• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural form selection of the high-rise building with the improved BP neural network①

    2020-04-10 06:46:28ZhaoGuangzhe趙光哲YangHantingTuBingZhouMeilingZhouChengle
    High Technology Letters 2020年1期

    Zhao Guangzhe (趙光哲),Yang Hanting,Tu Bing,Zhou Meiling,Zhou Chengle

    (*School of Electrical and Information Engineering,Beijing University of Civil Engineering and Architecture,Beijing 100044,P.R.China)(**College of Information and Communication Engineering,Hunan Institute of Science and Technology,Yueyang 414000,P.R.China)

    Abstract

    Key words:back propagation (BP) neural network,high-rise building,structural form selection,Levenberg-Marquardt (L-M) algorithm

    0 Introduction

    With the advancement of social productivity and modern science,especially in cities,more and more high-rise buildings have been built.They have many advantages,such as reducing land resource occupation,solving housing shortages,and beautifying the urban environment[1-3].Plenty of engineering experiences show that the design of high-rise buildings can be safe,economical and reasonable,the key lies in the structural scheme is selected properly.The scheme requires to consider the orientation of buildings,the surrounding environment,and other factors,so the knowledge involved is quite complicated[4-6].Furthermore,the difficulty of structural form selection will lead to an increase in time costs,and human and financial resources consumption.Therefore,how to choose a reasonable structural form of high-rise buildings is a problem worth studying[4-11].

    As described above,the height and span of tall buildings are much larger than ordinary buildings,and the design of high-rise buildings also needs to consider more factors such as earthquake protection and typhoon prevention.Therefore,it is important to reduce redundant design elements and select the essential ones effectively[12,13].Maher[14]established a high-rise structural preliminary design expert system named HI-RISE in 1987.CADRE,a preliminary structural design system based on instances was also established in 1994[15].From 1998 to 2000,Soibelman[15]and Pena-Mora et al.[16]put forward and set up a distributed multiple-inference system that supports conceptual design of the high-level structure.However,in terms of structural selection of high-rise buildings,the theory is not thoroughly researched both at home and abroad as it is a very complicated decision-making problem that contains a lot of uncertain information (i.e.,randomness,fuzziness,and uncertainties).So the optimization problem of structural form selection of high-rise buildings has been one of the challenging work in the engineering design process[12-17].

    As the neural network method becomes prevalent,a part of inherent flaws has been explored.Zhang et al.[18]proposed a novel bidirectional active learning algorithm that examines both unlabeled and labeled datasets to address deterioration in the presence of noise.Zhang et al.[19]proposed an interactive patent classification algorithm based on multi-classifier fusion and active learning to handle the problem of low efficiency and high expense.Zhang et al.[20]proposed a novel indeterminate multi-class active learning algorithm effectively balanced between model update and model upgrade.

    Through reading a lot of literature and analyzing the characteristics and applicable scope of the main structural form of high-rise buildings,the proposed methods extract the main controlling factors of the structural form selection of high-rise buildings.Then a structural form selection system of high-rise buildings based on the improved back propagation (BP) neuralnetwork algorithm by the Matlab neural network toolbox is established.The intelligent expert system for structural form selection in this work can effectively handle,discovery and reuse existing engineering examples of useful information,which will be a new research direction to improve design quality and efficiency[11,21-23].This system can be useful for optimizing the anti-seismic design of building shape and has positive significance to guide the seismic fortification of the urban high-rise building projects.

    1 Method and materials

    1.1 The improved BP neural network

    BP neural network is composed of the input layer,hidden layer and output layer.The number of hidden layers will be one or more[21-24].For instance,supposei,j,tare the input layer,hidden layer and output layer of a 3 layers structure of BP neural network,respectively withn,p,qneurons.The nodes in one layer are unrelated,but prompt to connect to other nodes of the adjacent layer.

    The implementation steps of BP algorithm are as follows.

    Step1Calculate the output value of each layer neurons.

    The output of hidden layer is presented by

    (1)

    (i=1,2,…,n,j=1,2,…,p,k=1,2,…,m)

    (2)

    (j=1,2,…,p,t=1,2,…,q,k=1,2,…,m)

    Step2Calculate error function of each layer.

