汪建強,郭麗麗,王長峰
AZ31鎂合金位錯密度模型及熱壓縮的微觀組織預(yù)測
汪建強,郭麗麗,王長峰
(大連交通大學(xué) 材料科學(xué)與工程學(xué)院 連續(xù)擠壓教育部工程研究中心,大連 116028)
通過熱壓縮實驗研究AZ31鎂合金擠壓桿料在變形溫度300、400和500 ℃,應(yīng)變速率0.1、0.01和0.001 s?1條件下的流變行為,基于Arrhenius方程建立流變應(yīng)力的本構(gòu)模型,其中激活能為132.45 kJ/mol,應(yīng)變硬化系數(shù)為4.67。依據(jù)AZ31鎂合金高溫變形中的動態(tài)再結(jié)晶(Dynamic recrystallization,DRX)機理和位錯密度演化規(guī)律,建立宏觀變形?微觀組織多尺度耦合的位錯密度模型,該模型能夠反映熱加工過程中的加工硬化、動態(tài)回復(fù)(Dynamic recovery,DRV)、低角晶界(Low angle grain boundaries,LAGB)和高角晶界(High angle grain boundaries,HAGB)等機制的交互作用。利用ABAQUS的VUSDFLD子程序進行熱壓縮過程的有限元模擬,獲得DRX分?jǐn)?shù)、LAGB和HAGB位錯密度的數(shù)值模擬結(jié)果以及壓縮載荷。結(jié)果表明:實驗載荷與模擬結(jié)果基本吻合,本文提出的AZ31鎂合金位錯密度模型是合理的。
AZ31鎂合金;本構(gòu)模型;位錯密度模型;有限元模擬
鎂及鎂合金是最輕的結(jié)構(gòu)材料,具有密度小、比強度高和良好的可焊性等優(yōu)點,被廣泛地應(yīng)用于電子、汽車和航空產(chǎn)業(yè)[1?2]。但由于其為密排六方結(jié)構(gòu),常溫下能開動的滑移系較少,塑性成形性差[3?5],然而,非基面滑移系的臨界剪切應(yīng)力隨著溫度的升高而降低,致使其微觀組織演化機理隨加工條件而變化[6?7]。因此,應(yīng)用合適的數(shù)學(xué)模型對鎂合金中高溫變形過程中的微觀組織進行預(yù)測,對把握鎂合金變形規(guī)律、揭示微觀機理有重要意義。
鎂合金中高溫變形及其DRX行為的相關(guān)研究很多,在不同變形條件下鎂合金的DRX程度不同,控制其再結(jié)晶的微觀機制亦不相同。鎂合金根據(jù)變形溫度一般可將DRX分為低溫(200 ℃以下)的孿晶動態(tài)再結(jié)晶(Twin DRX, TDRX),中溫(200~250 ℃)的TDRX和連續(xù)動態(tài)再結(jié)晶(Continuous DRX, CDRX)和高溫(250 ℃以上)的CDRX和不連續(xù)動態(tài)再結(jié)晶(Discontinuous DRX, DDRX)[8?10]。ION等[11]通過分析150~330 ℃下鎂合金壓縮試驗后的微觀組織,發(fā)現(xiàn)隨著變形量的增加LAGB逐漸轉(zhuǎn)變?yōu)镠AGB,并將這種再結(jié)晶模式命名為旋轉(zhuǎn)動態(tài)再結(jié)晶(Rotational DRX, RDRX)。由于這種再結(jié)晶過程中并沒有明顯的形核和長大現(xiàn)象,HUMPHREYS等[12]和LI等[13]把這種再結(jié)晶機制歸為CDRX。SITDIKOV等[9]認(rèn)為純鎂在高溫區(qū)會出晶界弓出的DDRX,但在再結(jié)晶過程中DDRX所占比例很小,主要是CDRX。鎂合金在基面的層錯能較低,但在中高溫下,交滑移導(dǎo)致原始晶界附近的位錯滑移面轉(zhuǎn)化為非基面,此時的層錯能至少是原來的4倍[8],因此,在高層錯能材料中發(fā)生的CDRX在鎂合金的中高溫變形中起主導(dǎo)作用。CDRX機制是應(yīng)變硬化產(chǎn)生的位錯經(jīng)過滑移在晶界處出現(xiàn)塞積形成亞晶界,亞晶界不斷的吸收位錯,晶界角由低角向高角轉(zhuǎn)變,形成再結(jié)晶晶粒,HAGB繼續(xù)吸收位錯,通過遷移使晶粒長大的過程[14]。
