• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization of yield criterion and simulation based on QP980 high strength steel①

    2020-04-13 07:05:58GuanYanzhi管延智LiCaijunWangHaiboJiangYuan
    High Technology Letters 2020年1期

    Guan Yanzhi (管延智),Li Caijun,Wang Haibo,Jiang Yuan

    (*School of Mechanical and Materials Engineering,North China University of Technology,Beijing 100144,P.R.China)(**Engineering Research Center of Variable Cross-Section Roll Forming,Beijing 100144,P.R.China)

    Abstract

    Key words:QP980 steel,stress-strain,yield criterion,finite element simulation

    0 Introduction

    At present,the demand is stronger for materials with high mechanical properties and the development of new varieties of high-strength steels is promoted.Quenched Ductile steels belong to the third generation of advanced high-strength steels,mainly composed of high-strength martensite,ferrite and residual austenite.Quenching and partitioning (QP) steel strength can reach 1 500 MPa.The corresponding elongation is still 15% with good mechanical properties[1].It is the future development trend that automotive will apply QP steel widely.Due to different internal structures,metal sheets have different yield behaviors under the same deformation conditions.In the deformation,the trip effect due to the residual austenite phase transition is beneficial to the improvement of the plasticity of the steel,so that the QP steel has the characteristics of high elongation and high strength[2].However,the steel material is usually subjected to stress in many directions in practical application,only one-way tensile test can’t fully reflect the performance of the material.In this work,a two-way tensile experiment of QP980 is carried out on an arm opening 10-shaped specimen[3],and the stress-strain relationship is analyzed by processing the experimental data,and the obtained data are validated by the usual yield criterion[4].Roll forming is a material saving,energy saving,high efficient and advanced net forming technology[5],achieving 1 000 MPa grade ultra high strength steel variable cross-section member forming at normal temperature and suiting for sheet metal forming.Through the method of theory and experiment of plastic work contour map comparison,exploring its forming mechanism based on the yield criterion is more suitable for steel material,obtaining the minimum error criterion and further optimizing the parameters obtained for QP980 material yield criterion.It is a foundation that QP980 ultra high strength steel can obtain high precision finite element simulation results.

    1 QP980 tensile experiment of high strength steel

    First,according to China’s national standards,the thickness of 1mm QP980 steel plate for laser cutting to obtain experimental specimens as shown in Fig.1.This experiment uses the biaxial tension testing machine developed by the Beijing Variable Cross Section Roll-forming Technology Research Center to carry out tensile test[6],check the tensile sensor and the extension meter before the experiment,its error is less than 1%.

    (a) Uniaxial tensile specimen

    (b) Biaxial tensile specimen

    1.1 Uniaxial tensile test

    In order to enhance the accuracy of the experiment,the direction of 0 °,45 ° and 90 ° along with the rolling direction (hereinafter referred to as 0 ° direction,45 ° direction,90 ° direction) are 3 times repeated unilateral experiments.According to the variation data of load (F) and deformation (Δl) obtained by unilateral experiment,the experimental data of each direction are calculated by stress and strain,and the real stress-real strain curve is plotted as shown in Fig.2.

    (a) Uniaxial tensile true stress-strain 0 ° direction

    (b) Uniaxial tensile true stress-strain 45 ° direction

    (c) Uniaxial tensile true stress-strain 90 ° direction

    In Fig.2,the curves of three different directions are roughly the same,and the effect of specimen cutting direction on stress and strain is not significant.But overall,the 90 ° direction’s comprehensive performance is a little better,with high strength and elongation rate.

    According to the experimental data,the performance indexes of one-way tensile experiment are calculated as shown in Table 1.Because there is no obvious yield point in the stress-strain curve of the material,the yield strength of 0.2% is equivalent to the real strain quarter.

    Table 1 QP980 mechanical parameters in different directions

    The results show that the yield strength of the QP980 is about 640 MPa,the tensile strength is about 1 060 MPa.

    1.2 Biaxial stretching experiment

    The Biaxial stretching experiments with 3∶4 different loading ratios of 4∶1,4∶2,4∶3,4∶4,2∶4,1∶4 and seven were carried out by cutting the double tensile specimens along the rolling direction.The experimental data of each direction are calculated and treated by stress and strain,and the real stress-strain curve of biaxial tensile is plotted as shown in Fig.3.

    (a) Biaxial tensile true stress-strain proportion 4∶1

    (b) Biaxial tensile true stress-strain proportion 4∶2

    (d) Biaxial tensile true stress-strain proportion 4∶4

    (e) Biaxial tensile true stress-strain proportion 3∶4

    (f) Biaxial tensile true stress-strain proportion 2∶4

    (g) Biaxial tensile true stress-strain proportion 1∶4

    As shown in Fig.3,the stress-strain curves in both directions are quite different when the double-pull specimens are loaded with unequal loads in the rolling direction and the vertical rolling direction.In the experiment with the load ratio of 1∶4 or 4∶1,the negative strain occurs in the small load direction value,indicating that the specimen in this case did not stretch along the direction,but retracted.