    The error function of output layer is

    (3)

    The error function of hidden layer is

    (4)

    Step3Correct connective weights.

    In general,the gradient descent method is employed to fix the connective weights of each layer[25-28].The correctional weights between the contiguous layers are

    (5)

    whereηis the learning rate.

    Randomly selectmlearning samples as a mode from the training sample set,repeat steps 2-5 ,until all themmodes are completely trained,then fulfill around of training for the training sample set.

    Step4Compute the global error functionEof network.

    (6)

    IfEis less than the preset smaller value,or to the preset maximum number of training,then stop learning.Otherwise,repeat steps 1-5,for the next round of training sample set.

    Step5Load test samples to the BP network that has been trained,and output prediction results.

    Traditional BP algorithm has defects such as slow convergence speed and local level extremum.Thus,it is difficult to work in practice which has real-time requirement.This paper uses Levenberg-Marquardt (L-M) algorithm to train the BP neural network because of its fast convergence and high accuracy[29-31].The iterative formula is

    (7)

    where,Iis the unit array,ηis a non-negative value.Depending on the amplitude ofη,the method smoothly changes between 2 extremes:namely Guass-Newton method (η→0) and the standard gradient descent method (η→∞),which can be used for training the BP neural network.

    Change of network weights and bias is

    (8)

    Adjust the training network continuously,until achieving the goals.In fact,the L-M method is the combination of Newton method and the standard gradient descent method,which combines the advantage of the 2 methods.Therefore,the BP network designed by L-M algorithm has higher precision and faster convergence speed[32].

    1.2 Materials and detailed realization

    If all the factors that can be considered are input into the BP neural network as features,the scale of the model will be huge.And the convergence process will be tortuous which has the problem of dropping in the local minima.To accelerate the model training and do not lose the validity of the prediction,this article only chooses 5 main impact factors as the input features[10,11,33].The specific parameter values are as follows.

    1) Number of floors:the upper number of buildings.

    2) The total height of the building:the actual height of the building.

    3) The fortification intensity:take actual fortification intensity.

    4) Soil category:class foundation soil is set to 1;class foundation soil is set to 2;class foundation soil is set to 3.

    5) The maximum wind pressure:according to the formulaWk=βzμsμzω0to calculate,where,βzis the gust response coefficient at height ofZ,μzis the height change coefficient of wind pressure,μsis the shape factor of wind load.

    As shown in Fig.1,the neural network model of BP contains 3 layers.Number of ground floors is set asX1,the total height is set toX2,the fortification intensity is set asX3,the property of soil is set toX4,andX5represents the maximum wind pressure.Y1,Y2,Y3andY4represent the reduced feature of frame structure,shear wall frame,shear wall and tube structure resprectively.A feed-forward neural network with a hidden layer has been used here,whose structure for the number of neurons in the input layer is 5,the number of neurons in the hidden layer is 10,the number of output layer neurons is 4.The output structural forms contain frame structure,shear wall,frame shear wall,and tube structure.

    In order to establish and train neural networks,the model randomly chooses a variety of different structures of high-rise buildings as samples from the instance set for the design of high-rise building structure[13],a total of 37 samples are shown in Table 1.

    NF stands for Number of floors;TH stands for total height (m);FI is fortification intensity;SC stands for soil category;MWP is maximum wind pressure (N/m2);SF is structural form.

    Fig.1 The proposed BP neural network model with 5 input building features and output 4 control factors

    Table 1 Samples of high-rise buildings

    In these samples,22 samples have been selected randomly to train the network,each sample has 5 input nodes,representing the impact factors.There are 4 output nodes,which is the structural form of high-rise building.The quantitative relation is as follows:tube structure for [1,0,0,0],frame shear wall for [0,1,0,0],shear wall structure as the [0,0,1,0],and frame structure for [0,0,0,1].The input vector of neural network isP=[P1,…,P17] and the output vector isT=[T1,…,T17].The remaining 15 samples as a prediction sample are set to make a p-test.

