• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Model-free adaptive control of space manipulator under different gravity environment①

    2020-04-13 07:05:56WenYintang溫銀堂GaoLinqiLiuFucaiQinLi
    High Technology Letters 2020年1期

    Wen Yintang (溫銀堂),Gao Linqi,Liu Fucai,Qin Li

    (School of Electrical Engineering,Yanshan University,Qin Huangdao 066004,P.R.China)

    Abstract

    Key words:space manipulator,microgravity,model-free adaptive,trajectory tracking control

    0 Introduction

    Along with the increasing frequency of human space activities,the number of ‘space debris’ in space is increasing,and they are not beneficial for the normal operation of space vehicles and even seriously affect the safety of normal satellites[1].In order to reduce the losses and protect the orbital resources,the national scientists have been working on on-orbit service technology for satellite maintenance and orbital garbage removal[2,3].Using space manipulators instead of astronauts for space operations can not only avoid the damage to astronauts,but also reduce the costs and improve the benefits of space exploration.Therefore,it is necessary to design an adaptive controller to track the particular trajectory.

    Due to the release of gravity in the space environment[4]and the uncertain external disturbance,the dynamic characteristics of space manipulator have changed compared with that of the ground.Once the space manipulator trajectory tracking controller is assembled on gravity environment,it will be inapplicable for microgravity environment due to the changes of dynamics characteristics,which result in the space manipulator cannot track the desired trajectory.This robot system is multi-input and multi-output nonlinear system,which has time-varying and strong coupling properties,the control of this mechanism turns to be complicated[5].In order to achieve the end of the space manipulator trajectory tracking control,the researchers have done a lot of experiments on this topic.Walker and Wee[6]presented an adaptive control method for space manipulator,which can achieve global stablility in the presence of uncertainties in the inertial parameters.Kim and Lewis[7]proposed a robust neural network output feedback scheme for the motion control of robot manipulators without measuring the joint velocities.Qin et al.[8]proposed a fuzzy adaptive robust control strategy for space manipulator,in which the fuzzy algorithm was employed to approximate the nonlinear uncertainties in the model and achieved effective space manipulator trajectory tracking task.Qin et al.[9]proposed an adaptive back stepping sliding mode controller to eliminate the impact of parameter uncertainties and disturbances.However,when the manipulator is in different gravity environment,it has to adjust the control law to track the trajectory,and also the above methods depend on the prior knowledge about the upper bound of the system,which is not applicable to the trajectory tracking task of manipulator in microgravity environment.For this reason,it is necessary to understand the changes of the dynamics and motion behaviour of the manipulator under different gravity environment,then design a proper controller that can track the desired trajectory in different gravity environment,which could overcome the influence of gravity changes of the space manipulator.

    In recent years,model-free adaptive control (MFAC) algorithm is paid more attention by researchers in various fields.Gao et al.[10]proposed a CFDL based MFAC controller to the polishing robot,achieved a good control performance and adaptively decoupled the coupled outputs for MIMO system.Wang et al.[11]applied the MFAC method combined with sliding mode algorithm to the robotic exoskeleton tracking system,which could make the robotic exoskeleton tracking on its desired velocity tightly even when the dynamic parameter of the exoskeleton was time-varying irregularly and uncertainly.The data-driven MFAC strategy was proposed by Hou[12]in 1994 to solve the problem of inaccurate modelling of the controlled system.Hou[12]aimed to establish a nonparametric model of a nonlinear system and developed an adaptive control theory that did not depend on the mathematical model of the control system,but depended on the input/output (I/O) measurement data of the system.The core of the theory were three new dynamic linearization approaches and a novel concept of matrix[13,14]which will establish an equivalent dynamic linearized model of each dynamic working point of the closed-loop system.Inspired by the principle of the algorithm,the MFAC strategy is proposed to apply to the complicated space manipulator end trajectory tracking system.The algorithm can eliminate the dynamics changes caused by gravity changes,so that the space manipulator can be debugged on the ground environment and then achieve high accuracy trajectory tracking task in microgravity environment without changing the controller parameters.

    The main contributions of this paper lie in three aspects:1) The dynamic equation of space manipulator system is transformed dynamically,and the input-output relationship of the control system is obtained.2) The MFAC controller is designed and the control system is constructed.3) The simulation results show that MFAC strategy can achieve higher precision trajectory tracking task when the controller parameters are the same under different gravity environment.

    The remainder of this paper is organized as follows.In Section 1,by analysing the dynamic equation of the robot,we get the structure of the control system.According to the principle of the MFAC algorithm,the dynamic equation is transformed to obtain the input-output relationship of the system,and then the stability of the controller is proved.Simulation results of the trajectory tracking system are presented in Section 2.Finally,Section 3 summarizes the conclusion of the research.