    The data from the direction of 0 ° (4∶0) and 90 ° (0∶4) in the unilateral experiment are converted to the double pull data.The stress-strain curves of the rolling direction and the vertical rolling direction are compared in Fig.4.

    (a) True stress-strain curve of biaxial tensile rolling direction

    (b) True stress-strain curve of biaxial tensile vertical rolling direction

    Fig.4True stress-strain curve of biaxial tensile

    2 Research on yield behavior

    After obtaining the bidirectional mechanical properties of QP980 under different loading ratios,it can be determined which kind of yield criterion is more suitable for the material.

    2.1 Plastic contour experiment on QP980

    Using the tensile test data and the unit volume plastic work equivalence principle,the experimental plastic work contour is plotted as shown in Fig.5.

    According to the theory of plastic increment,the yield surface will be enlarged continuously as the load increases or the deformation enlarges.In Fig.5,the contour of each plastic work has an external convex trend,and when the value of the equivalent strain point is increased from 0.2% to 1.5%,the contour of the experimental plastic work corresponding to each strain point is gradually expanded outward.

    Fig.5 Experimental plastic work contours of QP980

    2.2 Comparison of theoretical curves and experimental curves of different yield criteria

    The corresponding stress at 0.5%,0.75%,1% and 1.5% four strain points are compared with Mises,Hill’48,Hosford and Barlat89 four common yield criteria,and the required data is shown in Table 2.

    The strain points in the table are selected according to the tensile test results,because different results are calculated according to different strain points,which will cause some errors.Therefore,in order to reduce the error caused by the selection of strain points,the theoretical and experimental curves of yield criterion are normalized.

    2.2.1 Analysis and comparison of Mises yield criterion

    Table 2 The biaxial stretching yield stress value of QP980

    Mises yield criterion formula in plane stress state:

    (1)

    where,σ1is the stress of the material rolling direction andσ2is the stress of the vertical rolling direction of the material.σsis equivalent stress and the corresponding stress value in Table 2 taken according to different strain points.

    The Mises description criteria and experimental points are shown in Fig.6.It can be seen from the graph that although the theoretical curve is in line with the experimental point,the whole theoretical curve is in the upper right of all experimental points,so Mises criterion is not good to the yield behavior of QP980 high strength steel.

    Fig.6 Comparison between normalized experimental plastic work contours and Mises yield criterion

    2.2.2 Analyze and compare Hill’48 yield criterion

    Under the condition of plane stress,Hill’48 yield criterion formula[7-10]is calculated.The simplified formula is

    (2)

    where,σbis the equal tensile stress.The corresponding equivalent stress in Table 2 is obtained by each parameter according to different strain points.Get the regular Hill’48 criteria and experimental points,shown in Fig.7.

    Fig.7 Comparison between normalized experimental plastic work contours and Hill’48 yield criterion

    As can be seen from Fig.7,the theoretical curve of Hill’48 runs through the experimental point and is basically consistent with the external convex trend of the experimental point line,so Hill’48 yield criterion is good for the QP980 high strength steel material.

    2.2.3 Analyze and compare Hosford yield criterion

    QP980 is a body-centered cubic structure of metal,so Hosford yield criterion formula can be simplified as

    (3)

    In Eq.(3),ris the plastic strain ratio.Each parameter is valued according to the different strain points by Table 2.Hosford criterion is compared with the experimental point in Fig.8.

    Fig.8 Comparison between normalized experimental plastic work contours and Hosford yield criterion

    The curve in Fig.8 is far from the line between the theoretical curve and the experimental point,so Hosford yield criterion is not suitable to describe the yielding behavior of QP980.

    2.2.4 Analyze and compare Barlat89 yield criterion

    The formula of Barlat89 yield criterion is

    f=a|K1+K2|n+a|K1-K2|n

    (4)

    where,

    According to the plastic strain ratio calculation parameter[8]:

    c=2-a

    where,the yield strength of the material 45 ° in the direction of single pull isσ45.The data in Table 2 is entered into the formula of Barlat89 yield criterion.Barlat89 criterion is compared with the experimental point in Fig.9.

    Fig.9 Comparison between normalized experimental plastic work contours and Barlat89 yield criterion

    It can be seen from the graph that the theoretical curve of Barlat89 yield criterion is larger than that of experimental point,and the difference of coincidence degree is that the Barlat89 yield criterion is not suitable for QP980 high strength steel.

    2.3 Compare yield criterion error calculation

    In order to express more clearly the coincidence degree of yield criterion for QP980 high-strength steel,the yield trajectories and the error values of experimental data are compared by calculating various yield criteria.The calculation formula of the error δ is as follows:

    (5)

    where,diis the straight line distance from the experimental yield point to the corresponding theoretical point.σ1iis the abscissa of the experimental yield point;σ2iis the ordinate of the yield point of the experiment;kis the number of experimental points,and the value ofkis 7.

