羅思杰,江 勇,賀 涔,解培濤,范潤華
電磁性能可調(diào)控金屬陶瓷Y2Ti2O7/Fe的制備與表征
羅思杰1, 2,江 勇1, 2,賀 涔1, 2,解培濤3,范潤華3
(1. 中南大學(xué) 材料科學(xué)與工程學(xué)院,長沙 410083;2. 中南大學(xué) 有色金屬材料科學(xué)與工程教育部重點(diǎn)實(shí)驗(yàn)室,長沙 410083;3. 山東大學(xué) 材料科學(xué)與工程學(xué)院,濟(jì)南 250061)
采用固相反應(yīng)與真空燒結(jié)先后制備Y2Ti2O7粉末與Y2Ti2O7/Fe金屬陶瓷。XRD分析表明,所得Y2Ti2O7粉末為純相,Y2Ti2O7/Fe金屬陶瓷化學(xué)性質(zhì)穩(wěn)定,金屬相與陶瓷相之間無界面反應(yīng)產(chǎn)物。在10 MHz~1 GHz頻段進(jìn)行測試,發(fā)現(xiàn)Y2Ti2O7/Fe金屬陶瓷的逾滲閾值處于Fe含量20%~30%(體積分?jǐn)?shù))之間。當(dāng)Fe含量低于逾滲閾值時(shí),介電常數(shù)、交流導(dǎo)電和磁導(dǎo)率均隨Fe含量的增加而增加。當(dāng)Fe含量超過30%時(shí),金屬陶瓷電抗與交流電導(dǎo)率發(fā)生突變,在整個(gè)測試頻段都呈現(xiàn)負(fù)介電常數(shù)。Fe含量為40%的樣品的磁導(dǎo)率在整個(gè)測試頻段內(nèi)小于1,且隨頻率增加不斷下降,應(yīng)歸因于逾滲導(dǎo)電網(wǎng)絡(luò)導(dǎo)致的抗磁性。在頻率大于1 GHz時(shí)可能出現(xiàn)負(fù)磁導(dǎo)率,即實(shí)現(xiàn)電磁性能的雙負(fù)性。
Y2Ti2O7;金屬陶瓷;介電常數(shù);磁導(dǎo)率
雙負(fù)材料(Double negative materials, DNMs)是指在特定電磁波頻段可以實(shí)現(xiàn)介電常數(shù)與磁導(dǎo)率同時(shí)為負(fù)值的一類材料。這類材料展現(xiàn)出負(fù)折射、逆多普勒效應(yīng)、逆切倫科夫效應(yīng)等奇特的物理現(xiàn)象,在電磁屏蔽、隱形、電磁波衰減和微帶天線等領(lǐng)域有巨大應(yīng)用潛力。前蘇聯(lián)科學(xué)家VESELAGO[1]于1968年首次提出雙負(fù)材料的理論概念,并預(yù)測當(dāng)電磁波在這類材料中傳播時(shí),其磁場矢量、電場矢量和波矢均遵循左手定則,因此也可稱之為“左手材料”。直至1996年,PENDRY等[2]從理論上預(yù)言了周期性排列的開口諧振環(huán)結(jié)構(gòu)可以獲得雙負(fù)性質(zhì)。2000年,SMITH等[3]首次報(bào)道在周期性排列金屬線及金屬環(huán)的超材料中出現(xiàn)負(fù)折射的現(xiàn)象。一般認(rèn)為,超材料的雙負(fù)特性主要來源于其特殊的介觀結(jié)構(gòu)。近十年來的,許多具有不同特殊構(gòu)型的超材料陸續(xù)被研究者成功制備[4?6],對其電磁特性的表征也相應(yīng)成為研究熱點(diǎn)。與之同時(shí),能否和如何通過材料的本征性質(zhì)低成本地實(shí)現(xiàn)雙負(fù)性能,也一直是研究者們積極探索的新課題。山東大學(xué)范潤華等[7]通過浸漬還原法制備的多孔氧化鋁負(fù)載鎳,在750 MHz~1 GHz頻段成功實(shí)現(xiàn)了金屬陶瓷雙負(fù)性能的突破。近幾年來,又陸續(xù)在不同金屬陶瓷復(fù)合材料中多次實(shí)現(xiàn)了雙負(fù)性能[8?10]和負(fù)介電性能[11?14]。