    This work applied the newff function in the Matlab neural network toolbox to establish the BP neural network (Matlab R2011b,Math Works Inc.,Natick,MA).The number of neurons of the hidden layer and the output layer is 4 and 10 respectively.The neuron transfer function of the hidden layer is a logsig function,while the output layer is a tansig function.Because the L-M algorithm is applied to train the BP network,so the training function of the BP network is trainlm.The precision of required training goal=1e-3.In order to decrease the size variance of the input data,guarantee the training speed and accuracy of the network,the input vector is normalized by invoking premix function,and all the parameters are projected on range of (-1,1).After the network is set up,train function in the neural network toolbox has been launched for training the BP neural network.

    2 Results

    The network training process curve is shown in Fig.2,the blue curve decreased slowly at the beginning,then became very fast when reaching the training goal.The remaining 15 samples as a prediction sample were set to make a p-test = [p-test1,…,p-test15],as shown in Table 2.Each prediction sample was normalized before input the neural network.From Table 2,it shows that 15 samples only the prediction result of sample 2 was wrong,the accuracy of structural form prediction reaches 93.33%.However,if increase the number of samples,the prediction results will be more accurate.So that the structural form selection of the high-rise building with the improved BP neural network is feasible,and has the high accuracy.

    Fig.2 The network training process curve

    Table 2 The prediction results of BP neural network

    3 Discussions

    This research performs structural form selection of the high-rise buildings based on the improved BP neural network using 37 samples.Artificial neural network is established to classify 15 high-rise building samples,only one prediction result is wrong.Thus the accuracy of structural form prediction reaches 93.33%.However,the traditional BP algorithm has defects such as slow convergence speed and local level extremum,the model has improved the algorithm by using the L-M algorithm to train the BP neural network with fast convergence and high accuracy.

    From this study,an artificial neural network expert system can be developed for the structural form selection of high-rise buildings.Based on the improved BP neural network model combined with Matlab’s GUI,it will be easier to build the artificial neural network expert system with an excellent human-computer interaction interface.If model takes input of correlation factors of a sample which contains Number of floors,the total height of the building,the fortification intensity,the property of soil,and the maximum wind pressure,the structural form of the high-rise building can be predicted precisely.In accordance with the above introduction,if the related data of the prediction sample project is taken into account,the final selection results of the expert system will be shown on the output interface.The results show that the system performance is good,and achieves the goal of the intelligent prediction.

    Despite the 5 main factors which affect the structural form of high-rise buildings,basic forms,forms of floor slabs and material type will play essential roles in selecting the structural form.These factors will be added in future work,and the structure of the BP network must be altered in such condition.Furthermore,if more samples for training the parameters of the BP network are collected,in that case,the accuracy of structural form prediction will be increased.Whatever,the results will be helpful for architects,structural engineers,and other relevant people in the construction of the buildings.

    4 Conclusions

    The structural form selection of high-rise buildings is a wide range,strong comprehensive work,and needs various knowledge and rich experiences.In the current study,the method of prediction of the structure of high-rise building with the improved BP neural network to storage experts design experience has been proposed,and this system has the incremental learning function.The method can help building designers to choose an appropriate structure,so the application of neural networks for the choice of the structural form of high-rise buildings has important significance.