    The error and average error of each yield criterion at each strain point are calculated by using Eq.(5),Table 3 and Table 4 can be obtained.

    Table 3 Error size of each yield criterion at each strain point

    Table 4 Average error of each yield criterion at each strain point

    According to the data in Table 3 and Table 4,the error values of the yield criteria at different experimental points on the experimental plastic contour are drawn into a columnar diagram,as shown in Fig.10.

    Fig.10 Comparison of different experimental point error

    It can be clearly observed from the figure that the relative error between Hosford and Barlat89 yield criterion is larger than that of Mises and Gotoh yield criterion.Hill’ 48 error value is relative minimum.

    3 Optimization based on Hill’48 yield criterion

    Due to the Hill’48 yield criterion’s error still reached 38.2%,optimizing the Hill’48 criteria of solving method about stress anisotropy.In the experimental plastic work line of Fig.5,the extruding trend of the curve is more obvious as the strain increases.Therefore,the equivalent plastic strain parameter (ε-p) is introduced into the expression of Hill’48 yield criterion.Since theε-phas no units,it has no effect on the ends of the expression.On the basis of Eq.(1),the optimized expression is

    (6)

    (7)

    Fig.11 Experimental plastic contour fitting curve

    Table 5 Fitting parameters of optimization formula

    (a) f(ε-p) fitting diagram

    (b) g′(ε-p) fitting diagram

    The parameter formula obtained after fitting is as follows:

    f(ε-p)=1.02+1.97ε-p

    (8)

    g′(ε-p) = 8.36ε-p-240.15ε-p2

    (9)

    The optimum formula is

    According to Eq.(10),the optimized yield criterion is compared with the experimental point,as shown in Fig.13.

    Fig.13 Comparison between the optimized yield criterion and experimental points after regularization

    The error and average error of each yield criterion at each strain point are calculated by using Eq.(5),Table 6 can be obtained.

    Table 6 Error after optimization of Hill’48 rule

    Draw the error value into a columnar graph and compare it with Hill’48,as shown in Fig.14.

    Fig.14 Error comparison between optimization criteria and Hill’48

    As can be seen from Table 4 and Fig.14,the average error of the optimized Hill’48 yield criterion is 29.8%,which is 8.4% lower than that of Hill’48.The error of the optimized curve at the strain point 0.75% is only 0.149.Therefore,the optimized Hill’48 yield criterion is more suitable for describing the yield behavior of QP980 high strength steel.

    4 Finite element simulation based on QP980 roll forming model

    4.1 Establishment of QP980 roll forming model

    Because many forming mechanism contains a variable height die dynamic roll forming process,so the production line structure design can’t completely guarantee the rationality and reliability of equipment and process reliability,so it is necessary in the production of equipment before using the finite element simulation analysis.In order to solve possible problems,improving equipment design success rate and reducing the costs[11].

    Roll forming production line is variable height fixed die and dynamic roll,which is independently developed by Beijing Roll Forming Technology Center,as shown in Fig.15.ABAQUS is used to qualitatively research and analyse the forming process of QP980[12-14].

    Fig.15 Variable section element of variable height fixed die roll forming line

    The simplified 3D model is drawn in the SolidWorks software,and then the model is introduced into the ABAQUS finite element software,as shown in Fig.16.The model consists of five stands mould,forming rollers and experimental plates.The angles of the rolls are 30 °,50 °,70 °,84 °,84 °,respectively.The forming angles of the 4th stands are the same as those of the 5th passes.The reason is that the sheet can take full plastic deformation.The forming effect is good.

    Fig.16 Simplified model of variable cross-section unit

    4.2 Setting of model data

    Through uniaxial and biaxial tension experiment of QP980 high strength steel,the parameters of material mechanical properties can be obtained.The main deformation occurs in the rolling direction in the actual forming process.Therefore use data about the direction of roll forming for simulation and analysis.The data of roll forming is that uniaxial tension tests of 0 ° direction.

    The most suitable description of QP980 high strength steel is the optimized Hill’48 theory curve,so this simulation selects the Hill’48 criterion after optimization.Because of Mises yield criterion and Hill’48 yield criterion in the ABAQUS software,the formula coefficient is only needed when the software is used.The calculation formula given in the user’s manual is:

    f(σ)=F(σ22-σ33)2+G(σ33-σ11)2

    (11)

    In this research,the simulation analysis only needs to consider the plane stress,soL,M,Nneed not be calculated.The values ofR12,R13andR23are all 1,and the other parameters are calculated as follows[14]:

    (12)

    The parameter values of Hill’48 yield criterion with ABAQUS are obtained,shown as Table 7.

