• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An analytical model to predict diffusion induced intermetallic compounds growth in Cu-Sn-Cu sandwich structures

    2020-03-27 03:43:46YuexingWngYoYoLeonKeer

    Yuexing Wng, Yo Yo*, Leon Keer

    a Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621999, China

    b School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China

    c Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA

    Keywords:Intermetallic compounds Polarity effect Electromigration Diffusion Size effect

    ABSTRACT A mass diffusion model is developed to describe the growth kinetics of Cu6Sn5 intermetallic compounds (IMC) in the Cu-Sn-Cu sandwich structure. The proposed model is based on the local interfacial mass conversation law where interfacial Cu/Sn reactions and atomic diffusion are considered. Theoretical analysis shows that the IMC thickness growth is proportional to the square root of the product of the diffusion coefficient and time. The proposed model can explain the polarity effect of electromigration on kinetics of IMC growth where all the parameters have clear physical meaning. The theoretical predictions are compared with experimental results and show reasonable accuracy.

    The formation and growth of the intermetallic compounds(IMC) between bulk solder and the substrate is one of the most critical issues for the reliability of the solder interconnects [1, 2].The Cu6Sn5phase, which provides electrical and mechanical interconnection, will nucleate at the Cu-Sn interface during the soldering process. However, with the miniaturization trend of the microelectronic device and the integrated circuits approaching the limit of the Moore's Law, novel structures such as system in package (SiP) and 3D packaging have been developed. The three dimensional integrated circuit (3D IC) is one of the most promising solutions towards extending Moore's Law [3, 4]. In the 3D IC, the thickness or height of the solder joints will be reduced to only a few microns. The proportion of IMCs in the total solder joint will be much larger thus the failure mechanism will be controlled by the interface properties. It is of significance to clarify the IMC growth mechanism under different conditions especially under reflowing and high current density conditions.

    It is recognized Cu-Sn-Cu structure is typically adopted in microelectronic packaging and many experiments [5-8] were conducted to investigate the IMC formation and growth in the structure. By fitting the experimental data, a corresponding semi-experimental formula is proposed to predict the IMC thickness growth for engineering application [8]. However, this phenomenological model is not physical based. Considering the effects of electromigration and thermomigration [9, 10] which is the key physical mechanism of the micro solders in the nextgeneration 3D electronic packaging, the current semi-experiment models can hardly describe the physical behavior.

    In addition to the phenomenological approaches, numerical approaches such as phase field methods and finite element methods were proposed to analyze the IMC thickness growth [11, 12]. Analytical models [5, 13] were established based on the diffusion flux equilibrium relation. However, some of the numerical or analytical models are too complex for engineers to apply. An analytical solution with clear physical meaning is therefore required to better describe the IMC thickness growth under different load conditions.

    It is well accepted that the IMC thickness growth is motivated by the advancement of the Cu/Sn interface and the growth of the Cu6Sn5phase, which is mainly controlled by the diffusion of Sn atoms. The present IMC growth model is established by analogy with the grain boundary precipitant nucleation and growth issue [14]. When the IMC layer is formed, an atom concentration gradient will exist at the IMC/Sn interface. The Sn atom concentration gradient can enhance the formation of the Cu6Sn5phase since Sn atoms will be driven to the interface by the chemical potential. Based on the Fick's first and second law,a mass diffusion controlled Cu6Sn5IMC growth model is developed in the current study.

    A typical Cu-Sn-Cu sandwich structure is investigated and for simplification, only the Cu6Sn5IMC phase is considered as illustrated in Fig. 1. The formation of Cu6Sn5is driven by the reaction between Cu and Sn atoms at the Cu/Sn interface. The consumed Sn atoms are made up by the continuous diffusion of Sn atoms from the matrix phase. Based on the symmetrical characteristics of the whole process, a one dimensional interface diffusing reaction model can be established. The concentration of Cu6Sn5and Sn atoms at the interface are assumed to be Cβand CI, respectively. The saturation concentration of Sn atoms is Cα,which is located away from the interface. When the Cu6Sn5interface advances by dx during time dt, the growth of Cu6Sn5must be equal to the consumed Sn atoms based on the mass conservation principle, which is written as:

    Fig. 1. a SnAgCu/Cu IMC interface, b simplified analytical model, and c mass diffusion conservation during the development of IMC interface

    where D is diffusion coefficient of Sn atoms.