    1 Space manipulator control system design

    1.1 Control system design

    In this paper,the controller is designed by MFAC theory and the controlled object is the 2 degrees of freedom of space manipulator.Fig.1 shows the structure of the control system.

    Fig.1 MFAC control of the space manipulator system

    The inputs of the space manipulator control system are the desired joint angles,which are obtained by inverse kinematics of the desired trajectory of the end.The outputs of this system are the actual joint angles of the space manipulator.By dynamic linearizing and discretizing the space manipulator dynamics system,we get the value of the state variables at each sample time.The outputs of the controller are the desired joint torques,which are also used as the input of the controller.At the same time,the differential of the desired joint angles and the differential of actual joint angles are also the inputs of the controller.By updating the value of PPJM,the joint torques of the next moment can be obtained.Through the above operations,the end trajectory tracking task of the space manipulator can be realized based on MFAC algorithm.

    1.2 Transformation of the dynamics and dynamic linearization

    For the space manipulator is a complex nonlinear system which cannot be directly linearized by the common approach[15],and inspired by the method proposed in Ref.[11],a method to transform and linearize the dynamical equation of the space manipulator is introduced.According to the influence of gravity,inertia as well as Coriolis and centrifugal effects,its dynamics can be expressed as the following form:

    (1)

    (2)

    -M(k)-1(G(k)+f(k))

    (3)

    When the sampling timeTof the discrete system is small enough,the following equation is got:

    (4)

    Thus,the input-output relationship between timekand timek+1 can be expressed as following:

    y(k+1)=TM(k)-1u(k)-TM(k)-1C(k)y(k)

    -TM(k)-1(G(k)+f(x))+y(k)

    (5)

    The above equation is the discrete transformation form of space robot dynamic model.According to this equation,the partial derivatives ofy(k+1) with respect toy(k) andu(k) are continuous,Eq.(5) satisfies the Lipschitz condition,therefore,there must be time-varying parameter matrixΦ(k)=[φ1(k),φ2(k)],which enables Eq.(5) to convert into the following full form dynamic linearized data model:

    y(k+1)=φ1(k)Δy(k)+φ2(k)Δu(k)+y(k)

    (6)

    where ‖Φ(k)‖

    1.3 MFAC controller design

    1.3.1 Control law

    Due to the complexity of space environment,the output of space manipulator system is not only related to the input changes of adjacent time,but also related to the output changes,these factors will affect the stability of the control system.Thus,the following control input criteria function is introduced:

    J(u(k))=‖y*(k+1)-y(k+1)‖2

    +λ‖u(k)-u(k-1)‖2

    (7)

    wherey*(k+1) is the given desired joint angular velocity.Combining Eq.(6) with Eq.(7) to deriveu(k) and make it equal to zero,the following expression can be obtained:

    Δu(k)=(λI+ΦT(k)Φ(k))-1ΦT(k)

    ×((y*(k+1)-y(k))

    -Φ(k)Δy(k))

    (8)

    Simplifying the matrix inversion operation in Eq.(8),the control scheme of the 2 degrees of freedom of space manipulator can be obtained as follows:

    (9)

    1.3.2 PPJM estimation algorithm

    Considering the following estimation criteria function:

    J(Φ(k))=‖Δy(k)-φ1(k)Δy(k-1)

    -φ2(k)Δu(k-1)‖2

    (10)

    Deriving and making it equal to zero,the following expression can be obtained:

    (11)

    1.4 Stability analysis

    Theorem1Eq.(5) represents the discrete dynamics model of a space manipulator,y(k+1) is partial differential continuous with respect to the control outputsy(k) and control inputsu(k),therefore the system is generalized Lipschitz.Fory*(k+1)=y*(k)=const,there is a positive numberλmin,whenλ>λmin,gives:

    1) The tracking error of the system is asymptotically convergent.

    2) The closed-loop system is BIBO,for which the input and the output are bounded.

    ProofThe proof process involves 2 steps.The first step proves the boundedness of the PPJM estimation value and the second step proves the convergence of the tracking error and the BIBO stability of the system.