目前,應(yīng)用較多的微觀組織模型是根據(jù)金屬在壓縮或拉伸變形過程中的流變應(yīng)力曲線和再結(jié)晶的經(jīng)典理論建立,即為基于流變應(yīng)力的微觀組織本構(gòu)模型,此類模型在鋼鐵、鋁合金材料的微觀組織預(yù)測上應(yīng)用較多,但是由于只考慮流變應(yīng)力的變化情況,缺乏必要的材料微觀組織演化過程的支撐[15?17]。金屬塑性變形的主要方式是滑移和孿生,滑移的本質(zhì)是位錯的運動,通過位錯的協(xié)調(diào)滿足應(yīng)變的需求,塑性變形能存儲在位錯中,為DRX和DRV提供驅(qū)動力,因此,位錯密度是材料內(nèi)部微觀組織變化的關(guān)鍵變量。經(jīng)典又具有代表性的位錯密度模型有E?M模型[18](式(1))和K?M模型[12](式(2))。
式中:為加工硬化參數(shù);為回復(fù)軟化參數(shù);為位錯密度;1和2為材料常數(shù)。
GOURDET等[19]建立了純鋁基于位錯密度的CDRX本構(gòu)模型,通過應(yīng)變硬化、DRV和HAGB的遷移來解釋CDRX位錯密度變化;PARVIN等[20]提出了在大塑性變形下考慮堆垛層錯能的位錯密度模型;DINI等[21]將AZ91鎂合金的位錯密度演變模型分為應(yīng)變硬化使位錯密度增加和DRV使位錯密度湮滅。上述模型都是以位錯密度為中間變量,位錯密度與應(yīng)變之間是確定的函數(shù)關(guān)系,但以上模型中都缺少時間變量,均無法預(yù)測微觀組織隨加工時間的變化情況,難以反映鎂合金在加工過程中的CDRX機理。GUO等[22]研究了AZ31鎂合金在熱軋過程中的微觀組織演化,采用CDRX機制建立了含有時間變量的位錯密度簡化模型,但該模型并未考慮熱加工中應(yīng)變速率和DRX體積分?jǐn)?shù)對位錯密度的影響。
本文通過熱壓縮實驗,建立了AZ31鎂合金高溫流變應(yīng)力的本構(gòu)模型,依據(jù)鎂合金高溫變形中的DRX機制和位錯演化規(guī)律,考慮了應(yīng)變速率、DRX體積分?jǐn)?shù)、溫度和時間變量對位錯密度的影響,最終建立了宏觀變形?微觀組織(位錯密度)多尺度耦合模型。利用ABAQUS軟件中的VUSDFLD子程序嵌入建立的位錯密度模型進行熱壓縮過程的有限元模擬,并通過實驗載荷和模擬結(jié)果的壓縮反力對比,為鎂合金的塑性變形研究提供理論依據(jù)。
實驗所用的材料為AZ31鎂合金擠壓桿料,試樣尺寸為8 mm×12 mm圓柱體,在AG-100KN電子萬能高溫材料試驗機上進行熱壓縮實驗,采用Raytek紅外測溫儀測量實驗過程中試樣溫度的變化。實驗的變形溫度為300、400和500 ℃,變形速率為0.1、0.01和0.001 s?1。實驗結(jié)束時對試樣及時水淬處理,以保留材料壓縮變形后的微觀組織,變形前后壓縮試樣如圖1所示。通過實驗獲得了真實應(yīng)力?應(yīng)變曲線,如圖2所示。
圖1 AZ31鎂合金壓縮試樣
圖2 AZ31鎂合金的真實應(yīng)力?真實應(yīng)變曲線
SELLARS[23]指出熱加工的塑性變形與高溫蠕變發(fā)生在相似的溫度范圍,具有類似的熱激活機制。因此,可以認(rèn)為穩(wěn)態(tài)應(yīng)力取決于溫度和應(yīng)變速率,并使用蠕變方程進行建模如下:
由于該模型中并沒有體現(xiàn)出應(yīng)變因素的影響,因此只能表示穩(wěn)態(tài)應(yīng)力。為了能夠更好地描述熱加工過程,一些學(xué)者[24?26]在E?M模型的基礎(chǔ)上采用了分段函數(shù)的形式來構(gòu)建模型,分為伴隨有DRV的加工硬化階段和DRX的軟化階段。DRX體積分?jǐn)?shù)DRX是DRX中關(guān)鍵變量,LIU等[27]基于Sellars模型、Kopp模型和Yada模型提出了新的DRX體積分?jǐn)?shù)模型(式(4)),結(jié)果表明其預(yù)測值與實驗很好的吻合,有效地揭示了AZ31鎂合金熱成形過程DRX演變規(guī)律。
在熱加工中,低應(yīng)力水平下流變應(yīng)力與應(yīng)變速率之間的關(guān)系用指數(shù)關(guān)系描述:
圖3 應(yīng)變硬化率θ?真實應(yīng)力曲線
圖4 峰值應(yīng)力與應(yīng)變速率和溫度的線性關(guān)系
圖5 線性擬合曲線
運用建立的流變應(yīng)力本構(gòu)模型(式(10))預(yù)測AZ31鎂合金真實應(yīng)力?應(yīng)變曲線,并與實驗結(jié)果對比可知二者基本吻合,如圖6所示。進而評價了模型的精度,采用相關(guān)系數(shù)cc和平均相對誤差Re(Mean relative error)對模型的預(yù)測值進行統(tǒng)計學(xué)誤差評價。