金屬陶瓷是由金屬或合金與至少一種陶瓷相組成的非均質(zhì)復(fù)合材料,其整體材料性能介于金屬與陶瓷之間。通過改變金屬與陶瓷相的成分比例,可以對材料的介觀結(jié)構(gòu),進(jìn)而對其電磁性能進(jìn)行設(shè)計(jì)調(diào)控。當(dāng)金屬陶瓷中的金屬含量超過它的逾滲閾值時(shí),材料介電常數(shù)可能發(fā)生突變,獲得負(fù)介電性能。同時(shí),金屬相一旦構(gòu)成了大量環(huán)形微結(jié)構(gòu),會(huì)對外磁場的變化產(chǎn)生抵抗,從而降低材料的磁導(dǎo)率,甚至獲得負(fù)磁導(dǎo)率。若金屬相具有鐵磁性,負(fù)磁導(dǎo)率也可能由磁共振獲得。
Y2Ti2O7是具有燒綠石結(jié)構(gòu)的一種復(fù)雜氧化物,屬于中介電常數(shù)材料(30<r<80)[15],有很高的熱力學(xué)穩(wěn)定性,從室溫到1673 K既不會(huì)發(fā)生分解也不會(huì)有相 變[16]。由于其性質(zhì)穩(wěn)定,燒綠石結(jié)構(gòu)Y2Ti2O7在熱障涂層、催化、固體燃料電池、上轉(zhuǎn)換發(fā)光等功能材料領(lǐng)域中有著廣泛應(yīng)用前景[17?22]。而作為一種氧化物,其彈性模量卻與Fe相近[21],與Fe之間也不發(fā)生化學(xué)反應(yīng)[23?27],顯然也是鐵基金屬陶瓷中的理想陶瓷相。本文采用固相法合成Y2Ti2O7,再利用粉末冶金方法制備Y2Ti2O7/Fe金屬陶瓷,并對其物相組成、顯微結(jié)構(gòu)、及其電磁性能開展表征,評估其實(shí)現(xiàn)雙負(fù)或單負(fù)性的可能性。
以TiO2(汕頭市西隴化工廠生產(chǎn)、純度為AR、銳鈦礦型)粉末與Y2O3(贛州萬臻礦產(chǎn)有限公司生產(chǎn)、純度為99.99%)粉末作為原料,按比例進(jìn)行球磨混合(轉(zhuǎn)速300 r/min、時(shí)間20 h),經(jīng)1200 ℃固相反應(yīng)8 h,一次性獲得純相Y2Ti2O7粉末。Y2Ti2O7粉末經(jīng)球磨細(xì)化后,與不同體積分?jǐn)?shù)的Fe粉末(10%、20%、30%、40%,分別標(biāo)記為F10、F20、F30、F40)進(jìn)行球磨混料(轉(zhuǎn)速200 r/min、時(shí)間8 h)。通過模壓制成圓環(huán)與圓片形試樣,在真空下壓坯燒結(jié)(1400 ℃,2 h)成金屬陶瓷。
圖1所示為固相合成法制備的Y2Ti2O7粉末的XRD譜??梢钥吹?,各特征衍射峰都比較尖銳,說明結(jié)晶度良好,且沒有TiO2或Y2O3殘余,可以認(rèn)定獲得了燒綠石結(jié)構(gòu)的Y2Ti2O7單相粉末。圖2所示為Y2Ti2O7粉末的SEM像。粉末形狀不規(guī)則,粒徑主要分布在數(shù)百納米到7 μm之間,以1 μm左右的顆粒最多。