    国产男女超爽视频在线观看| 国产激情久久老熟女| 国产成人av激情在线播放| 无限看片的www在线观看| 成人av一区二区三区在线看| 日韩三级视频一区二区三区| 亚洲人成电影免费在线| 我的亚洲天堂| 丝袜在线中文字幕| 国产午夜精品久久久久久| 18禁裸乳无遮挡免费网站照片 | 久久国产亚洲av麻豆专区| 少妇 在线观看| 一a级毛片在线观看| 欧美日韩亚洲综合一区二区三区_| 亚洲色图 男人天堂 中文字幕| 正在播放国产对白刺激| 侵犯人妻中文字幕一二三四区| 国产xxxxx性猛交| 国产免费现黄频在线看| 性少妇av在线| 不卡av一区二区三区| 日韩免费av在线播放| 中文字幕人妻丝袜一区二区| 免费观看a级毛片全部| 91大片在线观看| 久久国产精品影院| 午夜免费观看网址| 国产精品偷伦视频观看了| 国内久久婷婷六月综合欲色啪| 欧美国产精品va在线观看不卡| 99久久人妻综合| 亚洲男人天堂网一区| 大型av网站在线播放| 老司机午夜福利在线观看视频| 天天躁日日躁夜夜躁夜夜| 亚洲 国产 在线| 中文字幕人妻丝袜一区二区| 午夜老司机福利片| 女人爽到高潮嗷嗷叫在线视频| 好男人电影高清在线观看| 国产欧美日韩精品亚洲av| 欧美精品一区二区免费开放| 窝窝影院91人妻| 国产成人欧美| 1024香蕉在线观看| 在线观看免费日韩欧美大片| 精品国内亚洲2022精品成人 | 亚洲一码二码三码区别大吗| 午夜精品久久久久久毛片777| 成人黄色视频免费在线看| 免费在线观看影片大全网站| 三上悠亚av全集在线观看| 免费看a级黄色片| 国产一区有黄有色的免费视频| 久久中文看片网| 69av精品久久久久久| 久久精品国产99精品国产亚洲性色 | 亚洲七黄色美女视频| av超薄肉色丝袜交足视频| 国产精品 国内视频| 亚洲熟女精品中文字幕| 国产欧美日韩综合在线一区二区| 两人在一起打扑克的视频| 自拍欧美九色日韩亚洲蝌蚪91| 成人18禁高潮啪啪吃奶动态图| 国产成人免费无遮挡视频| 韩国av一区二区三区四区| 亚洲一区中文字幕在线| 亚洲精品中文字幕在线视频| 国产又色又爽无遮挡免费看| 91精品三级在线观看| 亚洲aⅴ乱码一区二区在线播放 | www日本在线高清视频| 欧美在线黄色| 18在线观看网站| 国产高清国产精品国产三级| 亚洲精品国产区一区二| 日韩熟女老妇一区二区性免费视频| 别揉我奶头~嗯~啊~动态视频| 精品国内亚洲2022精品成人 | 国产精品偷伦视频观看了| 亚洲在线自拍视频| 黄色 视频免费看| 亚洲精品粉嫩美女一区| 18禁裸乳无遮挡动漫免费视频| 免费在线观看视频国产中文字幕亚洲| 久久精品国产亚洲av香蕉五月 | 天天躁夜夜躁狠狠躁躁| 天堂中文最新版在线下载| 久久久久国产一级毛片高清牌| 中文字幕精品免费在线观看视频| 国产不卡一卡二| 啪啪无遮挡十八禁网站| 国产日韩一区二区三区精品不卡| 伊人久久大香线蕉亚洲五| 露出奶头的视频| 国产亚洲欧美98| 国产免费男女视频| 1024香蕉在线观看| 一级作爱视频免费观看| 热99国产精品久久久久久7| 国产精品香港三级国产av潘金莲| 大香蕉久久成人网| 一区二区三区国产精品乱码| 国产又色又爽无遮挡免费看| 后天国语完整版免费观看| 久久国产亚洲av麻豆专区| 日本五十路高清| 少妇裸体淫交视频免费看高清 | 亚洲欧美日韩高清在线视频| 新久久久久国产一级毛片| 精品免费久久久久久久清纯 | 亚洲av电影在线进入| 国产区一区二久久| 精品少妇一区二区三区视频日本电影| 欧美黑人欧美精品刺激| 国产精品亚洲av一区麻豆| 久久久久国产精品人妻aⅴ院 | 日日爽夜夜爽网站| 