鎂合金CDRX產(chǎn)生的位錯密度轉(zhuǎn)化過程可分為以下5個部分,如圖7所示。
(20)
ABAQUS軟件為用戶提供了強大而又靈活的用戶子程序接口(User subroutine)和應(yīng)用程序接口(Utility routine)。本文采用ABAQUS中的VUSDFLD子程序接口,運用Fortran語言對新建立的位錯密度模型編寫接口程序,使用VGETVRM方法方便地獲取材料點參數(shù),重新定義材料點的場變量,使之作為時間的函數(shù)。將DRX體積分?jǐn)?shù)、HAGB和LAGB位錯密度等定義為解依賴的狀態(tài)變量,在數(shù)值模擬結(jié)果中可以顯示相對應(yīng)的云圖。圖8所示為Fortran語言編寫VUSDFLD子程序接口的程序流程圖。
圖8 Fortran語言編寫VUSDFLD子程序接口的程序流程圖
利用上述建立的AZ31鎂合金的微觀組織模型(見式(15)~(20))和AZ31鎂合金材料屬性(見表1[33?35])進行熱壓縮過程的有限元數(shù)值模擬,模擬結(jié)果的壓縮載荷隨時間的變化曲線與實驗獲得曲線進行比較可知,二者趨勢一致,吻合度較高,如圖9所示。圖中給出了當(dāng)應(yīng)變速率0.01 s?1溫度400 ℃時,利用式(13)和(14)的未修正位錯密度模型預(yù)測的結(jié)果,發(fā)現(xiàn)修正后的位錯密度模型較真實地反映了宏觀的AZ31鎂合金熱壓縮過程中的應(yīng)變硬化、DRV和DRX軟化導(dǎo)致的載荷變化情況。根據(jù)實驗和模擬結(jié)果確定了位錯密度模型中各參數(shù)值,如表2所列。
表1 AZ31鎂合金材料屬性[33?35]
表2 AZ31鎂合金位錯密度模型參數(shù)
圖9 實驗和模擬結(jié)果的載荷隨時間的變化曲線
圖10 晶胞內(nèi)自由位錯密度、應(yīng)力、LAGB位錯密度和HAGB位錯密度云圖
GOURDET等[19]提出了鋁合金的CDRX位錯密度模型,計算了晶胞內(nèi)自由位錯密度,并得出LAGB位錯密度隨應(yīng)變速率的升高而升高,隨溫度的升高而降低的規(guī)律。GUO等[36]通過EBSD實驗研究了不同軋制參數(shù)對AZ31鎂合金DRX微觀組織演化的影響,結(jié)果表明:LAGB%隨著溫度的升高而降低,HAGB%隨著溫度的升高出現(xiàn)增長停滯或下降趨勢。VALIEV 等[37]研究表明應(yīng)變速率對鎂合金位錯密度的影響顯著,位錯密度隨著應(yīng)變速率的增加而增加。上述的研究結(jié)果與本文建立的位錯密度模型預(yù)測的LAGB和HAGB位錯密度的結(jié)果有相同趨勢,由此驗證了所建模型的合理性。
1) 通過熱壓縮實驗,構(gòu)建了基于Arrhenius方程的AZ31鎂合金流變應(yīng)力的本構(gòu)模型,其中激活能為132.45 kJ/mol,應(yīng)變硬化系數(shù)為4.67。校核了模型的精度,模型預(yù)測值與實驗值的相關(guān)系數(shù)cc為0.99693,平均相對誤差Re為5.06%。
2) 依據(jù)AZ31鎂合金高溫變形中的DRX機理,提出了新的含有時間變量的位錯密度模型。通過熱壓縮過程的微觀組織模擬,獲得了壓縮載荷和時間的關(guān)系曲線,與實驗結(jié)果吻合較好,由此確定了位錯密度模型中的參數(shù)值。
[1] GUO L, FUJITA F. Influence of rolling parameters on dynamically recrystallized microstructures in AZ31 magnesium alloy sheets[J]. Journal of Magnesium and Alloys, 2015, 3(2): 95?105.
[2] MORDIKE B L, EBERT T. Magnesium: Properties- applications-potential[J]. Materials Science and Engineering A, 2001, 302(1): 37?45.
[3] KIM H L, LEE J H, LEE C S, BANG W, AHN S H, CHANG Y W. Shear band formation during hot compression of AZ31 Mg alloy sheets[J]. Materials Science and Engineering A, 2012, 558: 431?438.