    Table 7 Hill’48 yield criterion parameter value

    5 Result of finite element simulation analysis of QP980 high strength steel

    5.1 Equivalent stress analysis

    The following Fig.17 is the equivalent stress cloud diagram of high strength steel QP980 after variable cross-section roll-forming production line.From the diagram,it can clearly be seen that the sheet forming quality is good,and there is no larger side wave.In the bending deformation zone equivalent large stress is relatively large,while equivalent stress is small in the no deformation zone,especially in the U shaped groove of stress concentration,the maximum stress also occurs in the area.

    Fig.17 Equivalent stress cloud diagram of QP980 sheet metal after forming

    5.2 Equivalent strain analysis

    Fig.18 is the equivalent plastic strain cloud diagram of QP980 sheet.The equivalent plastic strain value in the no deformation area is almost zero.The equivalent plastic strain is mainly concentrated in the bending area and the inside of the U groove which is uniform.The maximum strain value is 0.167,which occurs near the U shaped groove.

    Fig.18 Equivalent strain cloud diagram of QP980 sheet metal after forming

    6 Experimental verification

    Finite element simulation model of the QP980 high strength steel is verified by the prototype of the production line with variable height roll forming process.As shown in Fig.19,from the picture,it can be seen that the quality of the forming parts is better,the web is smooth,and the bending and warpage defects do not appear on the edge of the sheet metal.

    Fig.19 QP980 high strength steel formed target parts of complete forming

    In order to visually evaluate the closeness of the finite element simulation results and the experimental results,a three-dimensional laser scanner can be used to perform three-dimensional scanning on the experimental components to obtain a model of the molded part,and then the obtained model is compared with the finite element simulation results.The formed part was laid flat on the ground,aging treatment was performed to release the forming stress,and the data collected from the test piece was modeled after 6 months.The comparison between the simulation results and the experimental results is shown in Fig.20.

    (a) overall comparison

    Fig.20 Comparison of simulation results and experimental results

    It can be seen from Fig.20(a) that the simulation results are in good agreement with the experimental results in the middle of the molded part,and there are large differences at both ends of the formed part.It can be seen from Figs 20(c)-(e) that the airfoil rebound and web deformation of the simulation results are consistent with the experimental results in the range of 600-1 400 mm from the left side of the part.It can be seen from Fig.20(b) and Fig.20(f) that the molded part not only has a relatively serious longitudinal warping deformation,but also has a torsional deformation,and the torsional deformation is particularly evident at both ends of the part.

    The maximum deviation values obtained from the comparison model are shown in Table 8.It can also be seen from the table that the deviation between the ends of the formed piece is large.Torsional deformation is mainly due to the existence of machining and assembly errors,so that the trajectory of the roll does not coincide with the contour of the mold,resulting in asymmetry of the force on both sides of the slab and the web.

    Table 8 Maximum deviation between simulation results and experimental results (mm)

    7 Conclusions

    QP980 yields strength about 640 MPa,tensile strength of about 1 060 MPa,but also has good elongation properties.The experimental plastic work contour is drawn.QP980 has anisotropy characteristic.The work Compares with the QP980 experimental data by four commonly used yield rules of Mises,Hill’48,Hosford and Barlat89.Hill’48 yield criterion is in good agreement with the QP980 experimental data.The theoretical yield trajectory of Hill’48 yield criterion and the experimental plastic work contour line are the smallest relative to Mises,Gotoh and Hill’93,and the error after optimization is reduced by 8.4%.The quality of QP980 ultra high strength steel finite element simulation forming is better,in agreement with the actual forming parts.The optimized Hill’48 yield criterion is more suitable to describe the yield behavior of QP980 ultra high strength steel in variable cross section roll forming.