国产一区在线观看成人免费| 两性夫妻黄色片| 黄色毛片三级朝国网站| av在线播放免费不卡| 国产精品久久视频播放| 一级毛片精品| 久久久久久人人人人人| 最近最新中文字幕大全免费视频| 人人澡人人妻人| 18禁观看日本| 欧美精品人与动牲交sv欧美| 亚洲在线自拍视频| 国产xxxxx性猛交| 视频在线观看一区二区三区| 男男h啪啪无遮挡| 无遮挡黄片免费观看| 免费人成视频x8x8入口观看| 中文字幕av电影在线播放| 女人高潮潮喷娇喘18禁视频| 国产精品 国内视频| 人人妻人人添人人爽欧美一区卜| 久久国产乱子伦精品免费另类| 69av精品久久久久久| 91大片在线观看| 999久久久国产精品视频| 久久人妻福利社区极品人妻图片| 久久人妻av系列| 好男人电影高清在线观看| 中文字幕人妻丝袜制服| 91大片在线观看| 91字幕亚洲| 99国产综合亚洲精品| 欧美另类亚洲清纯唯美| 三上悠亚av全集在线观看| 国产精品免费一区二区三区在线 | 嫁个100分男人电影在线观看| 精品久久久久久电影网| 啦啦啦视频在线资源免费观看| 国产高清视频在线播放一区| 国产精品二区激情视频| 青草久久国产| 多毛熟女@视频| 久久国产亚洲av麻豆专区| 欧美激情久久久久久爽电影 | 欧美国产精品一级二级三级| 99精品在免费线老司机午夜| 精品少妇一区二区三区视频日本电影| 国产男靠女视频免费网站| 亚洲精品美女久久久久99蜜臀| 久久人妻熟女aⅴ| 精品国产一区二区久久| 50天的宝宝边吃奶边哭怎么回事| 九色亚洲精品在线播放| 精品一区二区三卡| 亚洲精品中文字幕一二三四区| www.精华液| 悠悠久久av| 中文字幕另类日韩欧美亚洲嫩草| 国产日韩一区二区三区精品不卡| 亚洲第一av免费看| 国产国语露脸激情在线看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲成人国产一区在线观看| 亚洲一区高清亚洲精品| 欧美 日韩 精品 国产| 日韩欧美免费精品| 国产在线精品亚洲第一网站| 国产xxxxx性猛交| 欧美成狂野欧美在线观看| 91九色精品人成在线观看| 亚洲精品久久成人aⅴ小说| 欧美人与性动交α欧美精品济南到| 欧美日韩国产mv在线观看视频| av欧美777| 久久九九热精品免费| 亚洲一区二区三区不卡视频| 亚洲熟妇中文字幕五十中出 | 热99国产精品久久久久久7| 亚洲av美国av| 国产激情久久老熟女| 老熟妇仑乱视频hdxx| 狠狠狠狠99中文字幕| 久久人人爽av亚洲精品天堂| 美女午夜性视频免费| 亚洲人成电影观看| 国产日韩一区二区三区精品不卡| 丝瓜视频免费看黄片| 欧美日韩亚洲综合一区二区三区_| 99久久国产精品久久久| 一级a爱视频在线免费观看| 国产精品.久久久| 国产亚洲欧美精品永久| 国产在线一区二区三区精| 麻豆av在线久日| 久久国产亚洲av麻豆专区| 在线观看免费视频网站a站| 在线观看日韩欧美| 国产精品98久久久久久宅男小说| 久久中文字幕人妻熟女| 久久 成人 亚洲| 国产主播在线观看一区二区| 十分钟在线观看高清视频www| 国产视频一区二区在线看| 大陆偷拍与自拍| 成人影院久久| 99re在线观看精品视频| e午夜精品久久久久久久| 女同久久另类99精品国产91| 国产伦人伦偷精品视频| 看片在线看免费视频| 精品人妻在线不人妻| 日本wwww免费看| 女同久久另类99精品国产91| 欧美在线一区亚洲| 国产在视频线精品| 女人久久www免费人成看片| www.