3 is very small.To optimize computing resources,mesh 2 is used in this work.

    Table 1 Results of study of mesh independence

    3 Results and discussions of simulations

    In the pilot stage of jet pipe servo-valve,the high-speed jet shoots into the receiver holes downstream.The jet strength is the greatest in the central plane (Z=0),and the cavitation phenomenon is the most evident here.So this work focuses on analyzing the flow field in the central plane.

    3.1 Analysis on vortex at receiver entrance

    Fig.4 shows the velocity vector in the local region of the central plane at 0.04 s with an inlet pressure of 7 MPa.There exists a vortex at the entrance of the receiver where easily produces cavitation phenomenon.To learn the characteristic of the vortex and the reduced cavitation,the velocity magnitudes at the receiver entrance under inlet pressures of 5 MPa,7 MPa,9 MPa,and 11 MPa are extracted,as shown in Fig.5(a).The vortex centers are located at aboutx=-0.4 mm.

    Fig.4 Results of velocity vector in local region of central plane Z=0 with an inlet pressure of 7 MPa

    The velocity of Lamb-Oseen vortex may be expressed in cylindrical coordinates as follows:

    U=[1-exp(-r2)]/r

    (1)

    where,Uis the velocity in the tangential direction,andris the radius from the vortex core.Fig.5(b) shows the profile of a Lamb-Oseen vortex.The velocity profile of vortices at the receiver entrance almost matches the profile of the Lamb-Oseen vortex.In other words,the property of cavitation at the entrance of receiver is related to Lamb-Oseen vortex.

    (a) Velocity distribution at y=0 in the central plane under various inlet pressures

    (b) Velocity distribution of Lamb-Oseen vortex

    Fig.5Comparison of velocity profiles between vortices at the receiver entrance and the Lamb-Oseen vortex

    3.2 Analysis on local cavitation

    When the inlet pressure is 5 MPa,the transient vapor fraction in the central plane is shown in Fig.6.Cavitation mainly exists at the entrance of receiver.Numerical results show that the cavitations remain constant over time.

    Fig.6 Transient vapor fraction contours in central plane with time steps of 2×10-5 s with inlet pressure of 5 MPa

    Fig.7 shows the transient cavitation patterns in the central plane with an inlet pressure of 7 MPa.Combining Figs 4 and 7,the reason each cavitation forms is deduced.The vortex cavitation at the receiver entrance is produced by the high shear between the jet shooting downstream with respect to the nozzle and the reflux moving upstream from the receiver.The cavitations have a small dithering with time and do not move with the fluid.Because cavitation increases the instability of the flow field,it is important to study the dynamic characteristics of the flow field in the pilot stage.During numerical simulations,the transient pressures are monitored at the 2 points shown in Fig.7.FFT is used to obtain the main frequencies of the pressure oscillations.Point 1 is in the vortex cavitation,point 2 in the cloud cavitation near the outlet.

    Fig.8 shows the simulation results for an inlet pressure of 9 MPa.The vortex cavitation changes slightly with inlet pressure.Compared with Fig.7,the patterns of transient cloud cavitation differ significantly.The cavitation located at the sharp corner and near the outlet is produced by the flow over the sharp corner.Vortex cavitation has a small dithering with time and does not move with the fluid.Cloud cavitation grows and collapses with time.Figs 8(a-c) show the growth of the cloud cavitation,which grows toward the outlet.The cavitation in the wake grows to 76% of the radius of in-between flow region and begins to shed in Fig.8(d).The shedding cavitation is then entrained downstream.Finally,the cavitation collapses upon approaching the high-pressure area near the outlet (as shown in Fig.8(f)).In other words,after the cavitation grows to a certain degree,the cavitation in the wake begins to shed,and this shedding cavitation is entrained downstream by the fluid.In the high-pressure area,the shedding cavitation collapses.At 9 MPa,the location of point 1 is the same as in Fig.7,whereas the monitoring point in the cloud cavitation changes to point 3 according to the location of the shedding cavitation.