    Based on the Fick's first law which relates the diffusive flux to the concentration under steady state assumption, the mass flux per unit area and per time is written as:

    If denoting IMC growth velocity as v and v = dx/dt, Eq. (1)can be rewritten as:

    From Eq. (3), the parameters D, Cβand CIare material constants determined from experiment. Once the differential term dC/dx is known, the IMC growth rate v can be obtained. To solve the differential term dC/dx, we assume concentration distribution of Sn atoms is linear along the diffusion path. Based on the solute conservation law, the total diffusing Sn atoms in the diffusion path is equal to the amount that remained in the IMC layer.As shown in Fig. 1(c), the solute conservation law [14] requires that the area of two colored parts should be equal:

    where L is the total diffusing path length of Sn atoms and ΔC equals Cα-CI.

    The differential term dC/dx can be defined by:

    Substituting Eq. (5) into Eq. (3), the IMC growth velocity v is given by:

    For simplification, we assume Cβ-CI≈Cβ-Cα. Integrating both sides of Eq. (6) gives:

    By solving Eq. (7), the final IMC thickness growth is given by:

    Rewriting Eq. (8) gives:

    If the initial IMC thickness is x0, the IMC thickness growth can also be determined by:

    On the other hand, mass diffusion is a thermally activated process. Taking the Arrhenius dependence of the diffusion coefficient into account, the IMC growth rate as a function of temperature is written as:

    where v2describes the growth rate for the second power of the IMC thickness. D0is the diffusion constant and Q is the activation energy for Sn atoms. R is the Boltzmann constant and T is temperature.

    The experimental results performed by Ousama and Ladani[5] are adopted to verify the accuracy of proposed IMC thickness growth model. In their experiments, the Cu6Sn5growth at the Sn/Cu interface was investigated at 260 °C, 310 °C and 360 °C, respectively. The experimental results are treated and shown in Fig. 2(a), the vertical and horizontal axises are lnv2and 1/T, respectively. It is noted that the three experimental points are close to a linear relationship, and the IMC growth process shows Arrhenius dependence. This predicted IMC growth by Eqs. (10)and (11) matches well with the experimental observations. It proves that IMC growth is motivated by the mass diffusion process and the diffusion coefficient D plays a key role. The observation that the second power of IMC thickness is proportional to the diffusion coefficient and time is also proved by the experiments of Zhang et al. [8].

    In addition to the qualitative verification, a quantitative verification is conducted by comparing with the experimental results. In the experiments, the intermetallic compound layers growth kinetics between SnAgCu solder and Cu Substrate were investigated at temperature ranges from 100 °C to 140 °C [8].Figure 2(b) illustrates the experimental results at three temperatures, which shows that the IMC thickness (μm) is linear with respect to the square root of time (h1/2). The slope is 0.1785 μm·h-1/2, 0.06425 μm·h-1/2and 0.02397 μm·h-1/2for 140 °C, 125°C and 100 °C, respectively. Based on the proposed model, the slope should be equal toTaking D0= 7×10-4m2/s, Q =110 kJ/mol and M = 5 [5], the theoretical IMC growth slope can be obtained. Comparison of the experimental and theoretical result for the IMC growth velocity is shown in Fig. 2(c). In general, the theoretical predictions match well with the experimental results. It is noted that the relative ratios of the slope between different temperatures are consistent, proving that the diffusing Sn atoms determine the IMC thickness growth. In summary, the proposed model can predict the IMC layer growth mechanism at different aging conditions.

    Fig. 2. a Arrhenius dependence of the IMC thickness growth [8] and b, c comparison between the proposed model and experimental results [8]

    On the other hand, the proposed model can be extended to explain the mechanism of size and electromigration effects on the IMC layer growh [6]. Experimental analysis has shown that the IMC layer growth rate will increase with decreasing of the solder length because of the size effect, which could be a serious concern for micro solder joint reliability in 3D electronic packaging. The micro solder joint may be totally transformed to the brittle IMC layer, which will deteriorate the fatigue life of the solder interconnect [15]. Based on the proposed model, with smaller size of the solder joint, the diffusion length of the Sn atoms will be decreased corrospondingly. Thus, the ΔC = Cα-CIwill increase based on the mass conservation law. From Eq. (8),the IMC layer growth rate will increase as well as illustrated in Fig. 3. Thus, the size effect on the IMC layer growth can be well explained by the developed model.