[4] JIA W P, HU X D, ZHAO H Y, JU D Y, CHEN D L. Texture evolution of AZ31 magnesium alloy sheets during warm rolling[J]. Journal of Alloys and Compounds, 2015, 645: 70?77.
[5] 郭麗麗, 符 蓉, 裴久楊, 楊俊英, 宋寶韞. AZ31 鎂合金板材連續(xù)擠壓工藝的實驗研究[J]. 稀有金屬材料與工程, 2017, 46(6): 1626?1631. GUO Li-li, FU Rong, PEI Jiu-yang,YANG Jun-ying, SONG Bao-yunExperimental studies on AZ31 magnesium sheets processed by continuous extrusion[J]. Rare Metal Materials and Engineering, 2017, 46(6): 1626?1631.
[6] ROODPOSHTI P S, SARKAR A, MURTY K L. Microstructural development of high temperature deformed AZ31 magnesium alloys[J]. Materials Science and Engineering A, 2015, 626: 195?202.
[7] STEINER M A, BHATTACHARYYA J J, AGNEW S R. The origin and enhancement of {0001} <112-10> texture during heat treatment of rolled AZ31B magnesium alloys[J]. Acta Materialia, 2015, 95: 443?455.
[8] GALIYEV A, KAIBYSHEV R, GOTTSTEIN G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60[J]. Acta Materialia, 2001, 49(7): 1199?1207.
[9] SITDIKOV O, KAIBYSHEV R. Dynamic recrystallization in pure magnesium[J]. Materials Transactions, 2001, 42(9): 1928?1937.
[10] 劉楚明, 劉子娟, 朱秀榮, 周海濤. 鎂及鎂合金動態(tài)再結(jié)晶研究進展[J]. 中國有色金屬學(xué)報, 2006, 16(1): 1?12. LIU Chu-ming, LIU Zi-juan, ZHU Xiu-rong, ZHOU Hai-tao. Research and development progress of dynamic recrystallization in pure magnesium and its alloys[J]. The Chinese Journal of Nonferrous Metals, 2006, 16(1): 1?12.
[11] ION S E, HUMPHREYS F J, WHITE S H. Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium[J]. Acta Metallurgica, 1982, 30(10): 1909?1919.
[12] HUMPHREYS F J, HATHERLY M. Recrystallization and related annealing phenomena[M]. Oxford: Elsevier, 2004: 1?574.
[13] LI S B, WANG Y Q, ZHENG M Y, WU K. Dynamic recrystallization of AZ91 magnesium alloy during compression deformation at elevated temperature[J]. Transactions of Nonferrous Metals Society of China, 2004, 14(2): 306?310.