    Fig.7 Transient vapor fraction contours in central plane during one shedding cycle with time steps of 2×10-5 s with inlet pressure of 7 MPa

    Fig.8 Transient vapor fraction contours in central plane during one shedding cycle with time steps of 2×10-5 s with inlet pressure of 9 MPa

    Fig.9 shows the simulation results with the inlet pressure at 11 MPa.The patterns are the same as for 9 MPa,and the cavitation in the wake approaches the outlet.The total cavitation area and the maximum vapor fraction both increase with increasing inlet pressure.The cavitation grows in Figs 9(a-c),sheds in Fig.9(d) and Fig.9(e),and collapses in Fig.9(f).The mean value of the facet-averaged vapor fraction in the central plane for 2 000 time steps is 0.0054 for 5 MPa,0.0074 for 7 MPa,0.0108 for 9 MPa,and 0.0179 for 11 MPa.With inlet pressure increasing,the area of the vortex cavitation changes slightly,but the cloud cavitation depends strongly on inlet pressure.

    Fig.9 Transient vapor fraction contours in central plane during one shedding cycle with time steps of 2×10-5s and inlet pressure of 11 MPa

    FFT results of pressure at monitoring points with different inlet pressures are shown in Fig.10.The main frequencies of vortex cavitation and cloud cavitation are 4 688 Hz and 1 465 Hz for 7 MPa,6 250 Hz and 2 051 Hz for 9 MPa,7 910 Hz and 3 125 Hz for 11 MPa,respectively.Comparing the FFT results for different inlet pressures shows clearly that more frequency components appear as the inlet pressure increases,indicating that the flow field becomes more turbulent.Furthermore,as the inlet pressure increases,the frequencies of pressure oscillations induced by vortex cavitation and shedding cavitation increase.To induce the cavitation phenomena,the pilot stage should thus be operated in a relatively low range of inlet pressure.

    Fig.10 Frequency spectrum obtained by fast Fourier transform at monitoring points with different inlet pressure

    3.3 Analysis on facet cavitation

    As the local cavitation fraction reflects the vapor of one point,its reference significance is limited.In order to make a better quantitative analysis of cavitation in the flow field,facet-average cavitation fraction is proposed to reflect the average effect of cavitation in flow field.In the discrete domain of numerical calculation,αsis defined as shown in Eq.(2).

    (2)

    where,Nis number of facets in the calculated surface.α(i,t) is vapor fraction of theith element.

    When the inlet pressure is 7 MPa,9 MPa,11 MPa,the transient characteristics of facet cavitation on the central plane are shown in Fig.11 respectively.The facet-cavitation is sensitive to the inlet pressure.It can be seen that the main frequency increases with the increase of the inlet pressure.By comparing the results of local cavitation,it is known that the main frequency of cloud cavitation is close to that of facet cavitation.So cloud cavitation has a greater influence than vortex cavitation.

    (a) 7 MPa

    (b) 9 MPa

    (c) 11 MPa

    4 Influences of outlet pressure

    As the pressure field has a great relationship with the cavitation phenomena,it is indispensable to study the influence of the outlet pressure.Here,the outlet pressure is set to 1,2 ,3 bar with inlet pressure 7 MPa (Fig.12).With the outlet pressure increasing,the vortex cavitation becomes smaller,while the cavitation at the sharp corner and the cloud cavitation are eliminated gradually.It is concluded that the method of increasing the outlet pressure is effective to avoid the cavitation phenomena in terms of the amount of the vapor.

    Fig.12Contours of volume fraction of phase 2 in central plane when the outlet pressure is 1,2,3 bar (from left to right)

    5 Influence of wedge length

    The jet with high speed impinges on the wedge when shooting into the receiver,the kinetic energy will be converted into pressure energy to move the power stage at the same time.The wedge affects the flow structure and the energy near the entrance of receiver.To study the influence of the wedge length,the flow fields for wedge lengths of 0.02 mm and 0.04 mm with an inlet pressure of 9 MPa is studied.The pressure oscillations of the vortex cavitation and the cloud cavitation with various wedges are monitored via simulation.The FFT of the pressure oscillations appear in Fig.13(a).Upon lengthening the wedge,the main frequency of the vortex cavitation increases and the main frequency of the cloud cavitation decreases.