    It is noted that the IMC layer growth will be strongly affected by electromigration under high current density. Experimental analysis shows that growth of IMC layer will be enhanced at the anode side and inhibited at the cathode side, which is known as the electromigration polarity effect on IMC layer growth [16].Electromigration is the migration of metallic atoms in the conductor due to the momentum transfer from moving electrons along the electric current direction [17]. During electromigration process, Sn atoms will be migrated by the electronic wind force, inducing concerntration increases at the anode side and decrease at the cathode side, which will affect the IMC growth.Research has been performed to clarify the mechanism of the eletromigration polarity effect on IMC growth. For example, Gan and Tu [16] explained that the polarity growth of IMC growth is caused by the unsymmetric back stess induced by mass diffusion on both cathode and anode sides. However, electromigration induced back stress will be relaxed in the solder interconect.In the current study, the proposed model is to clarify the electromigration polairty effect on the mechanism of IMC layer thickness growth.

    Fig. 3. Explanation of the IMC growth size effect during mass diffusion

    Based on the classic Einstein relation [18], Sn atoms diffusion flux along the current direction during electromigration is given by:

    where Z*is the effective charge numer of Sn atoms, e is the charge of an electron, ρ is electronic resistivity and j is the current density. For pure Sn material, the bulk concentration of Sn atoms can be written as 1/Ω, where Ω is the volume of an indiviual Sn atom.

    From Eq. (12), the mass flux is not related to positions whose magnitue is constant in the total Cu-Sn-Cu sandiwich structures:i.e meaning the concentration change at the anode and cathode end will be the same. Based on Eq. (8), the sum of IMC growth rate on the cathode and anode end is half of the IMC growth rate, under no current condition, it can be written as:

    The experiment conducted by Gan and Tu [16] is adopted to verify Eq. (13). In their experiment, the IMC growth rate at 180 °C and 120 °C under three different electric current conditions were investigated. As show in Fig. 4, under lower current density, the theoretical and the experimental results match well. At the highest current density of 4×103A/cm2, the experimental and theoretical results show some gaps and the theoretical model predicts a higher value. This can be explained by that at the high current density, the atoms concentration variation will be enhanced and inducing the Cu6Sn5be reacted into Cu3Sn phase [19]. Thus the experimental result of the IMC growth rate is lower than the theoretical prediction, for which the gap value should be caused by the materials transformed into Cu3Sn Phase. On the other hand, at lower current density, there are no reactions to form Cu3Sn and the theoretical result matches the experimental result well. In the traditional back stress model, the IMC polairty effect is caused by the electromigration back stress.However, it is recognized that the back stress exists only in confined conditions. In solder interconnects, the eletromgration induced back stress will be released by the underfill showing the eletromigration induced IMC thickness polariy phoenmonen exists without back stress. Thus, the proposed approach can be regarded as an improved back stress IMC growth model.

    Fig. 4. Comparison between predictions of the proposed model with experimental data [16]

    A theoretical model with clear physical meaning is developed to describe the IMC thickness growth characteristics under temperature aging and high current density conditions. It is noted that the IMC growth is a mass diffusion controlled process, which depends on the Arrhenius relations. The temperature and mass diffusion coefficient show strong influence on the IMC growth. Based on the developed model, the electromigration induced polarity effect on the IMC growth thickness is analyzed and shows reasonable accuracy compared with the experimental results.

    Acknowledgments

    The authors would like to acknowledge the financial support by the National Natural Science Foundation of China (Grants 11572249 and 11772257) and the Fundamental Research Funds for the Central Universities (Grant G2019KY05212).