    Subtractφ1(k) andφ2(k) respectively from the Eq.(11),as follows:

    +φ1(k-1)-φ1(k)

    (12)

    +φ2(k-1)-φ2(k)

    (13)

    Since ‖φ1(k-1)-φ1(k)‖≤2a1,‖φ2(k-1)-φ2(k)‖≤2a2,take the norm of the above 2 formulas,the following expression can be obtained:

    (14)

    (15)

    Sinceμ>0,η∈(0,2],the following can be obtained

    ∈(0,1) (16)

    ∈(0,1) (17)

    ∈(0,1) (18)

    ∈(0,1) (19)

    Therefore,there are constantsb1,b2,b3,b4∈(0,1),which make the following formula true:

    (20)

    Step2Defining

    s(k)=e(k)=y*(k)-y(k)

    (21)

    According to Eq.(6),the following expression can be obtained:

    s(k+1)=e(k+1)

    =y*(k)-y(k)-(y(k+1)-y(k))

    =s(k)-(φ1(k)Δy(k)+φ2(k)Δu(k))

    (22)

    Because of the boundedness ofφ(k) and according to Lyapunov’s theorem,the system motion trajectory tends to a balance states(k),so the tracking error of the system is convergent,which means limk→∞e(k)=0.The conclusion (1) is proved.

    It can be proved that the error between the actual output value and the expected value eventually reaches zero.Substituting Eqs(6) and (12) into Eq.(19)

    e(k+1)=e(k)-φ1(k)Δy(k)-φ2(k)Δu(k)

    =e(k)-ΦT(k)ΔH(k)

    (23)

    Since limk→∞e(k)=0 andΦ(K) are bounded in the above equation,it can be obtained that limk→∞ΔH(k)=0,which meansy(k) andu(k) are bounded.The conclusion (2) is obtained.

    It can be proved that the MFAC control algorithm provides a bounded input for the 2 degrees of freedom of space manipulator control system so that the tracking error of the system converges,which can ensure the stability of the system.

    2 Simulation test

    2.1 Simulation parameters

    To consummate the simulation structure and inspired by the modeling of the space manipulator by Gao[16],the structure of the 2 degrees of freedom space manipulator in the gravity environment is defined as Fig.2.

    Fig. 2 The structure of two degrees of freedom space manipulator in gravity environment

    The kinematics parameters in the ground gravity environment are indicated in Table 1.

    Table 1 The kinematics parameters of the space manipulator in the ground environment

    When the space manipulator operates in a microgravity environment,the pedestal posture is out of control because of the gravity release.Thus,the pedestal of the space manipulator can be assumed to be a pseudo-mechanical space manipulator which consists of two moving joints and one rotating joint that rotates around its center of mass.The structure schematic is shown in Fig.3.

    Fig.3 The structure of two degrees of freedom space manipulator in microgravity environment

    The kinematics parameters in the space microgravity environment are indicated in Table 2.

    Table 2 The kinematics parameters of the space manipulator in the space environment

    The initial position of the end of the space manipulator is set as (1.15,0.14),and the desired trajectory of the end of the space manipulator is inspired by Gao[16],which is set as

    (24)

    Based on the desired trajectory,the angle of the joint can be obtained by inverse kinematics solution.The control system is established under the environment of Matlab R2016b.To verify the superiority of the MFAC controller,the simulation results are compared with the ones that are obtained according to traditional PD control strategy.For the comparison purpose,the simulation experiment in this paper does not change the controller parameters at different operation condition,which are the same as the ground debugging.Meanwhile,both strategies should follow the same initial conditions.

    The PD controller parameters are set as follows:

    (25)

    whereKP=diag(250,250)Kd=diag(50,50).

    2.2 Simulation result

    The simulation time is 10 s,the simulation results are shown as follows.

    Fig.4 and Fig.5 show the joint angle tracking and end-effector tracking results in different gravity environment,respectively.It can be directly observed from Fig.4 that PD control can follow the desired trajectory more precisely,while there is a little deviation for MFAC strategy.However,Fig.5 shows that MFAC can follow the desired trajectory with a high accuracy in microgravity environment,while PD control completely deviates from the desired trajectory.Fig.6 shows the tracking error of end-effector of the space manipulator in different environment.The error of PD control is nearly 0 in gravity environment.When gravity condition changes,its error peak is almost over 0.2 m in microgravity environment.Meanwhile,the error of MFAC strategy remains at a low level in different gravity environment,and the maximum error of 0.025 m for gravity environment as well as the maximum error of nearly 0 for microgravity environment.

    (a) Joint angle tracking in gravity environment

    (b) End-effector tracking in gravity environment

    Fig.4Simulation results without disturbance in gravity environment

    (a) Joint angle tracking in microgravity environment

    (b) End-effector tracking in microgravity environment

    Fig.5Simulation results without disturbance in microgravity environment

    (a) End-effector tracking error in gravity environment

    (b) End-effector tracking error in microgravity environment

    Fig.6Tracking error of different environment

    Since the space environment has many uncertain disturbances,it is considered to add a disturbance signal to inspect the anti-disturbance performance of both control strategies.Fig.7 shows the disturbance signal which is added to the control system.The amplitude of the signal is 5 which is added in the 5th second of the simulation and removed at the 7th second.