    (a) Main frequencies at monitoring points in vortex cavitation and cloud cavitation as a function of wedge length

    (b) Energy ratio and the vapor volume in the pilot stage as a function of wedge length

    Fig.13Influence of wedge length on performance of flow field in pilot stage

    In the pilot stage,the wedge affects the impinging jet and vortices which will lead to energy loss.Thus,the energy loss between the nozzle and the receiver is studied.To determine how the wedge affects energy loss,the ratio of energy at the surfacey=-0.3 mm to the energy at the exit of the nozzle is calculated.With increasing wedge length,this energy ratio decreases,as shown in Fig.13(b) (solid line).The difference in this ratio between a wedge of 0.02 mm and one of 0.03 mm is about 0.02 mm,but the energy ratio decreases quickly from 0.03 mm to 0.04 mm wedge length.Dotted line in Fig.13(b) shows that the volume fraction of the vapor decreases with increasing wedge length.The pilot stage performs better with a shorter wedge,but it is difficult to process a tiny wedge.Above all,a reasonable wedge length is 0.03 mm.

    6 Conclusion

    LES method is utilized to make transient simulations of flow fields in the pilot stage of a jet pipe servo-valve in order to analyze cavitation phenomena and the induced pressure oscillation.Lamb-Oseen vortex is observed at the entrance of receiver.The patterns of cavitation depend strongly on the inlet pressure.When the inlet pressure is less than 5 MPa,the cavitation mainly involves a vortex cavitation at the receiver entrance.When the inlet pressure exceeds 7 MPa,vortex cavitation remains stationary at the same position,albeit with a small jitter in shape,and cloud cavitation begins to occur.When the inlet pressure is 9 MPa,cloud cavitation sheds near the outlet,and then collapses as it moves downstream to the high-pressure zone.The frequencies of the pressure oscillation induced by cavitations increase with increasing inlet pressure.By comparing with the characteristics of facet cavitation,it is concluded that cloud cavitation has a greater influence than vortex cavitation.With the outlet pressure increasing,vortex cavitation becomes smaller,while cavitation at sharp corner and cloud cavitation are eliminated gradually.Decreasing inlet pressure or increasing outlet pressure is effective to avoid cavitation phenomena.

    Upon increasing the wedge length,the main frequency of the vortex cavitation increases whereas that of the cloud cavitation decreases.The volume fraction of the vapor and the energy efficiency decrease,and decrease sharply from 0.03 mm to 0.04 mm wedge.Considering the above characteristics and the easiness of the process,the optimal length of the wedge is 0.03 mm.