    国产成年人精品一区二区| 99热这里只有是精品在线观看| 两个人视频免费观看高清| 国产精品久久久久久精品电影| 国产一级毛片七仙女欲春2| 久久久久国产网址| 国产淫语在线视频| 久久99热6这里只有精品| 一本一本综合久久| 18禁在线播放成人免费| 亚洲伊人久久精品综合| 国产精品一区二区性色av| 精品酒店卫生间| 小蜜桃在线观看免费完整版高清| 午夜福利成人在线免费观看| 国产亚洲av嫩草精品影院| 搡女人真爽免费视频火全软件| 日韩精品有码人妻一区| av女优亚洲男人天堂| 亚洲精华国产精华液的使用体验| 97超视频在线观看视频| 日日啪夜夜撸| 日本免费在线观看一区| 日韩精品青青久久久久久| 草草在线视频免费看| 日韩强制内射视频| 好男人视频免费观看在线| 国产黄色视频一区二区在线观看| 亚洲av电影不卡..在线观看| 日韩电影二区| www.av在线官网国产| 国产高潮美女av| 日韩中字成人| 国产精品国产三级国产av玫瑰| 嫩草影院精品99| or卡值多少钱| 菩萨蛮人人尽说江南好唐韦庄| 国产精品综合久久久久久久免费| 一个人看的www免费观看视频| 啦啦啦韩国在线观看视频| 中文字幕亚洲精品专区| 狂野欧美白嫩少妇大欣赏| 国产成人a∨麻豆精品| 国产精品日韩av在线免费观看| 亚洲国产av新网站| 汤姆久久久久久久影院中文字幕 | 亚洲国产精品成人久久小说| 在线观看美女被高潮喷水网站| 夫妻午夜视频| 亚州av有码| 日韩制服骚丝袜av| 国产精品福利在线免费观看| 人体艺术视频欧美日本| 夫妻性生交免费视频一级片| 伦理电影大哥的女人| 波多野结衣巨乳人妻| av黄色大香蕉| 国产v大片淫在线免费观看| 国产视频内射| 2021少妇久久久久久久久久久| 18禁在线播放成人免费| 国产av不卡久久| 26uuu在线亚洲综合色| 国产精品福利在线免费观看| av在线蜜桃| 免费观看av网站的网址| 国产老妇女一区| 国产毛片a区久久久久| 亚洲无线观看免费| 欧美一级a爱片免费观看看| 真实男女啪啪啪动态图| 99热这里只有精品一区| 99热这里只有精品一区| 精品久久久久久成人av| 啦啦啦啦在线视频资源| 国产美女午夜福利| 成人无遮挡网站| 国产高清有码在线观看视频| 爱豆传媒免费全集在线观看| 黄片无遮挡物在线观看| 亚洲欧美日韩无卡精品| 人妻夜夜爽99麻豆av| 国产av码专区亚洲av| 免费看光身美女| 中文资源天堂在线| 日日摸夜夜添夜夜添av毛片| 18+在线观看网站| 亚洲av中文字字幕乱码综合| 成人一区二区视频在线观看| 丝瓜视频免费看黄片| 男人狂女人下面高潮的视频| 亚洲人与动物交配视频| 麻豆乱淫一区二区| 成年免费大片在线观看| 国产亚洲一区二区精品| 女人被狂操c到高潮| 国产视频内射| 国产单亲对白刺激| 在线免费观看不下载黄p国产| 久久久色成人| 午夜免费激情av| 国产黄片视频在线免费观看| 高清av免费在线| 97超视频在线观看视频| 亚洲av成人精品一二三区| 免费观看a级毛片全部| 久久久午夜欧美精品| 两个人的视频大全免费| 国内精品美女久久久久久| 国产午夜福利久久久久久| 亚洲av二区三区四区| av在线亚洲专区| 国产亚洲精品av在线| 高清视频免费观看一区二区 | av.