    Fig.7 Disturbance signal

    Fig.8 and Fig.9 present the tracking of end-effector when the external disturbance signal is considered.It can be obtained from Fig.8 that MFAC strategy can follow the desired trajectory more quickly after the disturbance signal occurs.Moreover,the fluctuation value of MFAC strategy is smaller than the one of PD control strategy in both environments.Fig.10 shows the tracking error of the end track does not change much when it is compared to the one in Fig.6 except that the error of both control strategies becomes larger after adding the disturbance signal.

    (a) Joint angle tracking in gravity environment

    (b) End-effector tracking in gravity environment

    Fig.8Simulation results with disturbance at gravity environment

    (a) Joint angle tracking in microgravity environment

    (b) End-effector tracking in microgravity environment

    Fig.9Simulation results with disturbance at microgravity environment

    (a) Ground environment end tracking error

    (b)Space environment end tracking error

    Fig.10Simulation results with external disturbance

    3 Conclusions

    The trajectory tracking problem of the space manipulator is investigated,aiming at the inaccuracy of the tracking control of the end of the manipulator caused by the change of gravity,the dynamic linearization of the dynamic equation is obtained,and the input and output relationship of the system is obtained.Based on this relationship,MFAC controller is designed to solve the inaccuracy trajectory tracking control of the space manipulator under different gravity environment.Finally,simulation results are given to show the effectiveness of the proposed approach.

    In the future,we will continue to improve the control accuracy of the system,and also consider the flexibility and clearance of the space manipulator mechanism.Moreover,how to extend the anti-interference ability of the control system is also the future work.