    av在线天堂中文字幕| 最近最新中文字幕大全电影3 | www.熟女人妻精品国产| 欧美国产精品va在线观看不卡| 男人舔女人的私密视频| 中文字幕人妻丝袜一区二区| av网站免费在线观看视频| 亚洲成国产人片在线观看| 国产亚洲精品综合一区在线观看 | 国产精品98久久久久久宅男小说| 99国产极品粉嫩在线观看| 变态另类丝袜制服| av福利片在线| 亚洲精品av麻豆狂野| 国产视频一区二区在线看| 精品一品国产午夜福利视频| av网站免费在线观看视频| 成人三级做爰电影| 色老头精品视频在线观看| 在线视频色国产色| а√天堂www在线а√下载| 97超级碰碰碰精品色视频在线观看| 国产精品野战在线观看| 亚洲 国产 在线| 国产一区二区三区综合在线观看| 欧美人与性动交α欧美精品济南到| 九色国产91popny在线| 国产亚洲精品久久久久久毛片| 亚洲片人在线观看| cao死你这个sao货| 久久伊人香网站| 欧美日韩精品网址| 国产精品久久久久久精品电影 | 亚洲国产精品久久男人天堂| 又黄又爽又免费观看的视频| 婷婷六月久久综合丁香| 视频在线观看一区二区三区| 久久人妻av系列| 精品不卡国产一区二区三区| 亚洲,欧美精品.| 免费看十八禁软件| 高清在线国产一区| 亚洲中文字幕一区二区三区有码在线看 | 一本久久中文字幕| 91大片在线观看| 一级黄色大片毛片| 一区二区日韩欧美中文字幕| 国产成人精品久久二区二区91| 精品午夜福利视频在线观看一区| 老熟妇乱子伦视频在线观看| 男人舔女人下体高潮全视频| 欧美成人一区二区免费高清观看 | videosex国产| 亚洲成a人片在线一区二区| 欧美日本视频| 日本欧美视频一区| 中国美女看黄片| 久久久久精品国产欧美久久久| 久热爱精品视频在线9| 久热这里只有精品99| 免费搜索国产男女视频| 国产片内射在线| 又紧又爽又黄一区二区| 岛国视频午夜一区免费看| 两性夫妻黄色片| 精品久久久久久久久久免费视频| 午夜视频精品福利| 大陆偷拍与自拍| 免费不卡黄色视频| 午夜日韩欧美国产| 亚洲国产精品999在线| 国产高清有码在线观看视频 | 老鸭窝网址在线观看| 精品无人区乱码1区二区| 首页视频小说图片口味搜索| 国产亚洲欧美在线一区二区| av视频在线观看入口| 亚洲精品中文字幕一二三四区| 18禁裸乳无遮挡免费网站照片 | 中文字幕人妻丝袜一区二区| 天天添夜夜摸| 亚洲五月天丁香| 成年人黄色毛片网站| 日本一区二区免费在线视频| 国产亚洲欧美精品永久| 夜夜躁狠狠躁天天躁| 男男h啪啪无遮挡| 精品福利观看| 亚洲伊人色综图| 亚洲九九香蕉| 欧美中文综合在线视频| 国产一级毛片七仙女欲春2 | 狂野欧美激情性xxxx| 欧美日韩瑟瑟在线播放| 国产私拍福利视频在线观看| 男人的好看免费观看在线视频 | 亚洲欧洲精品一区二区精品久久久| 在线播放国产精品三级| 国产一区二区三区视频了| 啦啦啦 在线观看视频| 久久久精品国产亚洲av高清涩受| 日韩精品中文字幕看吧| 午夜福利,免费看| 久9热在线精品视频| 亚洲中文日韩欧美视频| 国产又爽黄色视频| 91国产中文字幕| 国产精品一区二区在线不卡| 国产欧美日韩一区二区三区在线| 久久中文字幕人妻熟女| 正在播放国产对白刺激| 一区二区三区高清视频在线| 久久人妻福利社区极品人妻图片| 国产精品 欧美亚洲| 久久精品91蜜桃| 亚洲精品美女久久av网站| 国产极品粉嫩免费观看在线| 欧美精品啪啪一区二区三区| 亚洲,欧美精品.