    男女下面插进去视频免费观看| 香蕉丝袜av| 久久精品91无色码中文字幕| av片东京热男人的天堂| 咕卡用的链子| 亚洲专区中文字幕在线| videosex国产| 青草久久国产| 老司机午夜十八禁免费视频| 我的亚洲天堂| 老司机靠b影院| 一区二区日韩欧美中文字幕| 日韩欧美免费精品| 免费在线观看黄色视频的| 91大片在线观看| 曰老女人黄片| 美女午夜性视频免费| 久久中文字幕人妻熟女| 精品久久久久久电影网| 欧美日韩国产mv在线观看视频| 每晚都被弄得嗷嗷叫到高潮| 国产三级黄色录像| 人人妻人人澡人人看| 久久青草综合色| 亚洲成人免费电影在线观看| 十八禁网站网址无遮挡| 操出白浆在线播放| 国产99久久九九免费精品| 亚洲中文字幕日韩| 天堂动漫精品| av福利片在线| 成人精品一区二区免费| 亚洲国产成人一精品久久久| 成人亚洲精品一区在线观看| 精品国产乱码久久久久久小说| 黄片播放在线免费| 少妇粗大呻吟视频| 91成年电影在线观看| 69精品国产乱码久久久| 少妇猛男粗大的猛烈进出视频| 12—13女人毛片做爰片一| 亚洲av美国av| 如日韩欧美国产精品一区二区三区| 国产人伦9x9x在线观看| 国产一区二区三区视频了| 精品乱码久久久久久99久播| 制服诱惑二区| 99国产精品99久久久久| 91成人精品电影| 黑丝袜美女国产一区| 精品久久久久久电影网| 欧美乱码精品一区二区三区| 国产精品久久久av美女十八| 久久久久久久久久久久大奶| 久久午夜综合久久蜜桃| 12—13女人毛片做爰片一| 亚洲精品美女久久av网站| 成人手机av| 欧美久久黑人一区二区| 日韩免费av在线播放| 亚洲精品粉嫩美女一区| 操美女的视频在线观看| 在线十欧美十亚洲十日本专区| 亚洲国产毛片av蜜桃av| 黄频高清免费视频| √禁漫天堂资源中文www| 激情在线观看视频在线高清 | 视频区欧美日本亚洲| 美女主播在线视频| 国精品久久久久久国模美| 成人av一区二区三区在线看| 岛国毛片在线播放| av片东京热男人的天堂| 欧美人与性动交α欧美软件| 久久精品aⅴ一区二区三区四区| 精品福利永久在线观看| 亚洲欧洲精品一区二区精品久久久| 亚洲专区国产一区二区| 精品人妻熟女毛片av久久网站| 亚洲色图 男人天堂 中文字幕| xxxhd国产人妻xxx| 飞空精品影院首页| 性高湖久久久久久久久免费观看| 成人国产av品久久久| 亚洲熟妇熟女久久| aaaaa片日本免费| 精品久久久精品久久久| 国产一区有黄有色的免费视频| 18禁美女被吸乳视频| 人妻久久中文字幕网| 国产精品久久久久久精品电影小说| 免费看a级黄色片| www.999成人在线观看| 五月天丁香电影| 黄片播放在线免费| 久久午夜综合久久蜜桃| 精品久久久精品久久久| 亚洲va日本ⅴa欧美va伊人久久| 精品福利观看| 动漫黄色视频在线观看| 亚洲成人免费av在线播放| 日韩精品免费视频一区二区三区| 久久国产精品男人的天堂亚洲| 欧美亚洲日本最大视频资源| 久久人人97超碰香蕉20202| 亚洲国产成人一精品久久久| 精品视频人人做人人爽| 成年人免费黄色播放视频| 亚洲一卡2卡3卡4卡5卡精品中文| netflix在线观看网站| 久久久国产欧美日韩av| 国产免费福利视频在线观看| 多毛熟女@视频| 亚洲欧美日韩另类电影网站| 五月开心婷婷网| 菩萨蛮人人尽说江南好唐韦庄| 美国免费a级毛片| 国产又爽黄色视频| 桃红色精品国产亚洲av| 亚洲国产欧美网| 丝袜喷水一区| 大香蕉久久成人网| 丁香六月欧美| 日韩精品免费视频一区二区三区| 电影成人av| 伦理电影免费视频| av天堂在线播放| 亚洲欧美一区二区三区黑人| 黑人欧美特级aaaaaa片| 国产精品影院久久| 黄片播放在线免费| 国产日韩欧美视频二区| 大陆偷拍与自拍| 欧美成人免费av一区二区三区 | 在线 av 中文字幕| 老汉色av国产亚洲站长工具| 欧美在线一区亚洲| 久久ye,这里只有精品| 亚洲精品在线美女| 男女之事视频高清在线观看| 久久久精品94久久精品| 中文字幕制服av| 欧美激情高清一区二区三区| 大码成人一级视频| 麻豆乱淫一区二区| 19禁男女啪啪无遮挡网站| e午夜精品久久久久久久| 老司机亚洲免费影院| 日韩欧美一区视频在线观看| 成人黄色视频免费在线看| 亚洲av片天天在线观看| 他把我摸到了高潮在线观看 | tube8黄色片| 精品福利永久在线观看| 国产成人精品久久二区二区免费| 蜜桃在线观看..