    国产有黄有色有爽视频| 国产伦一二天堂av在线观看| 久久久色成人| 18禁在线无遮挡免费观看视频| 亚洲国产精品成人久久小说| 99热6这里只有精品| 久久久久久久久久久丰满| 日韩欧美国产在线观看| 国产 一区 欧美 日韩| 亚洲性久久影院| 天天一区二区日本电影三级| 国产精品.久久久| 日韩一区二区视频免费看| 国产在线一区二区三区精| 国产精品人妻久久久久久| 国产男女超爽视频在线观看| 夜夜看夜夜爽夜夜摸| av在线观看视频网站免费| 七月丁香在线播放| 久久这里只有精品中国| 亚洲熟女精品中文字幕| 国产男人的电影天堂91| 亚洲精品乱久久久久久| 亚洲av中文av极速乱| 久久精品国产自在天天线| 少妇被粗大猛烈的视频| 国产一区亚洲一区在线观看| 一级毛片久久久久久久久女| 国产精品精品国产色婷婷| 国产亚洲av嫩草精品影院| 一本久久精品| 人妻少妇偷人精品九色| 亚洲天堂国产精品一区在线| 啦啦啦啦在线视频资源| 99久国产av精品| 国产高清三级在线| av专区在线播放| 亚洲欧美日韩东京热| 三级男女做爰猛烈吃奶摸视频| av免费观看日本| 97在线视频观看| 午夜爱爱视频在线播放| 亚洲性久久影院| 街头女战士在线观看网站| 综合色av麻豆| 久久草成人影院| 搞女人的毛片| 亚洲美女视频黄频| 一个人观看的视频www高清免费观看| 久热久热在线精品观看| .国产精品久久| 国内揄拍国产精品人妻在线| 午夜免费激情av| 在线观看人妻少妇| 国产乱人视频| 日本av手机在线免费观看| 美女高潮的动态| 久久亚洲国产成人精品v| 日产精品乱码卡一卡2卡三| 综合色av麻豆| 免费看av在线观看网站| 亚洲经典国产精华液单| 久久99热这里只有精品18| 天天躁日日操中文字幕| 在线免费观看不下载黄p国产| 麻豆成人午夜福利视频| 亚洲经典国产精华液单| 日韩视频在线欧美| 国产探花在线观看一区二区| 精品少妇黑人巨大在线播放| 久久久欧美国产精品| 最近最新中文字幕大全电影3| 日韩视频在线欧美| 亚洲性久久影院| 街头女战士在线观看网站| 美女xxoo啪啪120秒动态图| 亚洲精品中文字幕在线视频 | 国产精品综合久久久久久久免费| 最近视频中文字幕2019在线8| 国产中年淑女户外野战色| 91精品一卡2卡3卡4卡| 国产精品国产三级专区第一集| 最近视频中文字幕2019在线8| 韩国高清视频一区二区三区| 中国美白少妇内射xxxbb| 亚洲成人精品中文字幕电影| 一夜夜www| 成人亚洲精品av一区二区| 大香蕉久久网| 97超视频在线观看视频| 成人av在线播放网站| 少妇的逼水好多| 自拍偷自拍亚洲精品老妇| 天美传媒精品一区二区| 国产精品蜜桃在线观看| 国产有黄有色有爽视频| a级毛片免费高清观看在线播放| 99热6这里只有精品| 国产午夜精品论理片| 国产精品无大码| 欧美一区二区亚洲| 色尼玛亚洲综合影院| av.在线天堂| 亚洲熟妇中文字幕五十中出| 久久人人爽人人片av| 中文资源天堂在线| 久久久成人免费电影| 久久久久九九精品影院| 欧美潮喷喷水| 亚洲熟女精品中文字幕| 日本一二三区视频观看| 人妻一区二区av| 免费观看a级毛片全部| 久久97久久精品| 国产在线一区二区三区精| 亚洲第一区二区三区不卡| 国产国拍精品亚洲av在线观看| 国产精品久久久久久久电影| 爱豆传媒免费全集在线观看| 久久99热6这里只有精品| 精品少妇黑人巨大在线播放| 99热网站在线观看| 99热6这里只有精品| 熟妇人妻久久中文字幕3abv| 亚洲一级一片aⅴ在线观看| 人妻少妇偷人精品九色| 大香蕉久久网| 国产成人福利小说| 国产一级毛片在线| 午夜福利在线观看免费完整高清在| 国产欧美另类精品又又久久亚洲欧美| 国产精品久久久久久精品电影小说 | 人妻制服诱惑在线中文字幕| 国产精品人妻久久久久久| 亚洲在久久综合| 国产av码专区亚洲av| 人人妻人人澡人人爽人人夜夜 | 人妻系列 视频| 内射极品少妇av片p| 亚洲欧美成人综合另类久久久| 男插女下体视频免费在线播放| 国产欧美日韩精品一区二区| 免费播放大片免费观看视频在线观看| 成人av在线播放网站| 国产伦在线观看视频一区| 亚洲美女视频黄频| 少妇熟女欧美另类| 三级男女做爰猛烈吃奶摸视频| 久久人人爽人人爽人人片va| 特大巨黑吊av在线直播| 1000部很黄的大片| 亚洲国产精品成人综合色| 午夜久久久久精精品| 国产爱豆传媒在线观看| 日日干狠狠操夜夜爽| 