| 免费看十八禁软件| 免费在线观看黄色视频的| 日韩精品免费视频一区二区三区| 欧美av亚洲av综合av国产av| 亚洲精品美女久久av网站| 国产av又大| 欧美大码av| 亚洲最大成人中文| 伊人久久大香线蕉亚洲五| 男人舔女人下体高潮全视频| 黑丝袜美女国产一区| 久久久久久久久久久久大奶| bbb黄色大片| 日本三级黄在线观看| 一级毛片精品| 久久久久国产精品人妻aⅴ院| 国产成人欧美| 亚洲国产看品久久| 女性生殖器流出的白浆| 最近最新免费中文字幕在线| 两人在一起打扑克的视频| 精品国产乱子伦一区二区三区| 国产精品免费视频内射| 变态另类丝袜制服| 亚洲av电影不卡..在线观看| 女人被躁到高潮嗷嗷叫费观| 精品免费久久久久久久清纯| 亚洲在线自拍视频| 色在线成人网| 禁无遮挡网站| 成人永久免费在线观看视频| 国产精品,欧美在线| 亚洲人成电影观看| 女人爽到高潮嗷嗷叫在线视频| 在线观看一区二区三区| 国产欧美日韩综合在线一区二区| 97人妻天天添夜夜摸| 亚洲精品美女久久久久99蜜臀| x7x7x7水蜜桃| 亚洲五月色婷婷综合| 女生性感内裤真人,穿戴方法视频| 国产亚洲欧美98| 国产精品98久久久久久宅男小说| 国产成人精品在线电影| 伦理电影免费视频| 大型黄色视频在线免费观看| 亚洲国产欧美一区二区综合| 亚洲中文日韩欧美视频| avwww免费| 精品欧美国产一区二区三| 亚洲av成人一区二区三| 18禁国产床啪视频网站| 久久久久久亚洲精品国产蜜桃av| 激情视频va一区二区三区| 久久久久久大精品| 91大片在线观看| 黑人巨大精品欧美一区二区蜜桃| 这个男人来自地球电影免费观看| 国产成+人综合+亚洲专区| 精品国产美女av久久久久小说| 欧美日韩一级在线毛片| 亚洲专区国产一区二区| 久久人妻福利社区极品人妻图片| 亚洲欧美日韩高清在线视频| 搡老岳熟女国产| 在线观看免费日韩欧美大片| 亚洲va日本ⅴa欧美va伊人久久| 国产私拍福利视频在线观看| 少妇的丰满在线观看| 亚洲三区欧美一区| 叶爱在线成人免费视频播放| 久久久久精品国产欧美久久久| 自线自在国产av| 夜夜爽天天搞| 亚洲午夜理论影院| 日本精品一区二区三区蜜桃| 精品午夜福利视频在线观看一区| 悠悠久久av| 免费观看人在逋| 国产精品一区二区免费欧美| 亚洲自拍偷在线| 久久天躁狠狠躁夜夜2o2o| 久久国产亚洲av麻豆专区| 国产成人欧美| 日本免费a在线| 久久久久精品国产欧美久久久| 曰老女人黄片| 啦啦啦 在线观看视频| 午夜福利成人在线免费观看| 黑人巨大精品欧美一区二区蜜桃| 久久九九热精品免费| 韩国av一区二区三区四区| 免费av毛片视频| 久久这里只有精品19| 黑人巨大精品欧美一区二区mp4| videosex国产| 91老司机精品| 国产真人三级小视频在线观看| 一区在线观看完整版| 亚洲一区中文字幕在线| 极品教师在线免费播放| 精品国内亚洲2022精品成人| 国产欧美日韩一区二区三| 亚洲成a人片在线一区二区| 一区二区三区激情视频| 男女下面插进去视频免费观看| 日韩大尺度精品在线看网址 | 国产成人欧美在线观看| 成人国产一区最新在线观看| 国产色视频综合| 欧美乱色亚洲激情| 久久久久久国产a免费观看| 亚洲国产精品久久男人天堂| 一级a爱片免费观看的视频| av福利片在线| 妹子高潮喷水视频| 亚洲五月天丁香| 韩国av一区二区三区四区| 深夜精品福利| 一卡2卡三卡四卡精品乱码亚洲| 少妇粗大呻吟视频| 给我免费播放毛片高清在线观看| 国产乱人伦免费视频| 日韩视频一区二区在线观看| 九色国产91popny在线| 