1"/>
  • 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      一類微極流體方程組強解的存在唯一性

      2020-03-30 21:56:11史偉偉

      摘 要:在二維或三維光滑有界區(qū)域中,考慮一類微極流體方程組的第一邊值問題,在外力項的某一范數(shù)適當(dāng)小的條件下,用不動點定理證明了當(dāng)指數(shù)p>1時方程組強解的存在唯一性.

      關(guān)鍵詞:微極流體方程;強解;存在唯一性

      中圖分類號:O175.2 文獻標(biāo)識碼:A 文章編號:

      參考文獻

      [1] Eringen A C. Simple microfluids[J]. International Journal of Engineering Science,1964,2(2):205-217.

      [2] M?alek J,Neˇcas J,Rokyta M,Ru˙ˇziˇcka M. Weak and measure-valued solutions to evolutionary partial differential equations[M]. Applied Mathematics and Mathematical Computation,1996.

      [3] Bellout H, Bloom F, Neˇcas J. Young measure-valued solutions for non-newtonian incompressible fluids[J]. Communications in Partial Differential Equations,1994,19(11-12):1763-1803.

      [4] Diening L,Ru˙ˇziˇcka M. Strong solutions for generalized Newtonian fluids[J]. Journal of Mathematical Fluid Mechanics,2005,7(3):413-450.

      [5] Berselli L C,Diening L,Ru˙ˇziˇcka M. Existence of strong solutions for incompressible fluids with shear dependent viscosities[J]. Journal of Mathematical Fluid Mechanics,2010,12(1):101-132.

      [6] M?alek J,Neˇcas J,Ru˙ˇziˇcka M. On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains:the casa p 2[J]. Advances in Difference Equations,2001,6(3):257-302.

      [7] Amman H. Stability of the rest state of viscous incompressible fluid[J]. Archive for Rational Me- chanics and Analysis,1994,126(3):231-242.

      [8] Bothe D,Pruss J. Lp-theory for a class of non-Newtonian fluids[J]. SIAM Journal on Mathematical Analysis,2007,39(2):379-421.

      [9] Galdi G P. An introduction to the mathematical theory of the Navier-Stokes Equations[M]. New York:Springer,1994.

      [10] Arada N. A note on the regularity of flows with shear-dependent viscosity[J]. Nonlinear Analysis:Theory,Methods & Applications,2012,75(14):5401-5415.

      [11] Kreml O, Pokorny? M. On the local strong solutions for the FENE dumbbell model[J]. Discrete Contin. Dyn. Syst. Ser. S,2010,3(2):311-324.

      [12] SUN Yongzhong,WANG Chao,ZHANG Zhifei. A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations[J]. Journal de Math?ematiques Pures et Appliqu?ees,2011,95(1):36-47.

      作者簡介;史偉偉(1994~),女,漢族:碩士研究生,從事偏微分方程的研究。

      南陵县| 蒲江县| 西昌市| 大余县| 东明县| 赣州市| 古蔺县| 铜川市| 南江县| 固镇县| 汕头市| 饶河县| 屯留县| 当阳市| 饶平县| 大冶市| 六安市| 斗六市| 兴国县| 博兴县| 尼玛县| 中阳县| 名山县| 星子县| 泗洪县| 长治县| 盱眙县| 赤壁市| 阿合奇县| 崇文区| 余江县| 建始县| 绵竹市| 文安县| 都昌县| 江津市| 常宁市| 无为县| 泰宁县| 馆陶县| 济阳县|