| 黄色片一级片一级黄色片| 老司机深夜福利视频在线观看| 久久久精品免费免费高清| 亚洲色图 男人天堂 中文字幕| 黑人操中国人逼视频| 男女无遮挡免费网站观看| 两性夫妻黄色片| 一区二区三区国产精品乱码| 久久久欧美国产精品| 欧美日韩一级在线毛片| 欧美日韩av久久| 日本黄色日本黄色录像| 欧美中文综合在线视频| 国产精品久久久久久精品电影小说| 嫩草影视91久久| 91大片在线观看| 国产精品欧美亚洲77777| 日本av手机在线免费观看| 欧美日韩国产mv在线观看视频| 激情在线观看视频在线高清 | svipshipincom国产片| 免费在线观看日本一区| 下体分泌物呈黄色| 久久久久久人人人人人| 国产野战对白在线观看| 91麻豆精品激情在线观看国产 | 精品国产超薄肉色丝袜足j| 乱人伦中国视频| 精品人妻熟女毛片av久久网站| 亚洲一区二区三区欧美精品| 大码成人一级视频| 夜夜骑夜夜射夜夜干| 亚洲伊人色综图| 亚洲国产毛片av蜜桃av| 欧美亚洲日本最大视频资源| 人人妻人人爽人人添夜夜欢视频| 如日韩欧美国产精品一区二区三区| 精品一区二区三区av网在线观看 | 91精品三级在线观看| 18在线观看网站| 青青草视频在线视频观看| 美女视频免费永久观看网站| 国产午夜精品久久久久久| 高清毛片免费观看视频网站 | 国产主播在线观看一区二区| 亚洲精品自拍成人| 色尼玛亚洲综合影院| 夜夜骑夜夜射夜夜干| avwww免费| 日韩人妻精品一区2区三区| 免费不卡黄色视频| 色播在线永久视频| 18禁观看日本| 他把我摸到了高潮在线观看 | 国产在线精品亚洲第一网站| 超碰成人久久| 男人舔女人的私密视频| 国产主播在线观看一区二区| 在线看a的网站| av福利片在线| 久久久久国产一级毛片高清牌| 搡老熟女国产l中国老女人| 999精品在线视频| 欧美变态另类bdsm刘玥| 欧美在线一区亚洲| 99久久精品国产亚洲精品| 亚洲 欧美一区二区三区| 麻豆乱淫一区二区| 丝瓜视频免费看黄片| 国产精品欧美亚洲77777| 国产免费视频播放在线视频| 一本久久精品| 亚洲精品成人av观看孕妇| 97在线人人人人妻| 人妻一区二区av| 狠狠狠狠99中文字幕| aaaaa片日本免费| 中文字幕av电影在线播放| 999精品在线视频| 蜜桃在线观看..| 在线看a的网站| 最新在线观看一区二区三区| 日日爽夜夜爽网站| 欧美日韩亚洲高清精品| 1024香蕉在线观看| 日本av免费视频播放| 久久国产精品人妻蜜桃| avwww免费| 一区二区av电影网| 午夜两性在线视频| 五月开心婷婷网| 如日韩欧美国产精品一区二区三区| 18禁美女被吸乳视频| 性少妇av在线| 午夜免费鲁丝| 国产日韩欧美视频二区| 18禁国产床啪视频网站| 精品免费久久久久久久清纯 | 久久久国产成人免费| 亚洲欧洲日产国产| 午夜激情av网站| 精品国产一区二区三区四区第35| 亚洲成av片中文字幕在线观看| a级毛片在线看网站| 777米奇影视久久| 国产成+人综合+亚洲专区| 黑人巨大精品欧美一区二区蜜桃| 女性生殖器流出的白浆| 精品一区二区三区av网在线观看 | 两人在一起打扑克的视频| 亚洲中文字幕日韩| 1024视频免费在线观看| 99国产精品一区二区三区| 性高湖久久久久久久久免费观看| 久久国产精品人妻蜜桃| 久久毛片免费看一区二区三区| 国产单亲对白刺激| 国产在线一区二区三区精| 欧美成狂野欧美在线观看| 老熟妇乱子伦视频在线观看| 免费观看av网站的网址| 99九九在线精品视频| 十八禁网站网址无遮挡| 天堂8中文在线网| av欧美777| 夜夜夜夜夜久久久久| 婷婷成人精品国产| 嫁个100分男人电影在线观看| 女性被躁到高潮视频| 国产男女超爽视频在线观看| 男男h啪啪无遮挡| 高清视频免费观看一区二区| 久久影院123| 亚洲国产看品久久| 日韩中文字幕视频在线看片| 亚洲av成人不卡在线观看播放网| 午夜精品久久久久久毛片777| 在线观看免费视频日本深夜| 一级,二级,三级黄色视频| 无限看片的www在线观看| 女人久久www免费人成看片| 国产在线精品亚洲第一网站| 免费在线观看完整版高清| 人妻久久中文字幕网| 亚洲 国产 在线| 久久人妻福利社区极品人妻图片| 欧美一级毛片孕妇| 一区二区三区激情视频| 美女高潮喷水抽搐中文字幕| 人人妻人人澡人人看| 亚洲精品国产精品久久久不卡| 国产一区二区三区综合在线观看| 国产成人av教育| 亚洲欧美一区二区三区久久| 