巨乳人妻的诱惑在线观看| av福利片在线| 成人永久免费在线观看视频| 露出奶头的视频| 最近最新中文字幕大全电影3 | 人人妻人人爽人人添夜夜欢视频| 国产精品 欧美亚洲| 国产亚洲精品第一综合不卡| 精品国产一区二区久久| 每晚都被弄得嗷嗷叫到高潮| 午夜免费激情av| 久久久久国产精品人妻aⅴ院| 欧美日韩中文字幕国产精品一区二区三区 | 好看av亚洲va欧美ⅴa在| 国产精品二区激情视频| 亚洲精品国产色婷婷电影| 亚洲自拍偷在线| 日韩有码中文字幕| 精品国产超薄肉色丝袜足j| 男女下面插进去视频免费观看| 色播在线永久视频| 色综合站精品国产| 久久 成人 亚洲| 国产精品免费一区二区三区在线| 国内久久婷婷六月综合欲色啪| 色在线成人网| 夜夜夜夜夜久久久久| 欧美亚洲日本最大视频资源| 大香蕉久久成人网| 在线观看66精品国产| 免费看美女性在线毛片视频| 黄色毛片三级朝国网站| 亚洲久久久国产精品| 少妇的丰满在线观看| 色老头精品视频在线观看| 十八禁网站免费在线| www国产在线视频色| 亚洲色图av天堂| 亚洲av日韩精品久久久久久密| 国产精品一区二区免费欧美| 久久中文看片网| 美女扒开内裤让男人捅视频| 美女免费视频网站| 国产成人欧美在线观看| 韩国精品一区二区三区| 热99re8久久精品国产| 夜夜看夜夜爽夜夜摸| 狠狠狠狠99中文字幕| 亚洲国产日韩欧美精品在线观看 | 国内精品久久久久久久电影| ponron亚洲| 一本久久中文字幕| 亚洲熟女毛片儿| 母亲3免费完整高清在线观看| 好看av亚洲va欧美ⅴa在| 国产一区二区激情短视频| 两个人看的免费小视频| 精品国产美女av久久久久小说| 精品日产1卡2卡| 人人妻,人人澡人人爽秒播| 别揉我奶头~嗯~啊~动态视频| 黄网站色视频无遮挡免费观看| 亚洲一码二码三码区别大吗| 91在线观看av| 久久中文字幕人妻熟女| 一本综合久久免费| 国内毛片毛片毛片毛片毛片| 无限看片的www在线观看| 免费高清在线观看日韩| 9191精品国产免费久久| 国产av精品麻豆| 中文字幕高清在线视频| 国产黄a三级三级三级人| 制服人妻中文乱码| 国产一卡二卡三卡精品| 久久国产精品人妻蜜桃| 亚洲第一青青草原| 国产人伦9x9x在线观看| 免费av毛片视频| 国产成人啪精品午夜网站| 巨乳人妻的诱惑在线观看| 欧美丝袜亚洲另类 | 在线播放国产精品三级| 国产欧美日韩一区二区三| 欧美中文综合在线视频| 国产av一区二区精品久久| 色综合欧美亚洲国产小说| 国产亚洲精品第一综合不卡| 两人在一起打扑克的视频| 日韩精品青青久久久久久| 可以在线观看的亚洲视频| 99久久久亚洲精品蜜臀av| 午夜福利视频1000在线观看 | 免费在线观看黄色视频的| 黄色 视频免费看| 一区二区三区精品91| 久久香蕉精品热| a级毛片在线看网站| 老司机在亚洲福利影院| 夜夜爽天天搞| 黑人巨大精品欧美一区二区mp4| 日本 欧美在线| 亚洲一区中文字幕在线| 国产精品 国内视频| 日韩精品中文字幕看吧| 最近最新免费中文字幕在线| 中文亚洲av片在线观看爽| 日韩高清综合在线| 亚洲电影在线观看av| 一本久久中文字幕| 老司机靠b影院| 成人手机av| 午夜两性在线视频| 后天国语完整版免费观看| 不卡一级毛片| 午夜精品在线福利| 亚洲精品中文字幕在线视频| 国产欧美日韩综合在线一区二区| av天堂在线播放| 99久久国产精品久久久| 自线自在国产av| 非洲黑人性xxxx精品又粗又长| 天天躁夜夜躁狠狠躁躁| 日本vs欧美在线观看视频| 