乱码一卡2卡4卡精品| 男的添女的下面高潮视频| 激情 狠狠 欧美| 中文字幕免费在线视频6| 在线天堂最新版资源| 国产精品日韩av在线免费观看| 亚洲成人一二三区av| 亚洲av二区三区四区| 欧美精品国产亚洲| 欧美日韩亚洲高清精品| 成人毛片60女人毛片免费| 欧美性猛交╳xxx乱大交人| 午夜福利成人在线免费观看| ponron亚洲| 日日干狠狠操夜夜爽| 日本一本二区三区精品| 日韩伦理黄色片| 亚洲最大成人手机在线| 少妇熟女aⅴ在线视频| 最近最新中文字幕免费大全7| 三级毛片av免费| 成年版毛片免费区| 国产高清国产精品国产三级 | 国产麻豆成人av免费视频| 最近最新中文字幕大全电影3| 三级男女做爰猛烈吃奶摸视频| 亚州av有码| 99热全是精品| 久久久久久久久久人人人人人人| 免费大片18禁| 日韩电影二区| 精品一区二区免费观看| 又爽又黄无遮挡网站| 熟女电影av网| 女人十人毛片免费观看3o分钟| 黄色欧美视频在线观看| 草草在线视频免费看| av女优亚洲男人天堂| 亚洲性久久影院| 亚洲一级一片aⅴ在线观看| 麻豆精品久久久久久蜜桃| 亚洲成人av在线免费| 国产一区二区亚洲精品在线观看| 亚洲av电影不卡..在线观看| 成人毛片a级毛片在线播放| 视频中文字幕在线观看| 十八禁国产超污无遮挡网站| 国产精品国产三级专区第一集| 欧美成人一区二区免费高清观看| 91狼人影院| 高清日韩中文字幕在线| 国产精品一二三区在线看| av天堂中文字幕网| 最近中文字幕高清免费大全6| 十八禁国产超污无遮挡网站| 男女下面进入的视频免费午夜| 日韩欧美精品免费久久| 成年人午夜在线观看视频 | 国产精品人妻久久久影院| 亚洲欧洲日产国产| 麻豆av噜噜一区二区三区| kizo精华| 人人妻人人澡人人爽人人夜夜 | 最近视频中文字幕2019在线8| 久久久久久久久久久丰满| 神马国产精品三级电影在线观看| 久久久色成人| 99视频精品全部免费 在线| 一级二级三级毛片免费看| 天堂影院成人在线观看| 精品久久久久久久久亚洲| 久久久色成人| 国产白丝娇喘喷水9色精品| 久久久久久国产a免费观看| 成年av动漫网址| 男人舔奶头视频| 亚洲高清免费不卡视频| 91精品一卡2卡3卡4卡| 国产精品国产三级国产av玫瑰| 超碰97精品在线观看| 午夜福利在线观看免费完整高清在| 天美传媒精品一区二区| 成年女人在线观看亚洲视频 | 能在线免费看毛片的网站| 亚洲无线观看免费| 男女边吃奶边做爰视频| 国产精品麻豆人妻色哟哟久久 | 国产色爽女视频免费观看| 91av网一区二区| 亚洲国产精品成人久久小说| 亚洲国产高清在线一区二区三| 在线观看美女被高潮喷水网站| 一级爰片在线观看| 亚洲综合色惰| 亚洲精品乱码久久久v下载方式| 亚洲精品视频女| 欧美xxxx黑人xx丫x性爽| 亚洲欧美成人精品一区二区| 久久人人爽人人爽人人片va| 欧美高清性xxxxhd video| 国产黄色免费在线视频| 人妻少妇偷人精品九色| 五月天丁香电影| 国产亚洲精品av在线| 亚洲精品乱久久久久久| 国产在视频线在精品| 亚洲欧美日韩无卡精品| 麻豆精品久久久久久蜜桃| 身体一侧抽搐| 2021少妇久久久久久久久久久| 欧美激情久久久久久爽电影| 国产高清国产精品国产三级 | 日日啪夜夜爽| 搡女人真爽免费视频火全软件| 日韩一区二区三区影片| 亚洲精品视频女| 国内精品宾馆在线| 国产av码专区亚洲av| 啦啦啦中文免费视频观看日本| 一级毛片aaaaaa免费看小| 国产精品久久久久久精品电影| 美女高潮的动态| 国产精品综合久久久久久久免费| 久久久久网色| 精品国产露脸久久av麻豆 | 看黄色毛片网站| 国产 亚洲一区二区三区 | 国产精品一二三区在线看| 永久免费av网站大全| 18禁在线无遮挡免费观看视频| 熟妇人妻久久中文字幕3abv| 深爱激情五月婷婷| 国产成人午夜福利电影在线观看| 亚洲内射少妇av| 老女人水多毛片| 久久精品国产自在天天线| 国产人妻一区二区三区在| 特级一级黄色大片| 街头女战士在线观看网站| 国产精品蜜桃在线观看| 欧美不卡视频在线免费观看| 一级a做视频免费观看| 亚洲美女搞黄在线观看| 亚洲av日韩在线播放| 久久久精品欧美日韩精品| 午夜精品国产一区二区电影 | 欧美日韩视频高清一区二区三区二| 男人狂女人下面高潮的视频| 天天一区二区日本电影三级| 色综合站精品国产| 色尼玛亚洲综合影院| 亚洲精品乱码久久久久久按摩| 亚洲aⅴ乱码一区二区在线播放| 又黄又爽又刺激的免费视频.