在线天堂| 女人久久www免费人成看片| 内射极品少妇av片p| 少妇的逼水好多| 国产大屁股一区二区在线视频| 99热全是精品| 国产成人aa在线观看| 一区二区三区免费毛片| 免费观看无遮挡的男女| 青春草亚洲视频在线观看| 国产成人福利小说| 床上黄色一级片| 亚洲综合色惰| 久久久成人免费电影| 亚洲欧洲国产日韩| freevideosex欧美| 久久精品人妻少妇| 免费av不卡在线播放| kizo精华| 午夜免费观看性视频| 十八禁国产超污无遮挡网站| 亚洲国产精品国产精品| 国产精品一二三区在线看| 好男人在线观看高清免费视频| 一本久久精品| 国模一区二区三区四区视频| 淫秽高清视频在线观看| 99热网站在线观看| 97人妻精品一区二区三区麻豆| 亚洲乱码一区二区免费版| 国产精品无大码| av在线观看视频网站免费| 午夜福利高清视频| 精品一区二区三区人妻视频| 国产免费一级a男人的天堂| 亚洲精品久久久久久婷婷小说| 成年女人看的毛片在线观看| 国产成人精品福利久久| 国产精品一区二区三区四区免费观看| 欧美97在线视频| 丝袜喷水一区| 成人综合一区亚洲| 亚洲图色成人| 成人美女网站在线观看视频| av在线老鸭窝| 成人欧美大片| 少妇的逼水好多| 国产探花极品一区二区| 大香蕉久久网| 色综合色国产| 少妇熟女aⅴ在线视频| 午夜免费男女啪啪视频观看| 午夜精品一区二区三区免费看| 在线观看人妻少妇| 免费少妇av软件| 夜夜爽夜夜爽视频| 久久这里有精品视频免费| 成年女人在线观看亚洲视频 | 午夜爱爱视频在线播放| 日韩欧美精品免费久久| 亚洲婷婷狠狠爱综合网| av卡一久久| 亚洲va在线va天堂va国产| 六月丁香七月| 久久午夜福利片| 丰满少妇做爰视频| 亚洲精品日本国产第一区| 日韩亚洲欧美综合| 好男人在线观看高清免费视频| 亚洲精品日本国产第一区| 精品人妻熟女av久视频| 成人二区视频| 国产久久久一区二区三区| 老女人水多毛片| 国产亚洲精品av在线| www.av在线官网国产| 边亲边吃奶的免费视频| 男人舔奶头视频| 亚洲av中文av极速乱| 国产午夜精品久久久久久一区二区三区| av在线观看视频网站免费| eeuss影院久久| 99热网站在线观看| 国产精品国产三级国产av玫瑰| 国产国拍精品亚洲av在线观看| 一级片'在线观看视频| 国产黄a三级三级三级人| 亚洲国产欧美人成| av在线天堂中文字幕| 日韩成人av中文字幕在线观看| 午夜激情久久久久久久| 嫩草影院精品99| 嫩草影院新地址| 一个人免费在线观看电影| 日韩欧美精品免费久久| 在线 av 中文字幕| 欧美xxxx性猛交bbbb| 日本黄色片子视频| 亚洲欧美一区二区三区国产| 少妇人妻精品综合一区二区| 女人被狂操c到高潮| 亚洲精品中文字幕在线视频 | 熟女人妻精品中文字幕| 国产人妻一区二区三区在| 久久精品国产亚洲网站| 99热全是精品| 韩国高清视频一区二区三区| 美女高潮的动态| 熟妇人妻不卡中文字幕| 国产在视频线在精品| 日韩欧美国产在线观看| 日韩一区二区视频免费看| 99re6热这里在线精品视频| 99久久九九国产精品国产免费| 国产有黄有色有爽视频| 午夜福利高清视频| av播播在线观看一区| 久久99热这里只有精品18| av又黄又爽大尺度在线免费看| 日日干狠狠操夜夜爽| 亚洲欧美一区二区三区国产| 国产精品蜜桃在线观看| 精品久久久久久久久久久久久| 国产探花在线观看一区二区| 日韩在线高清观看一区二区三区| 高清午夜精品一区二区三区| 国产极品天堂在线| 男女下面进入的视频免费午夜| 综合色av麻豆| av在线播放精品| 大片免费播放器 马上看| 最近的中文字幕免费完整| 亚洲精品国产av蜜桃| 成人午夜精彩视频在线观看| av福利片在线观看| 