亚洲少妇的诱惑av| 中出人妻视频一区二区| 一区二区日韩欧美中文字幕| 伦理电影免费视频| 亚洲久久久国产精品| 欧美一级a爱片免费观看看 | 欧美黑人欧美精品刺激| 看免费av毛片| 女性生殖器流出的白浆| 亚洲国产欧美网| 国产精品爽爽va在线观看网站 | 亚洲最大成人中文| 中文字幕另类日韩欧美亚洲嫩草| 国产精品亚洲美女久久久| 少妇裸体淫交视频免费看高清 | 欧美另类亚洲清纯唯美| 黄色女人牲交| 久久国产精品人妻蜜桃| 日韩三级视频一区二区三区| 啦啦啦韩国在线观看视频| 欧美午夜高清在线| 国产aⅴ精品一区二区三区波| 久久精品国产清高在天天线| 久久热在线av| av有码第一页| 久久精品亚洲精品国产色婷小说| 日本免费a在线| 亚洲自偷自拍图片 自拍| 黄频高清免费视频| 午夜激情av网站| 这个男人来自地球电影免费观看| 亚洲一区二区三区色噜噜| 一级作爱视频免费观看| 涩涩av久久男人的天堂| 亚洲欧美精品综合久久99| 中文字幕人成人乱码亚洲影| 日韩欧美国产在线观看| 99国产精品免费福利视频| 一级毛片精品| 中文字幕另类日韩欧美亚洲嫩草| 午夜激情av网站| 国产成人影院久久av| 国产99白浆流出| 在线观看免费午夜福利视频| 亚洲精品一区av在线观看| 亚洲一区高清亚洲精品| 日本 av在线| 欧美大码av| 长腿黑丝高跟| 亚洲av片天天在线观看| 男女之事视频高清在线观看| 美女国产高潮福利片在线看| 亚洲人成电影观看| 午夜精品国产一区二区电影| 性欧美人与动物交配| 18禁国产床啪视频网站| 亚洲 欧美一区二区三区| 淫秽高清视频在线观看| 亚洲国产精品合色在线| www.www免费av| 老司机靠b影院| 久久这里只有精品19| 在线视频色国产色| 中文字幕最新亚洲高清| 变态另类丝袜制服| 中文字幕精品免费在线观看视频| 免费人成视频x8x8入口观看| 日韩中文字幕欧美一区二区| 热99re8久久精品国产| 日韩成人在线观看一区二区三区| 国产激情久久老熟女| 欧美激情 高清一区二区三区| 一级毛片女人18水好多| 欧美日韩亚洲综合一区二区三区_| 色老头精品视频在线观看| 日韩高清综合在线| 好男人电影高清在线观看| 欧美一级a爱片免费观看看 | 久久中文看片网| 窝窝影院91人妻| 国产精品av久久久久免费| 色婷婷久久久亚洲欧美| 这个男人来自地球电影免费观看| 麻豆久久精品国产亚洲av| x7x7x7水蜜桃| 国产一区在线观看成人免费| 黄色丝袜av网址大全| 国产一区二区三区综合在线观看| 黑人操中国人逼视频| 大型av网站在线播放| 又紧又爽又黄一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久亚洲av毛片大全| 色av中文字幕| 亚洲激情在线av| 中文字幕av电影在线播放| 久久久国产精品麻豆| 亚洲国产日韩欧美精品在线观看 | 在线免费观看的www视频| 久久久久久久久免费视频了| 久久精品影院6| 99久久99久久久精品蜜桃| 99国产综合亚洲精品| 无限看片的www在线观看| 电影成人av| 国产一级毛片七仙女欲春2 | 性色av乱码一区二区三区2| 亚洲情色 制服丝袜| 国产又色又爽无遮挡免费看| 老司机午夜福利在线观看视频| 婷婷六月久久综合丁香| 久久人妻av系列| 亚洲熟妇熟女久久| 丁香六月欧美| 免费高清在线观看日韩| 日韩国内少妇激情av| 69av精品久久久久久| 麻豆成人av在线观看| 大香蕉久久成人网| 自线自在国产av| 99久久综合精品五月天人人| avwww免费| 