日韩精品免费视频一区二区三区| 在线观看免费日韩欧美大片| 制服人妻中文乱码| 精品少妇一区二区三区视频日本电影| 成人免费观看视频高清| 久久午夜综合久久蜜桃| 欧美亚洲日本最大视频资源| 国产精品久久久久久人妻精品电影 | 首页视频小说图片口味搜索| 国产精品亚洲一级av第二区| 欧美日韩亚洲综合一区二区三区_| 国产人伦9x9x在线观看| 国产精品影院久久| 十八禁人妻一区二区| 啦啦啦中文免费视频观看日本| 亚洲成人免费av在线播放| 制服诱惑二区| 欧美日韩精品网址| 视频区欧美日本亚洲| 欧美精品av麻豆av| 大型黄色视频在线免费观看| 国产免费福利视频在线观看| 日日爽夜夜爽网站| 丁香六月天网| 一级,二级,三级黄色视频| 久久影院123| 国产精品影院久久| 男女免费视频国产| 正在播放国产对白刺激| 久久婷婷成人综合色麻豆| 亚洲性夜色夜夜综合| 熟女少妇亚洲综合色aaa.| 精品国产亚洲在线| 国产免费现黄频在线看| 国产亚洲欧美精品永久| 精品国产亚洲在线| 中文字幕人妻丝袜制服| 最近最新中文字幕大全电影3 | 嫁个100分男人电影在线观看| 热re99久久国产66热| 欧美激情 高清一区二区三区| 成年女人毛片免费观看观看9 | 中文字幕高清在线视频| 国产不卡av网站在线观看| 日本撒尿小便嘘嘘汇集6| 热re99久久精品国产66热6| 久久国产精品大桥未久av| 免费av中文字幕在线| 美女视频免费永久观看网站| 久久国产精品大桥未久av| 久久久久视频综合| 久久国产精品影院| 精品国产一区二区三区久久久樱花| 亚洲成国产人片在线观看| 亚洲熟女毛片儿| 免费高清在线观看日韩| 国产成人啪精品午夜网站| 婷婷成人精品国产| 欧美日韩亚洲综合一区二区三区_| 伦理电影免费视频| 老熟妇仑乱视频hdxx| 性色av乱码一区二区三区2| av天堂久久9| 好男人电影高清在线观看| 最近最新中文字幕大全免费视频| 50天的宝宝边吃奶边哭怎么回事| 波多野结衣av一区二区av| 嫁个100分男人电影在线观看| 黑人操中国人逼视频| 1024香蕉在线观看| 十分钟在线观看高清视频www| 老熟妇乱子伦视频在线观看| 1024视频免费在线观看| 激情视频va一区二区三区| 桃红色精品国产亚洲av| 国产成人欧美| 午夜老司机福利片| 波多野结衣av一区二区av| 久久久久国产一级毛片高清牌| 国产真人三级小视频在线观看| 久久久久国产一级毛片高清牌| 99re在线观看精品视频| 伦理电影免费视频| 十八禁网站网址无遮挡| 色综合婷婷激情| 国产精品av久久久久免费| 日韩免费高清中文字幕av| 少妇裸体淫交视频免费看高清 | 久久香蕉激情| 九色亚洲精品在线播放| 午夜福利在线免费观看网站| 国产av国产精品国产| 久久久欧美国产精品| 日本wwww免费看| 久久香蕉激情| 岛国在线观看网站| 日韩欧美免费精品| 国产成人av激情在线播放| 国产在线观看jvid| 中文字幕人妻熟女乱码| 9热在线视频观看99| 国产成人精品在线电影| 亚洲avbb在线观看| 自线自在国产av| 丝袜人妻中文字幕| 一本综合久久免费| 精品人妻熟女毛片av久久网站| 久久久国产一区二区| 欧美 日韩 精品 国产| 免费看十八禁软件| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品久久成人aⅴ小说| 欧美黄色淫秽网站| 每晚都被弄得嗷嗷叫到高潮| 日韩欧美一区二区三区在线观看 | 视频在线观看一区二区三区| 欧美乱码精品一区二区三区| 亚洲中文av在线| 久久精品国产综合久久久| 日韩欧美免费精品| 亚洲专区国产一区二区| 免费观看a级毛片全部| 日韩欧美国产一区二区入口| 成人三级做爰电影| 亚洲,欧美精品.| 日日夜夜操网爽| 91成年电影在线观看| 国产精品久久久久成人av| 国产男女超爽视频在线观看| 91麻豆av在线| 极品人妻少妇av视频| 美女国产高潮福利片在线看| 国产欧美亚洲国产| av天堂久久9| 乱人伦中国视频| 99久久人妻综合| 大陆偷拍与自拍| 50天的宝宝边吃奶边哭怎么回事| 精品视频人人做人人爽| 亚洲国产av新网站| 欧美日韩黄片免| 中亚洲国语对白在线视频| 变态另类成人亚洲欧美熟女 | 69精品国产乱码久久久| 动漫黄色视频在线观看| 亚洲一区二区三区欧美精品| 手机成人av网站| 91av网站免费观看| 午夜91福利影院| 欧美日韩中文字幕国产精品一区二区三区 | 国产三级黄色录像| 