| 91aial.com中文字幕在线观看| 国内精品宾馆在线| 内射极品少妇av片p| 五月玫瑰六月丁香| 亚洲av不卡在线观看| 欧美精品一区二区大全| 国产黄色小视频在线观看| 成人美女网站在线观看视频| 国产精品福利在线免费观看| 91久久精品国产一区二区成人| 精品国内亚洲2022精品成人| 深夜a级毛片| 在线 av 中文字幕| 免费无遮挡裸体视频| 一级毛片电影观看| 蜜桃久久精品国产亚洲av| 少妇熟女aⅴ在线视频| 99热网站在线观看| 午夜福利视频1000在线观看| kizo精华| 久久久久久伊人网av| 午夜激情欧美在线| 伦理电影大哥的女人| 国产一区亚洲一区在线观看| 一级av片app| 精品熟女少妇av免费看| 久久综合国产亚洲精品| 日本三级黄在线观看| 91午夜精品亚洲一区二区三区| 一区二区三区四区激情视频| 午夜精品一区二区三区免费看| 亚洲欧美日韩无卡精品| 男插女下体视频免费在线播放| 亚洲无线观看免费| 国产精品一及| 麻豆精品久久久久久蜜桃| 全区人妻精品视频| 一个人免费在线观看电影| 可以在线观看毛片的网站| 久久99蜜桃精品久久| 美女cb高潮喷水在线观看| 国产69精品久久久久777片| 欧美成人精品欧美一级黄| 国产熟女欧美一区二区| 青春草亚洲视频在线观看| 又黄又爽又刺激的免费视频.| 久久国产乱子免费精品| 午夜精品在线福利| 国产伦在线观看视频一区| 久久久久久久久久黄片| 免费少妇av软件| 国产成年人精品一区二区| 精品人妻一区二区三区麻豆| 亚洲欧洲国产日韩| 精品久久久久久久久久久久久| 久久精品国产自在天天线| 欧美 日韩 精品 国产| 美女大奶头视频| 一级av片app| 97人妻精品一区二区三区麻豆| 久热久热在线精品观看| 亚洲欧美成人综合另类久久久| 熟妇人妻不卡中文字幕| 五月伊人婷婷丁香| 丝瓜视频免费看黄片| 国产精品av视频在线免费观看| 久久久久久久国产电影| 草草在线视频免费看| 99久久人妻综合| 国产伦精品一区二区三区视频9| 熟妇人妻不卡中文字幕| 七月丁香在线播放| 国产色婷婷99| 淫秽高清视频在线观看| 搞女人的毛片| 亚洲精品影视一区二区三区av| kizo精华| 草草在线视频免费看| 亚洲精品,欧美精品| 日本av手机在线免费观看| 午夜福利成人在线免费观看| 亚洲欧美一区二区三区黑人 | 精品一区二区免费观看| 水蜜桃什么品种好| 免费av不卡在线播放| 我要看日韩黄色一级片| 免费少妇av软件| 久久99热这里只有精品18| 国产单亲对白刺激| 亚洲精品自拍成人| 日韩欧美精品免费久久| 内射极品少妇av片p| 精品久久久久久久久av| 亚洲图色成人| av播播在线观看一区| 久久久色成人| 成人亚洲精品一区在线观看 | 亚洲精华国产精华液的使用体验| 日韩三级伦理在线观看| 中文字幕制服av| freevideosex欧美| 男人和女人高潮做爰伦理| 国产精品久久久久久精品电影小说 | 最近手机中文字幕大全| 日韩欧美 国产精品| 51国产日韩欧美| 免费高清在线观看视频在线观看| 久热久热在线精品观看| 国产精品久久久久久精品电影| 久久草成人影院| 91久久精品电影网| 丰满少妇做爰视频| 人人妻人人澡人人爽人人夜夜 | av在线老鸭窝| 搡女人真爽免费视频火全软件| 免费看av在线观看网站| 91久久精品电影网| 日韩欧美精品免费久久| 人妻制服诱惑在线中文字幕| 淫秽高清视频在线观看| 天堂网av新在线| 亚洲国产精品专区欧美| 亚洲国产精品国产精品| 久久这里只有精品中国| 亚洲av不卡在线观看| 亚洲真实伦在线观看| 日韩亚洲欧美综合| 老司机影院毛片| 亚洲欧美日韩卡通动漫| 国产伦在线观看视频一区| 国产一区二区亚洲精品在线观看| 丝袜喷水一区| 99热网站在线观看| 亚洲人成网站在线播| 亚洲成人精品中文字幕电影| 国产麻豆成人av免费视频| 精品一区二区三区人妻视频| 久久午夜福利片| 白带黄色成豆腐渣| 毛片一级片免费看久久久久| 寂寞人妻少妇视频99o| 国产美女午夜福利| 91av网一区二区| 久久精品国产鲁丝片午夜精品| 欧美区成人在线视频| 一区二区三区四区激情视频| 亚洲国产高清在线一区二区三| 亚洲成人久久爱视频| av播播在线观看一区| 亚洲av不卡在线观看| av免费在线看不卡| 秋霞伦理黄片| 最近中文字幕高清免费大全6| 国产午夜精品论理片| 成人漫画全彩无遮挡| 