圖3所示為不同成分配比獲得的Y2Ti2O7/Fe金屬陶瓷的XRD譜。圖3中所有特征衍射峰都屬于Fe與Y2Ti2O7,隨Fe含量的增加,F(xiàn)e衍射峰逐漸增強(qiáng),Y2Ti2O7衍射峰逐漸減弱,且沒有出現(xiàn)任何其他雜質(zhì)相的衍射峰,這說明Y2Ti2O7與Fe化學(xué)相容性良好,即使在1673 K下燒結(jié)也沒有發(fā)生化學(xué)反應(yīng),獲得的Y2Ti2O7/Fe金屬陶瓷具有很強(qiáng)的高溫化學(xué)穩(wěn)定性。
圖1 Y2Ti2O7粉末的XRD譜
圖2 Y2Ti2O7粉末的SEM像
圖3 Y2Ti2O7/Fe金屬陶瓷XRD譜
圖4所示為Y2Ti2O7/Fe金屬陶瓷微觀組織的SEM像。圖4中亮襯度相為Fe,暗襯度相為Y2Ti2O7基體。Fe含量較低的試樣,如F10,F(xiàn)e顆粒彌散地分布在Y2Ti2O7基體中,相互之間沒有連通。隨著Fe含量的增加,F(xiàn)e顆粒變大,相鄰的Fe顆粒產(chǎn)生了連通合并,顆粒尺寸的分布散度更大,形貌也變得更加不規(guī)則,甚至融合在了一起形成金屬環(huán)或開口的環(huán)狀。另外,Y2Ti2O7陶瓷基體存在一定的孔隙率,這是由于燒結(jié)溫度仍然遠(yuǎn)遠(yuǎn)低于它的熔點(diǎn),燒結(jié)后無法形成完全致密。但Fe含量增加有利于減少基體孔隙率,這可能是燒結(jié)時(shí)出現(xiàn)了Fe的液相,有利于填充部分基體孔隙,從而改善了材料致密度。
圖4 Y2Ti2O7/Fe金屬陶瓷的SEM像
圖5 Y2Ti2O7/Fe金屬陶瓷的介電譜
F40試樣的介電譜與F30類似,但介電常數(shù)的絕對值有顯著提高。其介電常數(shù)與頻率的關(guān)系可由Drude模型[29?30]進(jìn)行擬合:
圖6所示為不同F(xiàn)e含量的Y2Ti2O7/Fe金屬陶瓷的電抗隨頻率的變化曲線。金屬含量較低時(shí),F(xiàn)10與F20的電抗值在整個(gè)測試頻率范圍內(nèi)都為負(fù),表明樣品呈現(xiàn)出容抗性,在交變電場作用下,樣品的電壓相位滯后于電流的相位。試樣的負(fù)電抗絕對值隨著頻率的增加而下降,逐漸趨向于0。當(dāng)Fe含量較高時(shí),F(xiàn)30和F40的電抗值在整個(gè)測試頻率范圍都為正,表現(xiàn)為感抗性,在交變電場中,樣品中電流的相位滯后于電壓的相位,并且正電抗值與頻率大小呈正相關(guān)性。這種感抗性?容抗性的轉(zhuǎn)變,與介電常數(shù)的逾滲現(xiàn)象類似,其逾滲閾值在Fe含量為20%~30%之間。
圖6 Y2Ti2O7/Fe金屬陶瓷的電抗和頻率的關(guān)系
圖7所示為不同F(xiàn)e含量的Y2Ti2O7/Fe金屬陶瓷的交流電導(dǎo)率隨頻率的變化曲線。低Fe含量的F10、F20試樣在較低頻段電導(dǎo)率很低,并隨頻率的增加而增加,試樣的導(dǎo)電機(jī)制為電子跳躍電導(dǎo)[34]。當(dāng)Fe含量超過逾滲值,F(xiàn)30、F40試樣的交流電導(dǎo)率顯著提高,在低于100 MHz頻率的范圍高出F10和F20試樣約2個(gè)數(shù)量級(jí),這是由于材料中形成了金屬相網(wǎng)絡(luò)。并且電導(dǎo)率隨著頻率的升高而降低,由于高頻電場下電流集中在導(dǎo)體表面,即趨膚效應(yīng),頻率升高使趨膚深度減小,小的導(dǎo)電面積產(chǎn)生高的電阻,進(jìn)而導(dǎo)致電導(dǎo)率的降低。
圖7 Y2Ti2O7/Fe金屬陶瓷的交流電導(dǎo)率隨頻率的變化