中文字幕最新亚洲高清| 亚洲av成人av| 一级毛片女人18水好多| 久久中文字幕人妻熟女| 国语自产精品视频在线第100页| 男人的好看免费观看在线视频 | 久久午夜综合久久蜜桃| 美女高潮喷水抽搐中文字幕| 精品一区二区三区av网在线观看| 欧美日本中文国产一区发布| netflix在线观看网站| 最近最新中文字幕大全免费视频| 亚洲欧美精品综合一区二区三区| 国产精品久久视频播放| 亚洲精品中文字幕在线视频| 黄色片一级片一级黄色片| 精品久久久久久,| 日本在线视频免费播放| 久久中文看片网| 丁香六月欧美| 嫩草影院精品99| 日韩精品中文字幕看吧| 在线观看免费日韩欧美大片| 亚洲全国av大片| 成年女人毛片免费观看观看9| 黄色女人牲交| 国产成人精品久久二区二区免费| 亚洲aⅴ乱码一区二区在线播放 | 成人特级黄色片久久久久久久| 国内精品久久久久久久电影| 黄色女人牲交| 看黄色毛片网站| 免费搜索国产男女视频| 国产欧美日韩一区二区三区在线| 国产亚洲欧美精品永久| 在线天堂中文资源库| 久久精品亚洲熟妇少妇任你| 国产亚洲av嫩草精品影院| 无遮挡黄片免费观看| 在线播放国产精品三级| 亚洲人成77777在线视频| 国产乱人伦免费视频| bbb黄色大片| 两个人免费观看高清视频| 男男h啪啪无遮挡| 一级,二级,三级黄色视频| 嫩草影视91久久| 亚洲第一电影网av| 午夜福利免费观看在线| 侵犯人妻中文字幕一二三四区| 老司机午夜十八禁免费视频| 国产蜜桃级精品一区二区三区| 色综合婷婷激情| 久久久久国内视频| 国产男靠女视频免费网站| 久久人妻av系列| 国产伦人伦偷精品视频| 国产一区二区三区视频了| 欧美成人免费av一区二区三区| 久久久水蜜桃国产精品网| 亚洲国产精品合色在线| 日韩有码中文字幕| 黄色女人牲交| 91在线观看av| 青草久久国产| 亚洲国产毛片av蜜桃av| 脱女人内裤的视频| 老鸭窝网址在线观看| 天天躁夜夜躁狠狠躁躁| 欧美中文日本在线观看视频| 国产不卡一卡二| 制服人妻中文乱码| 国产一区二区激情短视频| 性少妇av在线| 女性被躁到高潮视频| 亚洲五月天丁香| 国产一级毛片七仙女欲春2 | 很黄的视频免费| 亚洲自拍偷在线| 日韩欧美国产在线观看| 1024香蕉在线观看| 成人欧美大片| 制服丝袜大香蕉在线| 国产伦一二天堂av在线观看| av网站免费在线观看视频| 日韩国内少妇激情av| 麻豆av在线久日| 国产高清视频在线播放一区| 国产97色在线日韩免费| 国产xxxxx性猛交| 亚洲欧美精品综合久久99| 亚洲视频免费观看视频| 啦啦啦韩国在线观看视频| 少妇裸体淫交视频免费看高清 | 男女下面插进去视频免费观看| 少妇 在线观看| 波多野结衣一区麻豆| 此物有八面人人有两片| 在线播放国产精品三级| 少妇裸体淫交视频免费看高清 | 丝袜美腿诱惑在线| 老司机靠b影院| 国内久久婷婷六月综合欲色啪| 久久人妻福利社区极品人妻图片| 亚洲成人久久性| 国产精品久久电影中文字幕| 国产精品精品国产色婷婷| 麻豆久久精品国产亚洲av| 欧美国产日韩亚洲一区| 欧美日韩乱码在线| 丝袜在线中文字幕| 校园春色视频在线观看| 国产av精品麻豆| 12—13女人毛片做爰片一| 亚洲欧洲精品一区二区精品久久久| 搡老妇女老女人老熟妇| 大型黄色视频在线免费观看| 精品第一国产精品| 亚洲aⅴ乱码一区二区在线播放 | 波多野结衣高清无吗| 国产在线精品亚洲第一网站| 色播亚洲综合网| 亚洲美女黄片视频| 看片在线看免费视频| 成人手机av|