日日摸夜夜添夜夜添av毛片| 最近视频中文字幕2019在线8| 看黄色毛片网站| 精品一区在线观看国产| 日韩在线高清观看一区二区三区| 国产亚洲最大av| 可以在线观看毛片的网站| 亚洲av成人av| 国产色婷婷99| 久久久国产一区二区| 一级毛片aaaaaa免费看小| 在线免费观看的www视频| 中文字幕人妻熟人妻熟丝袜美| 一边亲一边摸免费视频| 不卡视频在线观看欧美| 丰满少妇做爰视频| 日韩av在线免费看完整版不卡| 超碰97精品在线观看| 亚洲综合色惰| 国产成人午夜福利电影在线观看| 男女视频在线观看网站免费| 亚洲av日韩在线播放| 国产亚洲一区二区精品| 亚洲av.av天堂| 80岁老熟妇乱子伦牲交| 久久精品久久精品一区二区三区| 午夜福利在线观看免费完整高清在| 韩国av在线不卡| 少妇丰满av| 亚洲在线自拍视频| 超碰av人人做人人爽久久| 波野结衣二区三区在线| 国产黄色视频一区二区在线观看| 在线观看一区二区三区| 大又大粗又爽又黄少妇毛片口| 少妇裸体淫交视频免费看高清| av福利片在线观看| 三级毛片av免费| 国内揄拍国产精品人妻在线| 美女被艹到高潮喷水动态| 午夜亚洲福利在线播放| 一级毛片黄色毛片免费观看视频| 国产精品国产三级国产专区5o| 日韩制服骚丝袜av| 午夜免费观看性视频| 啦啦啦中文免费视频观看日本| 亚洲第一区二区三区不卡| 韩国高清视频一区二区三区| 日韩大片免费观看网站| 尾随美女入室| 一本久久精品| 国产黄频视频在线观看| 免费黄频网站在线观看国产| 深爱激情五月婷婷| 欧美日韩一区二区视频在线观看视频在线 | 一个人观看的视频www高清免费观看| 国产免费一级a男人的天堂| 免费看av在线观看网站| 亚洲精品色激情综合| 欧美人与善性xxx| 免费观看的影片在线观看| 亚洲乱码一区二区免费版| 国产亚洲av片在线观看秒播厂 | 夜夜爽夜夜爽视频| 69人妻影院| 我的老师免费观看完整版| 极品教师在线视频| 高清av免费在线| 不卡视频在线观看欧美| 在线 av 中文字幕| 少妇被粗大猛烈的视频| 秋霞伦理黄片| 六月丁香七月| 午夜福利在线在线| 免费黄频网站在线观看国产| 观看美女的网站| 永久网站在线| 亚洲av不卡在线观看| 亚洲内射少妇av| 成年版毛片免费区| 免费黄色在线免费观看| 99热网站在线观看| 国产成人一区二区在线| 亚洲av免费高清在线观看| 国产精品无大码| 天堂网av新在线| 日日干狠狠操夜夜爽| 国产精品综合久久久久久久免费| 欧美高清性xxxxhd video| a级毛片免费高清观看在线播放| .国产精品久久| 国产乱来视频区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美激情久久久久久爽电影| 久99久视频精品免费| 国产精品av视频在线免费观看| 国产又色又爽无遮挡免| 一级毛片我不卡| 2021天堂中文幕一二区在线观| 国产一区有黄有色的免费视频 | 日韩在线高清观看一区二区三区| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美精品专区久久| 国产高清三级在线| 国产高清有码在线观看视频| 国产乱人视频| 中文字幕人妻熟人妻熟丝袜美| 青青草视频在线视频观看| 日本黄大片高清| 欧美极品一区二区三区四区| 亚洲国产欧美人成| 大陆偷拍与自拍| 又爽又黄无遮挡网站| 少妇的逼好多水| 国产精品一区二区在线观看99 | 永久免费av网站大全| 国产亚洲一区二区精品| 最新中文字幕久久久久| 最近最新中文字幕大全电影3| 国产成人精品婷婷| 日韩在线高清观看一区二区三区| 91久久精品国产一区二区三区| 91精品一卡2卡3卡4卡| 乱人视频在线观看| 亚洲av中文字字幕乱码综合| 嫩草影院新地址| 欧美日韩综合久久久久久| 亚洲va在线va天堂va国产| av网站免费在线观看视频 | 国产女主播在线喷水免费视频网站 | 午夜日本视频在线| 久久久a久久爽久久v久久| 亚洲精品国产成人久久av| 亚洲欧美日韩东京热| 婷婷色综合www| 国产乱人视频| 国产一级毛片在线| 亚洲av男天堂| 亚洲性久久影院| 人妻少妇偷人精品九色| 国产精品一及| www.av在线官网国产| 少妇熟女欧美另类| 亚洲av福利一区| 亚洲成色77777| 午夜免费激情av| 婷婷色综合大香蕉| 免费av观看视频| 成年人午夜在线观看视频 | 极品教师在线视频| 淫秽高清视频在线观看|