[14] HUANG K, LOGé R E. A review of dynamic recrystallization phenomena in metallic materials[J]. Materials & Design, 2016, 111: 548?574.
[15] CHEN M S, LIN Y C, LI K K, ZHOU Y. A new method to establish dynamic recrystallization kinetics model of a typical solution-treated Ni-based superalloy[J]. Computational Materials Science, 2016, 122: 150?158.
[16] ZHAO D, YANG Y, ZHOU J, LIU YU, TANG S. Constitutive modeling for dynamic recrystallization kinetics of Mg-4Zn-2Al-2Sn alloy[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(2): 340?347.
[17] YI Y, FU X, CUI J, CHEN H. Prediction of grain size for large-sized aluminium alloy 7050 forging during hot forming[J]. Journal of Central South University of Technology, 2008, 15(1): 1?5.
[18] ESTRIN Y, MECKING H. A unified phenomenological description of work hardening and creep based on one-parameter models[J]. Acta Metallurgica, 1984, 32(1): 57?70.
[19] GOURDET S, MONTHEILLET F. A model of continuous dynamic recrystallization[J]. Acta Materialia, 2003, 51(9): 2685?2699.
[20] PARVIN H, KAZEMINEZHAD M. Development a dislocation density based model considering the effect of stacking fault energy: Severe plastic deformation[J]. Computational Materials Science, 2014, 95: 250?255.
[21] DINI H, SVOBODA A, ANDERSSON N E, GHASSEMALI E, LINDGREN L E, JARFORS A E. Optimization and validation of a dislocation density based constitutive model for as-cast Mg-9%Al-1%Zn[J]. Materials Science and Engineering A, 2018, 710: 17?26.
[22] GUO L, FUJITA F. Modeling the microstructure evolution in AZ31 magnesium alloys during hot rolling[J]. Journal of Materials Processing Technology, 2018, 255: 716?723.
[23] SELLARS C M. Modelling microstructural development during hot rolling[J]. Materials Science and technology, 1990, 6(11): 1072?1081.
[24] LIU J, CUI Z, LI C. Modelling of flow stress characterizing dynamic recrystallization for magnesium alloy AZ31B[J]. Computational Materials Science, 2008, 41(3): 375?382.
[25] ZHAO D, YANG Y, ZHOU J, YU L, TANG S. Constitutive modeling for dynamic recrystallization kinetics of Mg-4Zn-2Al-2Sn alloy[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(2): 340?347.
[26] 胡麗娟. AZ31鎂合金板材溫?zé)嶙冃涡袨榈臄?shù)值分析與試驗研究[D]. 上海: 上海交通大學(xué), 2009: 1?122. HU Li-juan. AZ31 numerical and experimental studies on warm deforming of az31 magnesium alloy sheet[D]. Shanghai: Shanghai Jiao Tong University, 2009: 1?111.
[27] LIU J, CUI Z, RUAN L. A new kinetics model of dynamic recrystallization for magnesium alloy AZ31B[J]. Materials Science and Engineering A, 2011, 529: 300?310.
[28] NAJAFIZADEH A, JONAS J J. Predicting the critical stress for initiation of dynamic recrystallization[J]. ISIJ International, 2006, 46(11): 1679?1684.
[29] DING H, HIRAI K, HOMMA T, KAMADO S. Numerical simulation for microstructure evolution in AM50 Mg alloy during hot rolling[J]. Computational Materials Science, 2010, 47(4): 919?925.
[30] 胡麗娟, 彭穎紅, 唐偉琴, 李大永, 張少睿. AZ31 鎂合金薄板動態(tài)再結(jié)晶對其拉伸性能的影響[J]. 中國有色金屬學(xué)報, 2008, 18(9): 1571?1576. HU Li-juan, PENG Ying-hong, TANG Wei-qin, LI Da-yong, ZHANG Shao-rui. Effect of dynamic recrystallization on tensile properties of AZ31 magnesium alloy sheet[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(9): 1571?1576.