圖8所示為不同F(xiàn)e含量的Y2Ti2O7/Fe金屬陶瓷的磁譜。純Y2Ti2O7的磁導(dǎo)率在整個(gè)頻段保持較好的穩(wěn)定性,數(shù)值穩(wěn)定在1左右,基本不具備磁性。當(dāng)Fe含量較少時(shí),F(xiàn)10樣品的磁導(dǎo)率也不隨外加磁場頻率的增加而發(fā)生明顯變化,數(shù)值穩(wěn)定在1.3左右,表現(xiàn)出一定的順磁性。F20試樣的磁譜具有頻散現(xiàn)象,并且可以看出在Fe含量低于30%時(shí),Y2Ti2O7/Fe金屬陶瓷的磁導(dǎo)率與金屬含量的多少呈正相關(guān)性,這顯然與其中磁性相含量的增加相對應(yīng)。當(dāng)Fe含量繼續(xù)升高,F(xiàn)30試樣頻散現(xiàn)象十分明顯,磁導(dǎo)率開始敏感地依賴于外磁場頻率,隨著頻率升高出現(xiàn)先降低再升高,在300 MHz左右取得極小值。
圖8 Y2Ti2O7/Fe金屬陶瓷的磁譜
F40的磁譜是典型的弛豫型,在整個(gè)測試頻段中磁導(dǎo)率始終低于1,表現(xiàn)出抗磁性,并且其磁導(dǎo)率隨著頻率升高而不斷下降,在1GHz時(shí)已經(jīng)十分接近于0,并且降低的趨勢沒有減弱??梢酝茰y若磁場頻率大于1GHz一定值,F(xiàn)40試樣磁導(dǎo)率有可能成為負(fù)值,從而實(shí)現(xiàn)雙負(fù)性。這是由于F40試樣中Fe含量較高,作為具有一定導(dǎo)電能力的磁性材料,在交變磁場的作用下會(huì)產(chǎn)生局域渦流以抵抗外磁場的變化,導(dǎo)致材料磁導(dǎo)率降低。
1) 通過固相反應(yīng)制備了純相的Y2Ti2O7,并通過真空燒結(jié)制備了不同F(xiàn)e含量(體積分?jǐn)?shù)10%~40%)的Y2Ti2O7/Fe金屬陶瓷。金屬相與陶瓷相之間在燒結(jié)溫度(1673 K)未發(fā)生反應(yīng)。隨Fe含量的增加,金屬陶瓷的致密度提高。
2) Y2Ti2O7/Fe金屬陶瓷介電常數(shù)的逾滲閾值在Fe 含量為20%~30%之間。在10 MHz~1 GHz的整個(gè)頻段中,F(xiàn)30與F40試樣均獲得負(fù)介電常數(shù),可能與材料內(nèi)部形成有三維連通的金屬相網(wǎng)絡(luò)有關(guān)。
3) Y2Ti2O7/Fe金屬陶瓷的交流導(dǎo)電和電抗性同樣對組分比例非常敏感。電抗性能突變的逾滲值在Fe含量為20%~30%之間。在10 MHz~1 GHz的整個(gè)頻段中,F(xiàn)10與F20試樣呈容抗性,F(xiàn)30與F40試樣呈感抗性。交流電導(dǎo)率隨Fe含量增加而增加。
4) 純Y2Ti2O7的磁導(dǎo)率在10 MHz~1 GHz的整個(gè)頻段中均穩(wěn)定在1左右,高頻磁場下頻散現(xiàn)象不明顯。Fe含量低于40%時(shí),隨著Fe含量增加,試樣的磁導(dǎo)率也增加,頻散也逐漸明顯。F40試樣磁導(dǎo)率隨著頻率增加而持續(xù)降低,在1 GHz時(shí)趨于0。進(jìn)一步提高測試頻率,F(xiàn)40試樣有可能獲得負(fù)磁導(dǎo)率,實(shí)現(xiàn)雙負(fù)性。
[1] VESELAGO V G. The electrodynamics of substances with simultaneously negative values ofand[J]. Soviet Physics Uspekhi, 1968, 10(4): 509?514.