人人妻人人澡欧美一区二区| 久久久久久久久久黄片| 日本猛色少妇xxxxx猛交久久| 美女xxoo啪啪120秒动态图| 久久久久九九精品影院| 韩国高清视频一区二区三区| 国产 一区 欧美 日韩| 尾随美女入室| 边亲边吃奶的免费视频| 街头女战士在线观看网站| 国产精品国产三级国产av玫瑰| 我要看日韩黄色一级片| 亚洲av免费高清在线观看| 欧美成人精品欧美一级黄| 日韩欧美一区视频在线观看 | 99视频精品全部免费 在线| 美女大奶头视频| 丰满乱子伦码专区| 欧美xxxx黑人xx丫x性爽| 亚洲人成网站在线播| 国产精品不卡视频一区二区| 人妻夜夜爽99麻豆av| 亚洲av.av天堂| 免费观看无遮挡的男女| 麻豆av噜噜一区二区三区| 国产欧美日韩精品一区二区| 国产精品一区二区三区四区免费观看| 国产免费一级a男人的天堂| 亚洲美女视频黄频| 亚洲最大成人av| 春色校园在线视频观看| 久久久久性生活片| 免费看日本二区| 一级毛片aaaaaa免费看小| 黄色日韩在线| 日韩人妻高清精品专区| 成人国产麻豆网| 久久久久久久午夜电影| 能在线免费看毛片的网站| 熟妇人妻不卡中文字幕| 人人妻人人看人人澡| av天堂中文字幕网| 日韩av在线免费看完整版不卡| 精品一区二区免费观看| 青青草视频在线视频观看| 午夜老司机福利剧场| 久久久久性生活片| 又爽又黄a免费视频| 欧美日本视频| 网址你懂的国产日韩在线| 亚洲精品日韩在线中文字幕| 七月丁香在线播放| 日日干狠狠操夜夜爽| 秋霞在线观看毛片| 观看免费一级毛片| 亚洲经典国产精华液单| 日韩一本色道免费dvd| 高清av免费在线| 最近手机中文字幕大全| 中文字幕亚洲精品专区| 免费av观看视频| 三级国产精品欧美在线观看| 美女国产视频在线观看| 久久午夜福利片| 国产91av在线免费观看| 国产精品99久久久久久久久| 日韩人妻高清精品专区| 亚州av有码| 97热精品久久久久久| 九九爱精品视频在线观看| 伊人久久精品亚洲午夜| 自拍偷自拍亚洲精品老妇| 丰满乱子伦码专区| 成年人午夜在线观看视频 | 精品少妇黑人巨大在线播放| 在线观看av片永久免费下载| 一边亲一边摸免费视频| 在线免费十八禁| 国产精品一二三区在线看| 欧美成人午夜免费资源| 成年版毛片免费区| 亚洲国产av新网站| 男插女下体视频免费在线播放| 国产一区有黄有色的免费视频 | 国产av在哪里看| 亚洲内射少妇av| 日韩亚洲欧美综合| 别揉我奶头 嗯啊视频| 99re6热这里在线精品视频| 蜜臀久久99精品久久宅男| 一级毛片电影观看| 午夜精品在线福利| 一级毛片aaaaaa免费看小| 国产高潮美女av| 高清av免费在线| av女优亚洲男人天堂| 亚洲av成人精品一区久久| 欧美激情久久久久久爽电影| av在线观看视频网站免费| 国产综合精华液| 久久久久久久大尺度免费视频| 国产毛片a区久久久久| 亚洲美女视频黄频| 18禁裸乳无遮挡免费网站照片| 国产乱人偷精品视频| 国产成人精品久久久久久| 国产 亚洲一区二区三区 | 一二三四中文在线观看免费高清| 亚洲一区高清亚洲精品| 99re6热这里在线精品视频| 日韩不卡一区二区三区视频在线| 天天躁日日操中文字幕| 在线观看人妻少妇| 精品熟女少妇av免费看| 精品一区二区免费观看| 天天躁日日操中文字幕| 丝瓜视频免费看黄片| 精品酒店卫生间| 久久这里只有精品中国| 嫩草影院入口| 午夜免费观看性视频| 亚洲av中文av极速乱| 欧美另类一区| 