[31] 劉 娟, 李居強, 崔振山, 阮立群. 新的單參數(shù)動態(tài)再結(jié)晶動力學(xué)建模及晶粒尺寸預(yù)測[J]. 金屬學(xué)報, 2012, 48(12): 1510?1519. LIU Juan, LI Ju-qiang, CUI Zhen-shan, RUAN Li-qun. A new one-parameter kinetics model of dynamic recrystallization and grain size predication[J]. Acta Metallurgica Sinica, 2012, 48(12): 1510?1519.
[32] 孫 宇, 周 琛, 萬志鵬, 任麗麗, 胡連喜. 金屬材料動態(tài)再結(jié)晶模型研究現(xiàn)狀[J]. 材料導(dǎo)報, 2017(13): 12?16. SUN Yu, ZHOU Chen, WAN Zhi-peng, REN Li-li, HU Lian-xi. Current research status of dynamic recrystallization model of metallic materials[J]. Materials Review, 2017(13): 12?16.
[33] JUAN H L, PENG Y H, YONG L D, RUI Z S. Influence of dynamic recrystallization on tensile properties of AZ31B magnesium alloy sheet[J]. Materials and Manufacturing Processes, 2010, 25(8): 880?887.
[34] JIN Z, YIN K, YAN K, WU D, LIU J, CUI Z. Finite element modelling on microstructure evolution during multi-pass hot compression for AZ31 alloys using incremental method[J]. Journal of materials science & technology, 2017, 33(11): 1255?1262.
[35] 郭麗麗, 王長峰, 詹 鑒. 基于二次開發(fā)的 AZ31 鎂合金熱軋有限元模擬和實驗研究[J]. 塑性工程學(xué)報, 2017, 24(6): 48?54. GUO Li-li, WANG Chang-feng, ZHAN Jian. Experimental studies and finite element simulation on AZ31 magnesium alloy during hot rolling based on secondary development[J]. Journal of Plasticity Engineering, 2017, 24(6): 48?54.
[36] GUO L, FUJITA F. Influence of rolling parameters on dynamically recrystallized microstructures in AZ31 magnesium alloy sheets[J]. Journal of Magnesium and Alloys, 2015, 3(2): 95?105.
[37] VALIEV R Z, KAIBYSHEV O A. Mechanism of superplastic deformation in a magnesium alloy. Ⅱ. The role of grain boundaries[J]. Physica Status Solidi (A), 1977, 44(2): 477?484.
Dislocation density model of AZ31 magnesium alloy and microstructure prediction of thermal compression
WANG Jian-qiang, GUO Li-li, WANG Chang-feng
(Continuous Extrusion Engineering Research Center, Ministry of Education, School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028)
Thermal-mechanical behavior of AZ31 magnesium alloy extruded rod was investigated by thermal compression experiment at the deformation temperatures of 300, 400, 500 ℃ and the strain rates of 0.1, 0.01, 0.001 s?1. A flow stress constitutive model of the alloy was established based on the regression analysis by the Arrhenius type equation. The activation energyis 132.45 kJ/mol and the strain hardening coefficientis 4.67. According to the dynamic recrystallization (DRX) mechanism of AZ31 magnesium alloy at high temperature deformation, a multi-scale coupled dislocation density model of macroscopic deformation-microstructure of magnesium alloy during high temperature deformation was proposed. The model could reflect the interactions among work hardening, dynamic recovery (DRV), transformation from low angle grain boundaries (LAGB) into high angle grain boundaries (HAGB) and mechanisms during the hot working process. Furthermore, the finite element simulation of the compression process was performed by VUSDFLD subroutines in ABAQUS software. As a result, DRX volume fraction, compression force, and the dislocation density of HAGB and LAGB are obtained. It is obvious that the simulated results are similar to the experimental force. The new proposed dislocation density model of AZ31 magnesium alloy is reasonable.
AZ31 magnesium alloy; constitutive model; dislocation density model; finite element simulation
Project(51401043) supported by the Youth Program of National Natural Science Foundation of China
2018-12-07;
2019-06-24
GUO Li-li; Tel: +86-411-84106527; E-mail: guolili0822@hotmail.com
1004-0609(2020)-01-0048-12
TG146.2+2
A
10.11817/j.ysxb.1004.0609.2020-37477
國家自然科學(xué)基金青年基金資助項目(51401043)
2018-12-07;
2019-06-24
郭麗麗,副教授,博士;電話:0411-84106527;E-mail:guolili0822@hotmail.com
(編輯 王 超)