[2] PENDRY J B, HOLDEN A J, STEWART W J, YOUNGS I. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 1996, 76(25): 4773.
[3] SHELBY R A, SMITH D R, SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77?79.
[4] WILTSHIRE M C K, HAJNAL J V. Microstructured magnetic materials for RF flux guides in magnetic resonance imaging[J]. Science, 2001, 291(5505): 849?851.
[5] YEN T J, PADILLA W J, FANG N, VIER D C, SMITH D T, PENDRY J B, BASOV D N, ZHANG X. Terahertz magnetic response from artificial materials[J]. Science, 2004, 303(5663): 1494?1496.
[6] LINDEN S, ENKRICH C, WEGENER M, ZHOU J, KOSCHNY T, SOUKOULIS C M. Magnetic response of metamaterials at 100 terahertz[J]. Science, 2004, 306(5700): 1351?1353.
[7] SHI Z C, FAN R H, ZHANG Z D, QIAN L, GAO M, ZHANG M, ZHENG L T, ZHANG X H, YIN L W. Random composites of nickel networks supported by porous alumina toward double negative materials[J]. Advanced Materials, 2012, 24(17): 2349.
[8] SHI Z C, FAN R H, YAN K L, SUN K, ZHANG M, WANG C G, LIU X F, ZHANG X H. Preparation of iron networks hosted in porous alumina with tunable negative permittivity and permeability[J]. Advanced Functional Materials, 2013, 23(33): 4123?4132.
[9] SUN K, FAN R H, ZHANG Z D, YAN K L, ZHANG X H, XIE P T, YU M X, PAN S B. The tunable negative permittivity and negative permeability of percolative Fe/Al2O3composites in radio frequency range[J]. Applied Physics Letters, 2015, 106(17): 193104.
[10] SHI Z, FAN R, ZHANG Z, YAN K L, ZHANG X H, SUN K, LIU X F, WANG C G. Experimental realization of simultaneous negative permittivity and permeability in Ag/Y3Fe5O12random composites[J]. Journal of Materials Chemistry C, 2013, 1(8): 1633?1637.
[11] XIE P, SUN K, WANG Z, LIU Y, FAN R, ZHANG Z, SCHUMACHER G. Negative permittivity adjusted by SiO2-coated metallic particles in percolative composites[J]. Journal of Alloys & Compounds, 2017.
[12] YAN K L, FAN R H, SHI Z C,CHEN M, QIAN L, WEI Y L, SUN K, LI J. Negative permittivity behavior and magnetic performance of perovskite La1?xSrMnO3at high- frequency[J]. Journal of Materials Chemistry C, 2014, 2(6): 1028?1033.
[13] SUN K, FAN R, YIN Y, GUO J, LI X, AN L, CHENG C. Tunable negative permittivity with fano-like resonance and magnetic property in percolative silver/yittrium iron garnet nanocomposites[J]. Journal of Physical Chemistry C, 2017, 121(13).
[14] CHENG C, FAN R, REN Y, DING T, QIAN L, GUO J, LI X, AN L, LEI Y, YIN Y, GUO Z. Radio frequency negative permittivity in random carbon nanotubes/alumina nanocomposites[J]. Nanoscale, 2017, 9(18): 5779?5787.