亚洲最大成人手机在线| 真实男女啪啪啪动态图| 三级经典国产精品| 草草在线视频免费看| 午夜福利视频1000在线观看| 午夜久久久久精精品| 在线观看av片永久免费下载| 丰满乱子伦码专区| 午夜老司机福利剧场| 在现免费观看毛片| 久久人人爽人人爽人人片va| av天堂中文字幕网| 国产黄片视频在线免费观看| 特级一级黄色大片| 波多野结衣巨乳人妻| 尾随美女入室| 深夜a级毛片| videossex国产| 午夜免费观看性视频| 亚洲av国产av综合av卡| 激情 狠狠 欧美| av线在线观看网站| 亚洲精品自拍成人| 欧美成人a在线观看| 欧美潮喷喷水| 国产午夜精品久久久久久一区二区三区| 欧美激情在线99| 亚洲人成网站高清观看| 国产黄色免费在线视频| 成人午夜高清在线视频| 久久99热6这里只有精品| 看免费成人av毛片| 色吧在线观看| 久久精品国产亚洲网站| 三级经典国产精品| 又粗又硬又长又爽又黄的视频| 麻豆av噜噜一区二区三区| 高清午夜精品一区二区三区| 一级毛片久久久久久久久女| 亚洲av在线观看美女高潮| 国产乱人视频| 国产免费视频播放在线视频 | 国产av在哪里看| 欧美成人一区二区免费高清观看| 精品人妻一区二区三区麻豆| 18+在线观看网站| 街头女战士在线观看网站| 久久这里只有精品中国| 色综合站精品国产| 国产v大片淫在线免费观看| 啦啦啦韩国在线观看视频| 22中文网久久字幕| 视频中文字幕在线观看| 亚洲成人久久爱视频| 高清在线视频一区二区三区| 九草在线视频观看| 国产三级在线视频| 日韩强制内射视频| 99久久精品国产国产毛片| av线在线观看网站| 人人妻人人看人人澡| 国产精品一区二区三区四区免费观看| 永久网站在线| 国产老妇女一区| 免费看a级黄色片| 狂野欧美激情性xxxx在线观看| 午夜爱爱视频在线播放| 最近最新中文字幕大全电影3| 伊人久久精品亚洲午夜| 亚洲国产高清在线一区二区三| 亚洲av男天堂| 91在线精品国自产拍蜜月| 成人av在线播放网站| 亚洲av在线观看美女高潮| 色综合色国产| 日韩中字成人| 日日干狠狠操夜夜爽| 亚洲精品第二区| 久久这里有精品视频免费| 亚洲av国产av综合av卡| 日韩三级伦理在线观看| 六月丁香七月| 久久草成人影院| a级一级毛片免费在线观看| 插逼视频在线观看| 又大又黄又爽视频免费| or卡值多少钱| 日韩欧美国产在线观看| 99久久九九国产精品国产免费| 亚洲精品日韩在线中文字幕| 夫妻午夜视频| 如何舔出高潮| 搞女人的毛片| 亚洲精品亚洲一区二区| 久久久精品94久久精品| 亚洲欧美一区二区三区国产| 久久久a久久爽久久v久久| 欧美xxⅹ黑人| 久久久久精品久久久久真实原创| 人人妻人人看人人澡| 亚洲精品久久午夜乱码| 国产乱来视频区| 80岁老熟妇乱子伦牲交| 日韩人妻高清精品专区| av免费在线看不卡| 一个人观看的视频www高清免费观看| 人妻系列 视频| 日日摸夜夜添夜夜添av毛片| 国产精品国产三级专区第一集| 国内揄拍国产精品人妻在线| 一级毛片电影观看| 欧美高清性xxxxhd video| 国产伦在线观看视频一区| 日本午夜av视频| 一夜夜www| 国产麻豆成人av免费视频| 成年女人在线观看亚洲视频 | 激情 狠狠 欧美| 国产精品麻豆人妻色哟哟久久 | 美女大奶头视频| 成人漫画全彩无遮挡| 在线免费观看不下载黄p国产| 午夜免费观看性视频| 男人舔奶头视频| 99九九线精品视频在线观看视频| 女的被弄到高潮叫床怎么办| 