精华液| 亚洲av成人不卡在线观看播放网| 欧美乱妇无乱码| 岛国在线观看网站| 成年人免费黄色播放视频| 精品无人区乱码1区二区| 好看av亚洲va欧美ⅴa在| 韩国精品一区二区三区| 日韩三级视频一区二区三区| 99香蕉大伊视频| 99国产精品99久久久久| 乱人伦中国视频| 国产三级黄色录像| 亚洲人成电影免费在线| 看免费av毛片| 999精品在线视频| 男女床上黄色一级片免费看| 国产精品.久久久| 99精品久久久久人妻精品| 午夜免费鲁丝| 午夜两性在线视频| 宅男免费午夜| 18在线观看网站| 窝窝影院91人妻| 不卡一级毛片| 在线天堂中文资源库| 亚洲国产中文字幕在线视频| 精品人妻1区二区| 制服诱惑二区| 亚洲中文字幕日韩| 中亚洲国语对白在线视频| 搡老熟女国产l中国老女人| 人人妻人人爽人人添夜夜欢视频| svipshipincom国产片| 午夜影院日韩av| 久9热在线精品视频| 欧美日韩精品网址| 国产av精品麻豆| 人人妻人人添人人爽欧美一区卜| 18禁国产床啪视频网站| 婷婷丁香在线五月| 国产一区有黄有色的免费视频| 免费在线观看黄色视频的| 国产亚洲av高清不卡| 天堂中文最新版在线下载| 99国产精品99久久久久| 亚洲精品国产精品久久久不卡| 男女高潮啪啪啪动态图| 99re在线观看精品视频| 老司机午夜福利在线观看视频| 欧美+亚洲+日韩+国产| 亚洲人成电影观看| 国产亚洲av高清不卡| 亚洲av日韩在线播放| 一区二区三区国产精品乱码| 欧美激情极品国产一区二区三区| 怎么达到女性高潮| 亚洲熟妇中文字幕五十中出 | 九色亚洲精品在线播放| 人成视频在线观看免费观看| 又黄又爽又免费观看的视频| 最近最新中文字幕大全免费视频| 超碰成人久久| 日韩欧美免费精品| 国产成人精品久久二区二区免费| 19禁男女啪啪无遮挡网站| 最新美女视频免费是黄的| 国产一区在线观看成人免费| 色综合欧美亚洲国产小说| 国产野战对白在线观看| 99久久精品国产亚洲精品| 欧美日韩亚洲高清精品| 久久久国产成人免费| 亚洲欧美日韩另类电影网站| 久久天躁狠狠躁夜夜2o2o| 老司机深夜福利视频在线观看| 一个人免费在线观看的高清视频| 亚洲成人手机| 久久精品人人爽人人爽视色| 国精品久久久久久国模美| 欧美激情 高清一区二区三区| 欧美另类亚洲清纯唯美| 国产又爽黄色视频| 中出人妻视频一区二区| 日本欧美视频一区| 91麻豆av在线| 国产真人三级小视频在线观看| 国产成人免费观看mmmm| 亚洲少妇的诱惑av| 国产亚洲欧美98| 国产在线一区二区三区精| 精品熟女少妇八av免费久了| 成人av一区二区三区在线看| 日韩有码中文字幕| 久久人人97超碰香蕉20202| 免费观看a级毛片全部| 一区二区三区激情视频| 久久九九热精品免费| 黑人巨大精品欧美一区二区mp4| 免费人成视频x8x8入口观看| 欧美精品亚洲一区二区| 国产成人精品无人区| 久久精品亚洲精品国产色婷小说| 欧美日韩乱码在线| 一本综合久久免费| 亚洲七黄色美女视频| 亚洲专区字幕在线| 18禁美女被吸乳视频| 91在线观看av| 香蕉丝袜av| 午夜91福利影院| 日韩熟女老妇一区二区性免费视频| 亚洲 欧美一区二区三区| 99热只有精品国产| 久久青草综合色| 亚洲精品美女久久久久99蜜臀| 欧美久久黑人一区二区| 99热只有精品国产| 国产在线精品亚洲第一网站| 捣出白浆h1v1| 啦啦啦视频在线资源免费观看| 欧美日本中文国产一区发布| 国产成人免费无遮挡视频| 国产午夜精品久久久久久| 精品国内亚洲2022精品成人 | 国产片内射在线| 亚洲片人在线观看| 黄色丝袜av网址大全| 在线永久观看黄色视频| 最近最新中文字幕大全电影3 | 欧美成人免费av一区二区三区 | 亚洲欧美激情综合另类| 