[15] DING Jia-yu, XIAO Yuan, HAN Peng-de, ZHANG Qi-tu. Effects of rare earth oxides on dielectric properties of Y2Ti2O7series ceramics[J]. Journal of Rare Earths, 2010, 28(5): 765?768.
[16] NGUYEN S T, NAKAYAMA T, SUEMATSU H, SUZUKI H, SUZUKI T, NANKO M, CHO H B, HUYNH M T T, JIANG W, NIIHARA K. Synthesis of molten-metal corrosion resistant yttria-based refractory by hot-pressing and densification[J]. Journal of the European Ceramic Society, 2015, 35(9): 2651?2662.
[17] PAN W, PHILLPOT S R, WAN C, CHERNATYNSKIY A, Q Z. Low thermal conductivity oxides[J]. MRS Bulletin, 2012, 37(10): 917?922.
[18] MERKA O, BAHNEMANN P ? W, WARK P. Improved photocatalytic hydrogen production by structure optimized nonstoichiometric Y2Ti2O7[J]. Chemcatchem, 2012, 4(11): 1819?1827.
[19] GILL J K, PANDEY O P, SINGH K. Ionic conductivity, structural and thermal properties of Ca2+doped Y2Ti2O7pyrochlores for SOFC[J]. international Journal of Hydrogen Energy, 2012, 37(4): 3857?3864.
[20] CHEN Z, GONG W, CHEN T, LI S, WANG D, WANG Q. Preparation and upconversion luminescence of Er3+/Yb3+, codoped Y2Ti2O7, nanocrystals[J]. Materials Letters, 2012, 68(41): 137?139.
[21] 楊錦瑜, 羅 林, 劉雪穎, 蘇玉長. Eu3+摻雜RE2Sn2O7(RE=La,Gd,Y)納米熒光材料的水熱合成與發(fā)光性能[J]. 中國有色金屬學(xué)報(bào), 2014, 24(4): 1036?1040. YANG Jin-yu, LUO Lin, LIU Xue-yin, SU Yu-chang. Hydrothermal synthesis and optical properties of Eu3+doped RE2Sn2O7(RE=La,Gd, Y) nanophosphors[J]. Chinese Journal of Nonferrous Metals, 2014, 24(4): 1036?1040.
[22] YANG Jin-yu, SU Yu-chang, LIU Xue-yin. Hydrothermal synthesis, characterization and optical properties of La2Sn2O7:Eu3+micro-octahedra[J]. Chinese Journal of Nonferrous Metals, 2011, 21(3): 535?543.
[23] JIANG Y, SMITH J R, ODETTE G R. Prediction of structural, electronic and elastic properties of YTiO and YTiO[J]. Acta Materialia, 2010, 58(5): 1536?1543.
[24] BARNARD L, ODETTE G R, SZLUFARSKA I, MORGAND. An AB initio study of Ti-Y-O nanocluster energetic in nanostructured ferritic alloys[J]. Acta Materialia, 2012, 60: 935?947.
[25] BARNARD L, CUNNINGHAM N, ODETTE G R, SZLUFARSKA I, MORGAN D. Thermodynamic and kinetic modeling of oxide precipitation in nanostructured ferritic alloys[J]. Acta Materialia, 2015, 91: 340?354.
[26] YANG L, JIANG Y, ODETTE G R, ZHOU W C, LIU Z, LIU Y. Nonstoichiometry and relative stabilities of Y2Ti2O7polar surfaces[J]. Acta Materialia, 2013, 61: 7260?7270.
[27] 江 勇, 楊力通, 金亞楠, 周張健, 呂 錚. 納米結(jié)構(gòu)鐵素體合金中氦捕獲的第一性原理研究[J]. 中國有色金屬學(xué)報(bào), 2015, 25(12): 3370?3380.JIANG Yong, YANG Li-tong, JIN ya-nan, ZHOU Zhang-jian, LU Zheng. First principles study of helium trapping in nano-structured ferritic alloys[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(12): 3370?3380.