亚洲成人av在线免费| 哪个播放器可以免费观看大片| 国产精品久久久久久精品电影小说 | 色视频www国产| 天堂av国产一区二区熟女人妻| 三级国产精品欧美在线观看| 九色成人免费人妻av| 国产v大片淫在线免费观看| 全区人妻精品视频| 国产亚洲91精品色在线| 亚洲精品日本国产第一区| 国产淫语在线视频| 日韩欧美一区视频在线观看 | 日韩精品有码人妻一区| 嫩草影院新地址| 亚洲图色成人| 天堂中文最新版在线下载 | 免费观看无遮挡的男女| 国产91av在线免费观看| 免费高清在线观看视频在线观看| 最近中文字幕高清免费大全6| 丝瓜视频免费看黄片| 免费观看在线日韩| 久久久精品94久久精品| 成人二区视频| 国产日韩欧美在线精品| 亚洲av男天堂| 免费观看的影片在线观看| 成年女人在线观看亚洲视频 | 51国产日韩欧美| 久久久久久久久中文| 国产国拍精品亚洲av在线观看| 中文乱码字字幕精品一区二区三区 | 男人和女人高潮做爰伦理| 少妇熟女aⅴ在线视频| 国产精品av视频在线免费观看| 久久久久九九精品影院| 一级毛片aaaaaa免费看小| 亚洲精品,欧美精品| av卡一久久| 天堂网av新在线| 国产精品一区二区在线观看99 | 亚洲丝袜综合中文字幕| 亚洲av免费在线观看| 久99久视频精品免费| 国产毛片a区久久久久| 欧美日韩视频高清一区二区三区二| 国产成人a区在线观看| 久久这里只有精品中国| 国产精品美女特级片免费视频播放器| 免费大片黄手机在线观看| 欧美日韩视频高清一区二区三区二| 直男gayav资源| 纵有疾风起免费观看全集完整版 | 秋霞伦理黄片| av又黄又爽大尺度在线免费看| 麻豆乱淫一区二区| 亚洲成色77777| 国产免费视频播放在线视频 | h日本视频在线播放| 国产 亚洲一区二区三区 | 亚洲精品国产av成人精品| 亚洲三级黄色毛片| 亚洲精品成人久久久久久| 久久久久精品性色| 国产伦在线观看视频一区| 99久久精品热视频| 熟女人妻精品中文字幕| 成人高潮视频无遮挡免费网站| 日韩不卡一区二区三区视频在线| 青春草亚洲视频在线观看| 18禁动态无遮挡网站| 亚洲欧美一区二区三区黑人 | 91精品国产九色| 久久久久久久久久久免费av| 少妇人妻一区二区三区视频| 午夜激情福利司机影院| 美女脱内裤让男人舔精品视频| 精品久久久久久久久av| 亚洲一区高清亚洲精品| 国产黄片美女视频| 我要看日韩黄色一级片| 波多野结衣巨乳人妻| 亚洲熟女精品中文字幕| 久久韩国三级中文字幕| 天堂av国产一区二区熟女人妻| 久久精品夜夜夜夜夜久久蜜豆| av女优亚洲男人天堂| 一级毛片aaaaaa免费看小| 精品人妻视频免费看| 一本一本综合久久| 91精品一卡2卡3卡4卡| 97人妻精品一区二区三区麻豆| 男人爽女人下面视频在线观看| 久久精品国产亚洲av涩爱| 久久久午夜欧美精品| 99热这里只有是精品在线观看| 亚洲av电影不卡..在线观看| 亚洲电影在线观看av| 嫩草影院精品99| 午夜精品国产一区二区电影 | 91aial.com中文字幕在线观看| 一本一本综合久久| 国产免费福利视频在线观看| 欧美性感艳星| 亚洲av在线观看美女高潮| 日韩av在线免费看完整版不卡| 能在线免费看毛片的网站| 伦精品一区二区三区| 国产精品女同一区二区软件| 秋霞伦理黄片| 国产视频首页在线观看| 99久久人妻综合| 国产欧美另类精品又又久久亚洲欧美| 免费人成在线观看视频色| 国产精品国产三级国产av玫瑰| 国产日韩欧美在线精品|