亚洲成人免费av在线播放| 国产成人免费观看mmmm| 天天影视国产精品| 日韩欧美在线二视频 | 国产激情欧美一区二区| 亚洲av日韩精品久久久久久密| 一区二区三区国产精品乱码| 国产精品av久久久久免费| 亚洲av成人一区二区三| 午夜亚洲福利在线播放| 激情在线观看视频在线高清 | 婷婷成人精品国产| 国产极品粉嫩免费观看在线| 日韩欧美国产一区二区入口| 女人被狂操c到高潮| 黄网站色视频无遮挡免费观看| 精品国产一区二区三区久久久樱花| 咕卡用的链子| 亚洲中文av在线| 美女扒开内裤让男人捅视频| 成年动漫av网址| 国产男女内射视频| 亚洲视频免费观看视频| 人人澡人人妻人| 精品人妻熟女毛片av久久网站| 一级毛片女人18水好多| 一个人免费在线观看的高清视频| 亚洲自偷自拍图片 自拍| 狠狠狠狠99中文字幕| 激情在线观看视频在线高清 | 久久久久久久国产电影| 精品久久久久久电影网| 一级a爱片免费观看的视频| 久久草成人影院| 国产又色又爽无遮挡免费看| 成人影院久久| 成年人免费黄色播放视频| 真人做人爱边吃奶动态| 中文字幕人妻丝袜制服| 777久久人妻少妇嫩草av网站| 亚洲一区二区三区欧美精品| 婷婷成人精品国产| 免费在线观看亚洲国产| 欧美在线黄色| 欧美精品av麻豆av| 天堂√8在线中文| 国产1区2区3区精品| 久久国产精品大桥未久av| 一本大道久久a久久精品| 亚洲七黄色美女视频| 午夜激情av网站| 最新的欧美精品一区二区| 亚洲成人免费电影在线观看| 亚洲熟女精品中文字幕| 99国产极品粉嫩在线观看| 久久久国产成人精品二区 | 亚洲欧美一区二区三区黑人| 亚洲色图av天堂| 高清毛片免费观看视频网站 | 欧美av亚洲av综合av国产av| √禁漫天堂资源中文www| 丰满的人妻完整版| 91大片在线观看| 欧美日本中文国产一区发布| 国产一区二区三区在线臀色熟女 | 日韩欧美国产一区二区入口| 91麻豆av在线| 国产91精品成人一区二区三区| 黄片播放在线免费| 成人亚洲精品一区在线观看| 欧美精品啪啪一区二区三区| 99riav亚洲国产免费| 老司机靠b影院| 精品一区二区三区四区五区乱码| 国产真人三级小视频在线观看| av一本久久久久| 亚洲熟妇中文字幕五十中出 | 新久久久久国产一级毛片| 欧美一级毛片孕妇| 1024香蕉在线观看| 看片在线看免费视频| 免费观看人在逋| 国产精品国产高清国产av | 男人舔女人的私密视频| 女人被狂操c到高潮| 午夜福利乱码中文字幕| 精品少妇久久久久久888优播| 90打野战视频偷拍视频| 岛国在线观看网站| 两性夫妻黄色片| 成人国产一区最新在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲成人免费电影在线观看| 日韩视频一区二区在线观看| videosex国产| 多毛熟女@视频| 精品一区二区三卡| 中出人妻视频一区二区| 乱人伦中国视频| 一级,二级,三级黄色视频| 99久久99久久久精品蜜桃| 国产精品.久久久| av天堂久久9| av欧美777| 欧美日韩一级在线毛片| 免费日韩欧美在线观看| 天堂动漫精品| 一级片'在线观看视频| 女人高潮潮喷娇喘18禁视频| 大香蕉久久成人网| netflix在线观看网站| 亚洲成人国产一区在线观看| 亚洲第一欧美日韩一区二区三区| 精品一区二区三区视频在线观看免费 | 成熟少妇高潮喷水视频| 在线视频色国产色| 日本vs欧美在线观看视频| 韩国精品一区二区三区| 99久久国产精品久久久| 欧美亚洲日本最大视频资源| 黄片大片在线免费观看| 黑人巨大精品欧美一区二区mp4| 视频在线观看一区二区三区| 