[28] GAO M, SHI Z C, FAN R H, QIAN L, ZHANG Z D, GUO J Y. High-frequency negative permittivity from Fe/Al2O3composites with high metal contents[J]. Journal of the American Ceramic Society, 2012, 95(1): 67?70.
[29] ZIOLKOWSKI R W, HEYMAN E. Wave propagation in media having negative permittivity and permeability[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2001, 64(5 Pt 2): 056625.
[30] ZIOLKOWSKI R W, KIPPLE A D. Causality and double-negative metamaterials[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2003, 68(2): 026615.
[31] ORDAL M A, BELL R J, ALEXANDER R W, LONG L L, QUERRY M R. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W[J]. Applied Optics, 1985, 24(24): 4493.
[32] CHENG C, FAN R, REN Y, DING T, QIAN L, GUO J, LI X, AN L, LEI Y, YIN Y, GUO Z. Radio frequency negative permittivity in random carbon nanotubes/alumina nanocomposites[J]. Nanoscale, 2017, 9(18): 5779?5787.
[33] XIE P, WANG Z, SUN K, CHENG C, LIU Y, FAN R. Regulation mechanism of negative permittivity in percolating composites via building blocks[J]. Applied Physics Letters, 2017, 111(11): 112903.
[34] DYRE J C, SCHR?DER T B. Universality of ac conduction in disordered solids[J]. Review of Modern Physics, 2000, 72(3): 873?892.
Fabrication and characterization of Y2Ti2O7/Fe cermets with tunable electromagnetic properties
LUO Si-jie1, 2, JIANG Yong1, 2, HE Cen1, 2, XIE Pei-tao3, FAN Run-hua3
(1. School of Materials Science and Engineering, Central South University, Changsha 410083, China;2. Key Laboratory of Nonferrous Metal Materials, Ministry of Education, Central South University, Changsha 410083, China 3. School of Materials Science and Engineering, Shan Dong University, Jinan 250061, China)
Y2Ti2O7powders and Y2Ti2O7/Fe cermets were fabricated by solid-state synthesis and vacuum sintering, respectively. XRD analysis suggests that the Y2Ti2O7powders are single-phase, and the Y2Ti2O7/Fe cermets are chemically stable, with no interfacial reaction products between the ceramic phase and the metal phase. During the electromagnetic testing under the frequencies of 10 MHz?1 GHz, the percolation threshold of the Y2Ti2O7/Fe cermets is found within the iron content range of 20%?30% (volume fraction). Under the percolation threshold, the permittivity, AC conductivity, and permeability all increase with the iron content. When the iron content is beyond 30%, the reactance and the AC conductivity change greatly, leading to a negative permittivity within the entire frequency range. For the iron content at 40%, the cermet exhibits a low permeability of less than 1, which decreases consistently with the increasing frequency. This should be attributed to the percolation induced diamagnetism as the result of the formation of conducting networks inside the cermet. Negative permeability can be further expected at the frequencies beyond 1 GHz.
Y2Ti2O7; cermet; permittivity; permeability
Project(2018YFE0306100) support by the National MCF Energy R&D Program of China; Project (51471189) support by the National Natural Science Foundation of China
2017-08-24;
2017-11-14
JIANG Yong; Tel: +86-731-88836320; E-mail: yjiang@csu.edu.cn;
FAN Run-hua; Tel: +86-531-88393396; E-mail: fan@sdu.edu.cn
1004-0609(2020)-01-0122-07
TG146.1
A
10.11817/j.ysxb.1004.0609.2020-37161
國家磁約束核聚變能發(fā)展研究專項(xiàng)(2018YFE0306100);國家自然科學(xué)基金面上項(xiàng)目(51471189)
2017-08-24;
2017-11-14
江 勇,教授,博士;電話:0731-88836320;E-mail:yjiang@csu.edu.cn;
范潤華,教授,博士;電話:0531-88393396;E-mail:fan@sdu.edu.cn
(編輯 王 超)