高清在线国产一区| 精品国产一区二区三区四区第35| 在线av久久热| 一本大道久久a久久精品| 国产在视频线精品| 国产精品九九99| 50天的宝宝边吃奶边哭怎么回事| 久久久欧美国产精品| 午夜久久久在线观看| 啦啦啦免费观看视频1| 国产97色在线日韩免费| av线在线观看网站| 亚洲一卡2卡3卡4卡5卡精品中文| 丰满饥渴人妻一区二区三| 1024视频免费在线观看| 九色亚洲精品在线播放| 国产成人精品久久二区二区91| 成人永久免费在线观看视频 | 9191精品国产免费久久| 中文字幕精品免费在线观看视频| 另类亚洲欧美激情| 多毛熟女@视频| 日韩欧美一区视频在线观看| 桃花免费在线播放| 男人舔女人的私密视频| 亚洲av国产av综合av卡| 99国产精品一区二区三区| 色94色欧美一区二区| 黄色怎么调成土黄色| 久久久精品免费免费高清| 国产成人欧美在线观看 | 国产欧美日韩一区二区三区在线| 亚洲天堂av无毛| 悠悠久久av| 成人黄色视频免费在线看| 飞空精品影院首页| 午夜精品久久久久久毛片777| 老司机靠b影院| 日韩有码中文字幕| 少妇粗大呻吟视频| 国产精品美女特级片免费视频播放器 | 热re99久久国产66热| 啦啦啦 在线观看视频| 青青草视频在线视频观看| 国产欧美日韩一区二区三| 91麻豆av在线| 日韩欧美国产一区二区入口| 精品熟女少妇八av免费久了| 黄色怎么调成土黄色| 欧美黄色片欧美黄色片| 亚洲欧洲日产国产| 久久亚洲精品不卡| 久久ye,这里只有精品| 欧美黄色片欧美黄色片| 国产亚洲欧美精品永久| 搡老岳熟女国产| 日韩中文字幕视频在线看片| 免费黄频网站在线观看国产| 亚洲五月婷婷丁香| 美女国产高潮福利片在线看| 精品国产一区二区三区久久久樱花| 啦啦啦在线免费观看视频4| 午夜福利视频在线观看免费| 男女免费视频国产| 久久 成人 亚洲| avwww免费| 人人妻人人澡人人看| 一本综合久久免费| 国产免费av片在线观看野外av| 国产熟女午夜一区二区三区| 天天躁日日躁夜夜躁夜夜| 欧美午夜高清在线| 日本av免费视频播放| 757午夜福利合集在线观看| 亚洲熟妇熟女久久| √禁漫天堂资源中文www| 97在线人人人人妻| 亚洲五月婷婷丁香| 日韩欧美一区二区三区在线观看 | 国产深夜福利视频在线观看| 免费看十八禁软件| 一本综合久久免费| 国产欧美日韩精品亚洲av| 高清av免费在线| 999久久久国产精品视频| 狠狠婷婷综合久久久久久88av| 精品一区二区三区av网在线观看 | 国产精品 国内视频| 在线观看免费视频日本深夜| 成人手机av| 欧美日韩亚洲高清精品| 可以免费在线观看a视频的电影网站| a级片在线免费高清观看视频| 亚洲国产欧美网| 一级,二级,三级黄色视频| 国产精品影院久久| 最新美女视频免费是黄的| 欧美激情高清一区二区三区| 欧美日韩黄片免| 色综合欧美亚洲国产小说| 亚洲精品美女久久av网站| 激情在线观看视频在线高清 | 国产成人精品久久二区二区免费| 视频在线观看一区二区三区| 国产日韩欧美亚洲二区| 国产一区二区 视频在线| 国产伦人伦偷精品视频| 国产成人欧美| 国产成人啪精品午夜网站| 成人亚洲精品一区在线观看| 久热爱精品视频在线9| 久9热在线精品视频| www.自偷自拍.com| 少妇的丰满在线观看| 免费少妇av软件| 多毛熟女@视频| 午夜福利,免费看| 啦啦啦中文免费视频观看日本| 国产亚洲欧美在线一区二区| 啦啦啦视频在线资源免费观看| 露出奶头的视频| 欧美日韩国产mv在线观看视频| 露出奶头的视频| 亚洲自偷自拍图片 自拍| 亚洲七黄色美女视频| 国产精品久久久久久精品电影小说| 亚洲精品自拍成人| 亚洲国产欧美一区二区综合| 老司机深夜福利视频在线观看| 亚洲国产精品一区二区三区在线| 97人妻天天添夜夜摸| 18在线观看网站| 午夜视频精品福利| 夜夜夜夜夜久久久久| 日韩视频在线欧美| 国产精品一区二区在线不卡| 亚洲精品美女久久av网站| 咕卡用的链子| 老鸭窝网址在线观看| 国产无遮挡羞羞视频在线观看| 国产欧美日韩综合在线一区二区| 亚洲av成人不卡在线观看播放网| 亚洲九九香蕉| 国产成人啪精品午夜网站| h视频一区二区三区| 男女高潮啪啪啪动态图| 黄片小视频在线播放| 亚洲精品av麻豆狂野| 成人亚洲精品一区在线观看| 国产1区2区3区精品| 90打野战视频偷拍视频| 丝袜美足系列| 精品免费久久久久久久清纯 | 精品少妇久久久久久888优播|