亚洲欧美精品综合一区二区三区| 欧美精品人与动牲交sv欧美| 成年版毛片免费区| 日韩三级视频一区二区三区| 国产蜜桃级精品一区二区三区 | 国产精品国产av在线观看| 热99re8久久精品国产| 日本黄色视频三级网站网址 | 激情视频va一区二区三区| 久久精品成人免费网站| 国产精品免费视频内射| 日韩人妻精品一区2区三区| 精品福利观看| 交换朋友夫妻互换小说| 老熟妇乱子伦视频在线观看| 啪啪无遮挡十八禁网站| av免费在线观看网站| 人成视频在线观看免费观看| 色播在线永久视频| 黑丝袜美女国产一区| 丝袜美足系列| 国产亚洲欧美在线一区二区| xxxhd国产人妻xxx| 啦啦啦 在线观看视频| 亚洲色图综合在线观看| 高清视频免费观看一区二区| 国产精品一区二区免费欧美| 男女床上黄色一级片免费看| 黄片播放在线免费| 男女床上黄色一级片免费看| 淫妇啪啪啪对白视频| 高清视频免费观看一区二区| 丰满迷人的少妇在线观看| 亚洲成人国产一区在线观看| 91大片在线观看| 国产欧美日韩一区二区三| 在线播放国产精品三级| 久久精品国产亚洲av香蕉五月 | 国产av一区二区精品久久| 狂野欧美激情性xxxx| 精品一区二区三卡| 国产精品久久电影中文字幕 | 一边摸一边抽搐一进一小说 | 一级片'在线观看视频| 天堂√8在线中文| www日本在线高清视频| 免费观看a级毛片全部| 美女午夜性视频免费| 国产精品电影一区二区三区 | 老汉色∧v一级毛片| 国产精品亚洲av一区麻豆| 美女高潮喷水抽搐中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩视频精品一区| 日韩 欧美 亚洲 中文字幕| 国产激情欧美一区二区| 亚洲国产欧美一区二区综合| 欧美+亚洲+日韩+国产| 丰满人妻熟妇乱又伦精品不卡| 国产精品.久久久| 一级a爱视频在线免费观看| 精品无人区乱码1区二区| 久久精品国产清高在天天线| 在线观看舔阴道视频| 亚洲国产欧美一区二区综合| 精品国产超薄肉色丝袜足j| 69精品国产乱码久久久| 久久精品国产a三级三级三级| 国产成人免费观看mmmm| 午夜福利欧美成人| 亚洲avbb在线观看| 亚洲国产毛片av蜜桃av| 大片电影免费在线观看免费| 欧美黑人精品巨大| 在线播放国产精品三级| 亚洲,欧美精品.| 国产精品一区二区免费欧美| 亚洲精品美女久久av网站| 一级毛片精品| 成人亚洲精品一区在线观看| 精品国产国语对白av| 国产成人精品在线电影| 一本综合久久免费| 欧美在线一区亚洲| 女同久久另类99精品国产91| 久久久国产成人免费| av中文乱码字幕在线| 欧美一级毛片孕妇| 在线永久观看黄色视频| 高潮久久久久久久久久久不卡| 久久香蕉国产精品| 国产免费男女视频| 久久精品91无色码中文字幕| 国产无遮挡羞羞视频在线观看| 18禁黄网站禁片午夜丰满| tube8黄色片| 多毛熟女@视频| 91精品三级在线观看| 欧美乱码精品一区二区三区| 欧美在线一区亚洲| 中文亚洲av片在线观看爽 | 亚洲精品在线美女| 99香蕉大伊视频| 精品亚洲成国产av| 国产精品欧美亚洲77777| 亚洲精品美女久久久久99蜜臀| 亚洲午夜理论影院| 在线看a的网站| 国产亚洲一区二区精品| 久久久精品国产亚洲av高清涩受| 亚洲第一av免费看| 人人澡人人妻人| 大陆偷拍与自拍| 成年版毛片免费区| 午夜精品在线福利| 免费看a级黄色片| 国产精品免费大片| 高清视频免费观看一区二区| 在线观看免费高清a一片| 免费观看人在逋| 亚洲欧美日韩另类电影网站| 日韩有码中文字幕| 国产又爽黄色视频| 黄片播放在线免费|